糖原合酶激酶3β调控前列腺癌细胞死亡的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
糖原合酶激酶3β(Glycogen synthase kinase 3beta, GSK-3β)是一种遗传保守的丝氨酸/苏氨酸蛋白激酶,在细胞周期代谢、基因转录、细胞凋亡、细胞运动、肿瘤发生等过程中发挥重要调控作用。研究表明,GSK-3β在众多的细胞生命活动中均处于一定程度的持续激活状态,尤其在细胞饥饿条件下,其活性显著增强,表明GSK-3p对于维持饥饿状态的细胞存活具有重要意义,但目前对于GSK-3β调控细胞存活/死亡的机制仍不清楚。本研究旨在通过抑制处于不同生长环境的前列腺癌细胞的GSK-3β活性,观察其对细胞存活/死亡的影响,鉴别并探讨GSK-3β对细胞自噬、凋亡及坏死等不同死亡模式的调控作用,初步阐明饥饿条件下,GSK-3β调控细胞存活/死亡的分子途径。结果表明,在正常培养条件下(10%FBS),通过药物或靶向siRNA抑制GSK-3β活性后,前列腺癌细胞并未发生明显的死亡反应;然而在血清饥饿条件下,抑制GSK3β却导致明显的细胞坏死反应,而且进一步研究发现,该坏死过程中伴随着细胞自噬反应的显著增强。由于细胞饥饿状态本身可诱导一定程度的自噬反应,为探讨细胞自噬在GSK-3β失活诱导的细胞坏死过程中的作用,进一步的实验观察了饥饿条件下,细胞自噬与GSK-3β活性均被抑制后的细胞反应,实验结果显示,细胞自噬被抑制时,GSK-3β失活诱导的细胞死亡却并未消失,而是由坏死反应转化为凋亡反应。为阐明上述GSK-3β活性抑制导致的不同死亡反应的分子机制,本研究对不同细胞死亡通路(自噬,坏死,凋亡)的关键调控分子的蛋白表达变化进行了探讨,结果发现,饥饿状态下抑制前列腺癌细胞GSK-3β活性,可时间/剂量依赖性地上调Bif-1蛋白的表达,促进Bif-1与beclin-1及VPS34形成自噬复合体,增强细胞自噬反应;但在正常培养条件下,Bif-1蛋白表达水平却无明显变化;当同时抑制自噬反应及GSK-3β活性时,凋亡调控因子Bax蛋白的活化结构Bax(6A7)明显增强。然而当抑制Bif-1基因表达后,不同条件下抑制GSK-3β活性导致的细胞自噬、坏死或凋亡等反应均消失,相应条件下,Bax活化明显降低。在进一步的核酸水平研究中发现,抑制GSK-3β活性可明显增强Bif-1基因启动子活性,导致Bif-1mRNA水平上调。综上研究结果表明,GSK-3β通过Bif-1调控前列腺癌细胞的死亡通路。在饥饿状态下,抑制GSK-3β活性可上调Bif-1蛋白表达,诱导细胞发生广泛的自噬反应,最终导致细胞坏死发生,当上述过程中细胞自噬被抑制时,Bif-1转而激活Bax,导致细胞凋亡发生。
Glycogen synthase kinase 3β(GSK-3β) belongs to a family of conserved serine/threonine kinases present in all eukaryotic groups. It was shown to function in a wide range of biological processes, including cell cycle progression, gene transcription, apoptosis, cellular metabolism, cell movement and tumorigenesis. Emerging evidence revealed that GSK-3βis constantly active in cells and its activity increases significantly after serum deprivation, indicating that GSK-3βmay play a major role in cell death/survival under serum starvation. In the present study, we attempted to understand how GSK-3βcontrols cell death/survival after serum depletion. Under full culture conditions(10% FBS), GSK-3βinhibition with chemical inhibitors or siRNA failed to induce cell death in human prostate cancer cells. By contrast, under conditions of serum starvation, a profound necrostic cell death was observed as evidenced by cellular morphologic features and biochemical markers. Further analysis revealed that GSK-3β-inhibition-induced cell death was parallel with an extensive autophagic response. Interestingly, blocking the autophagic response did not block GSK-3β-inhibition-induced cell death but switched it from necrosis to apoptotic cell death, which was associated with a Bax conformational change. Most importantly, knocking down bif-1 expression abolished GSK-3β-inhibition-induced autophagic response and cell death, as well as lysosomal membrane permeabilization, indicating that bif-1 is requires for the GSK-3β-inhibition-induced cytotoxic effect. Finally, GSK-3βsuppression increased bif-1 promoter activity, and subsequently up-regulated bif-1 expression, enhanced bif-1 interaction with Beclin-1/vps34 complex that is a key component in the autophagic process. Take together, our data suggest that GSK-3βcontrols cell death/survival by modulating of bif-1 dependent autophagic reponse and bif-1 dependent bax conformational change.
引文
1. Kroemer G, Galluzzi L, Vandenabeele P, et al. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ.2009;16(1):3-11.
    2. Danial NN, Korsmeyer SJ. Cell death:critical control points. Cell.2004;116(2):205-19.
    3. Klionsky DJ, Emr SD. Autophagy as a regulated pathway of cellular degradation. Science.2000;290(5497):1717-1721.
    4. Kourtis N, Tavernarakis N. Autophagy and cell death in model organisms. Cell Death Differ.2009;16(1):21-30.
    5. Maiuri MC, Zalckvar E, Kimchi A, et al. Self-eating and self-killing:crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol.2007;8(9):741-752.
    6. Walker NI, Harmon BV, Gobe GC, et al. Patterns of cell death. Methods Achiev Exp Pathol.1988;13:18-54.
    7. Hitomi J, Christofferson DE, Ng A, et al. Identification of a molecular signaling network that regulates a cellular necrotic cell death pathway. Cell.2008; 135(7):1311-1323.
    8. Chan FK, Shisler J, Bixby JG, et al. A role for tumor necrosis factor receptor-2 and receptor-interacting protein in programmed necrosis and antiviral responses. J Biol Chem.2003;278(51):51613-51621.
    9. Zong WX, Ditsworth D, Bauer DE, et al. Alkylating DNA damage stimulates a regulated form of necrotic cell death. Genes Dev.2004;18(11):1272-1282.
    10. Okada M, Adachi S, Imai T, et al. A novel mechanism for imatinib mesylate-induced cell death of BCR-ABL-positive human leukemic cells:caspase-independent, necrosis-like programmed cell death mediated by serine protease activity. Blood. 2004;103(6):2299-2307.
    11. Degterev A, Huang Z, Boyce M, et al. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol.2005; 1(2):112-119.
    12. Giusti C, Luciani MF, Klein G, et al. Necrotic cell death:From reversible mitochondrial uncoupling to irreversible lysosomal permeabilization. Exp Cell Res. 2009;315(1):26-38.
    13. Samara C, Syntichaki P, Tavernarakis N. Autophagy is required for necrotic cell death in Caenorhabditis elegans. Cell Death Differ.2008;15(1):105-112.
    14. Boya P, Kroemer G. Lysosomal membrane permeabilization in cell death. Oncogene. 2008;27(50):6434-6451.
    15. Hoeflich KP, Luo J, Rubie EA, et al. Requirement for glycogen synthase kinase-3beta in cell survival and NF-kappaB activation. Nature.2000;406(6791):86-90.
    16. Pierrat B, Simonen M, Cueto M, et al. SH3GLB, a new endophilin-related protein family featuring an SH3 domain. Genomics.2001;71(2):222-234.
    17. Cuddeback SM, Yamaguchi H, Komatsu K, et al. Molecular cloning and characterization of Bif-1. A novel Src homology 3 domain-containing protein that associates with Bax. J Biol Chem.2001;276(23):20559-20565.
    18. Takahashi Y, Karbowski M, Yamaguchi H, et al. Loss of Bif-1 suppresses Bax/Bak conformational change and mitochondrial apoptosis. Mol Cell Biol.2005;25(21):9369-9382.
    19. Yamaguchi H, Woods NT, Dorsey JF, et al. SRC directly phosphorylates Bif-1 and prevents its interaction with Bax and the initiation of anoikis. J Biol Chem. 2008;283(27):19112-19118.
    20. Takahashi Y, Coppola D, Matsushita N, et al. Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis. Nat Cell Biol.2007;9(10):1142-1151.
    21. Etxebarria A, Terrones O, Yamaguchi H, et al. Endophilin B1/Bif-1 stimulates BAX activation independently from its capacity to produce large scale membrane morphological rearrangements. J Biol Chem.2009;284(7):4200-12.
    1. Forde JE, Dale TC.Glycogen synthase kinase 3:a key regulator of cellular fate.Cell Mol Life Sci.2007;64(15):1930-1944.
    2. Kim L, Kimmel AR. GSK3, a master switch regulating cell-fate specification and tumorigenesis. Curr Opin Genet Dev.2000; 10(5):508-514.
    3. Sun A, Shanmugam I, Song J, Terranova PF, Thrasher JB, Li Bet al. Lithium suppresses cell proliferation by interrupting E2F-DNA interaction and subsequently reducing S-phase gene expression in prostate cancer. Prostate.2007; 67(9):976-988.
    4. Plotkin B, Kaidanovich O, Talior I, et al.Insulin mimetic action of synthetic phosphorylated peptide inhibitors of glycogen synthase kinase-3.J Pharmacol Exp Ther.2003; 305(3):974-980.
    5. Jope RS, Johnson GV. The glamour and gloom of glycogen synthase kinase-3. Trends Biochem Sci.2004; 29:95-102.
    6. Manoukian AS, Woodgett JR. Role of glycogen synthase kinase-3 in cancer: regulation by Wnts and other signaling pathways. Adv Cancer Res.2002; 84:203-229.
    7. Liao X, Thrasher JB, Holzbeierlein J, et al. Glycogen synthase kinase-3beta activity is required for androgen-stimulated gene expression in prostate cancer. Endocrinology.2004; 145:2941-2949.
    8. Daly JM, Jannot CB, Beerli RR, et al.Neu differentiation factor induces ErbB2 down-regulation and apoptosis of ErbB2-overexpressing breast tumor cells.Cancer Res.1997;57(17):3804-3811.
    9. Bustin M.At the crossroads of necrosis and apoptosis:signaling to multiple cellular targets by HMGB1.Sci STKE.2002;2002(151):pe39:
    1. Galluzzi L, Vicencio JM, Kepp O,et al. To die or not to die:that is the autophagic question.Curr Mol Med.2008;8(2):78-91.
    2. Plotkin B, Kaidanovich O, Talior I, et al. Insulin mimetic action of synthetic phosphorylated peptide inhibitors of glycogen synthase kinase-3.J Pharmacol Exp Ther.2003; 305(3):974-980.
    3. Klionsky DJ, Emr SD. Autophagy as a regulated pathway of cellular degradation.Science.2000;290(5497):1717-1721.
    4. Shintani T, Klionsky DJ. Autophagy in health and disease:a double-edged sword.Science.2004;306(5698):990-995.
    5. Klionsky DJ, Abeliovich H, Agostinis P,et al. Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes.Autophagy. 2008;4(2):151-175.
    6. Bjφrkφy G, Lamark T, Brech A, et al. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death.J Cell Biol.2005;171(4):603-614.
    1. Cecconi F, Levine B. The role of autophagy in mammalian development:cell makeover rather than cell death.Dev Cell.2008;15(3):344-357.
    2. Plotkin B, Kaidanovich O, Talior I, et al. Insulin mimetic action of synthetic phosphorylated peptide inhibitors of glycogen synthase kinase-3.J Pharmacol Exp Ther.2003; 305(3):974-980.
    3. Zong WX, Thompson CB. Necrotic death as a cell fate.Genes Dev.2006;20(1):1-15.
    4. Golstein P, Kroemer G. Cell death by necrosis:towards a molecular definition.Trends Biochem Sci.2007;32(1):37-43.
    5. Samara C, Syntichaki P, Tavernarakis N. Autophagy is required for necrotic cell death in Caenorhabditis elegans.Cell Death Differ.2008;15(1):105-112.
    6. Degenhardt K, Mathew R, Beaudoin B, et al. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis.Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis.Cancer Cell.2006;10(1):51-64.
    7. Maiuri MC, Zalckvar E, Kimchi A, et al. Self-eating and self-killing:crosstalk between autophagy and apoptosis.Nat Rev Mol Cell Biol.2007;8(9):741-752.
    8. Green DR, Reed JC. Mitochondria and apoptosis.Science.1998;281(5381):1309-1312.
    9. Salvioli S, Ardizzoni A, Franceschi C, et al. JC-1, but not DiOC6(3) or rhodamine 123, is a reliable fluorescent probe to assess delta psi changes in intact cells: implications for studies on mitochondrial functionality during apoptosis.FEBS Lett. 1997;411(1):77-82.
    1. Takahashi Y, Karbowski M, Yamaguchi H, et al.Loss of Bif-1 suppresses Bax/Bak conformational change and mitochondrial apoptosis.Mol Cell Biol. 2005;25(21):9369-9382.
    2. Takahashi Y, Coppola D, Matsushita N,et al. Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis.Nat Cell Biol. 2007;9(10):1142-1151.
    3. Takahashi Y, Meyerkord CL, Wang HG.Bif-1/endophilin B1:a candidate for crescent driving force in autophagy.Cell Death Differ.2009;16(7):947-955.
    4. Plotkin B, Kaidanovich O, Talior I, et al. Insulin mimetic action of synthetic phosphorylated peptide inhibitors of glycogen synthase kinase-3.J Pharmacol Exp Ther.2003; 305(3):974-980.
    5. Cuddeback SM, Yamaguchi H, Komatsu K, et al. Molecular cloning and characterization of Bif-1. A novel Src homology 3 domain-containing protein that associates with Bax.J Biol Chem.2001;276(23):20559-20565.
    6. Mari M, Reggiori F. Shaping membranes into autophagosomes.Nat Cell Biol. 2007;9(10):1125-1127.
    1. Plotkin B, Kaidanovich o, Talior I, et al. Insulin mimetic action of synthetic phosphorylated peptide inhibitors of glycogen synthase kinase-3.J Pharmacol Exp Ther.2003; 305(3):974-980.
    2. Christner C, Wyrwa R, Marsch S, et al.Synthesis and cytotoxic evaluation of cycloheximide derivatives as potential inhibitors of FKBP12 with neuroregenerative properties.J Med Chem.1999;42(18):3615-3622.
    3. Kigawa J, Takahashi M, Minagawa Y, et al.Topoisomerase-I activity and response to second-line chemotherapy consisting of camptothecin-11 and cisplatin in patients with ovarian cancer.Int J Cancer.1999;84(5):521-524.
    4. Ashkenazi A, Dixit VM.Death receptors:signaling and modulation.Science. 1998;281(5381):1305-1308.
    1. Jemal A, Siegel R, Ward E, et al. Cancer statistics,2007[J]. CA Cancer J Clin.2007; 57(1):43-66.
    2. Klochendler-Yeivin A, Muchardt C, Yaniv M. SWI/SNF chromatin remodeling and cancer [J]. Curr Opin Genet Dev.2002 Feb;12(1):73-79.
    3. Roberts CW, Orkin SH. The SWI/SNF complex--chromatin and cancer [J]. Nat Rev Cancer.2004;4(2):133-142.
    4. Osley MA, Tsukuda T, Nickoloff JA. ATP-dependent chromatin remodeling factors and DNA damage repair [J]. Mutat Res.2007; 618(1-2):65-80.
    5. Lusser A, Kadonaga JT. Chromatin remodeling by ATP-dependent molecular machines [J]. Bioessays.2003; 25(12):1192-1200.
    6. Van Vugt JJ, Ranes M, Campsteijn C, et al. The ins and outs of ATP-dependent chromatin remodeling in budding yeast:biophysical and proteomic perspectives [J]. Biochim Biophys Acta.2007; 1769(3):153-171.
    7. Jerzmanowski A. SWI/SNF chromatin remodeling and linker histones in plants [J]. Biochim Biophys Acta.2007; 1769(5-6):330-345.
    8. Wang W, Cote J, Xue Y, et al. Purification and biochemical heterogeneity of the mammalian SWI-SNF complex[J]. EMBO J.1996; 15(19):5370-5382.
    9. Gibbons RJ. Histone modifying and chromatin remodelling enzymes in cancer and dysplastic syndromes [J]. Hum Mol Genet.2005; 14 Spec No 1:R85-92.
    10. Phelan ML, Sif S, Narlikar GJ, et al. Reconstitution of a core chromatin remodeling complex from SWI/SNF subunits[J]. Mol Cell.1999;3(2):247-253.
    11. Sudarsanam P, Iyer VR, Brown PO, et al. Whole-genome expression analysis of snf/swi mutants of Saccharomyces cerevisiae[J]. Proc Natl Acad Sci U S A.2000 28; 97(7):3364-3369.
    12. Sharma A, Comstock CE, Knudsen ES, et al. Retinoblastoma tumor suppressor status is a critical determinant of therapeutic response in prostate cancer cells [J]. Cancer Res. 2007; 67(13):6192-6203.
    13. Reyes JC, Barra J, Muchardt C, et al. Altered control of cellular proliferation in the absence of mammalian brahma (SNF2alpha) [J]. EMBO J.1998; 17(23):6979-6991.
    14. Wong AK, Shanahan F, Chen Y, et al. BRG1, a component of the SWI-SNF complex, is mutated in multiple human tumor cell lines [J]. Cancer Res.2000; 60(21):6171-6177.
    15. Valdman A, Nordenskjold A, Fang X. Mutation analysis of the BRG1 gene in prostate cancer clinical samples [J]. Int J Oncol.2003; 22(5):1003-1007.
    16. Li Y, Shi QL, Jin XZ, et al. BRG1 expression in prostate carcinoma by application of tissue microarray[J]. Zhonghua Nan Ke Xue.2006; 12(7):629-632.
    17. Sun A, Tawfik O, Gayed B, et al. Aberrant expression of SWI/SNF catalytic subunits BRG1/BRM is associated with tumor development and increased invasiveness in prostate cancers [J]. Prostate.2007 Feb 1; 67(2):203-213.
    18. Richter E, Srivastava S, Dobi A. Androgen receptor and prostate cancer [J]. Prostate Cancer Prostatic Dis.2007; 10(2):114-118.
    19. Liao X, Thrasher JB, Holzbeierlein J, et al. Glycogen synthase kinase-3beta activity is required for androgen-stimulated gene expression in prostate cancer [J]. Endocrinology. 2004; 145(6):2941-2949.
    20. Visakorpi T. The molecular genetics of prostate cancer [J]. Urology.2003; 62(5 Suppl 1):3-10.
    21. Li J, Fu J, Toumazou C, et al. A role of the amino-terminal (N) and carboxyl-terminal (C) interaction in binding of androgen receptor to chromatin [J]. Mol Endocrinol.2006; 20(4):776-85.
    22. Inoue H, Furukawa T, Giannakopoulos S, et al. Largest subunits of the human SWI/SNF chromatin-remodeling complex promote transcriptional activation by steroid hormone receptors [J]. J Biol Chem.2002; 277(44):41674-85.
    23. Marshall TW, Link KA, Petre-Draviam CE,et al. Differential requirement of SWI/SNF for androgen receptor activity[J]. J Biol Chem.2003 Aug 15; 278(33):30605-13.
    24. Wang Q, Udayakumar TS, Vasaitis TS, et al. Mechanistic relationship between androgen receptor polyglutamine tract truncation and androgen-dependent transcriptional hyperactivity in prostate cancer cells [J]. J Biol Chem.2004; 279(17):17319-28.
    25. Link KA, Burd CJ, Williams E, et al. BAF57 governs androgen receptor action and androgen-dependent proliferation through SWI/SNF [J]. Mol Cell Biol.2005; 25(6):2200-15.
    26. Hong CY, Suh JH, Kim K, et al. Modulation of androgen receptor transactivation by the SWI3-related gene product (SRG3) in multiple ways [J]. Mol Cell Biol.2005; 25(12):4841-52.
    27. Huang CY, Beliakoff J, Li X, et al. hZimp7, a novel PIAS-like protein, enhances androgen receptor-mediated transcription and interacts with SWI/SNF-like BAF complexes [J]. Mol Endocrinol.2005; 19(12):2915-29.
    28. Singal R, GD Ginder. DNA Methylation [J].Blood.1999; 93(12):4059-70.
    29. Li LC, Okino ST, Dahiya R. DNA methylation in prostate cancer [J]. Biochim Biophys Acta.2004; 1704(2):87-102.
    30. Laird PW. The power and the promise of DNA methylation markers [J]. Nat Rev Cancer.2003; 3(4):253-66.
    31. Bastian PJ, Yegnasubramanian S, Palapattu GS,et al. Molecular biomarker in prostate cancer:the role of CpG island hypermethylation [J]. Eur Urol.2004;46(6):698-708.
    32. Harikrishnan KN, Chow MZ, Baker EK, et al. Brahma links the SWI/SNF chromatin-remodeling complex with MeCP2-dependent transcriptional silencing [J]. Nat Genet. 2005; 37(3):254-64.
    33. Wade PA. SWItching off methylated DNA. Nat Genet.2005; 37(3):212-3.
    34. Banine F, Bartlett C, Gunawardena R, et al. SWI/SNF chromatin-remodeling factors induce changes in DNA methylation to promote transcriptional activation [J]. Cancer Res.2005; 65(9):3542-7.
    35. Glaros S, Cirrincione GM, Muchardt C, et al. The reversible epigenetic silencing of BRM:implications for clinical targeted therapy [J]. Oncogene.2007;26(49):7058-7066.
    1. Berggard I, Bearn AG. Isolation and properties of a low molecular weight beta-2-globulin occurring in human biological fluids [J]. J Biol Chem.1968; 243(15):4095-103.
    2. Gussow D, Rein R, Ginjaar I, et al. The human beta 2-microglobulin gene. Primary structure and definition of the transcriptional unit [J]. J Immunol.1987; 139(9):3132-8.
    3. Freeman MR. Beta2 microglobulin:a surprising therapeutic target for prostate cancer and renal cell carcinoma [J]. J Urol.2007; 178(1):10-1.
    4. Teasdale C, Mander AM, Fifield R, et al. Serum beta2-microglobulin in controls and cancer patients [J]. Clin Chim Acta.1977; 78(1):135-43.
    5. Bjorkman PJ, Saper MA, Samraoui B, et al. Structure of the human class I histocompatibility antigen, HLA-A2 [J]. Nature.1987; 329(6139):506-12.
    6. Otten GR, Bikoff E, Ribaudo RK, et al. Peptide and beta 2-microglobulin regulation of cell surface MHC class I conformation and expression [J]. J Immunol.1992; 148(12):3723-32.
    7. Hill DM, Kasliwal T, Schwarz E, et al. A dominant negative mutant beta 2-microglobulin blocks the extracellular folding of a major histocompatibility complex class I heavy chain [J]. J Biol Chem.2003; 278(8):5630-8.
    8. Nachbaur K, Troppmair J, Kotlan B, et al. Cytokines in the control of beta-2 microglobulin release. Ⅱ. In vivo studies with recombinant interferons and antigens [J].Immunobiology.1988; 177(1):66-75.
    9. Drew PD, Lonergan M, Goldstein ME, et al. Regulation of MHC class I and beta 2-microglobulin gene expression in human neuronal cells. Factor binding to conserved cis-acting regulatory sequences correlates with expression of the genes [J]. J Immunol.1993; 150(8 Pt 1):3300-10.
    10. Birch RE, Rosenthal AK, Polmar SH. Pharmacological modification of immunoregulatory T lymphocytes. Ⅱ. Modulation of T lymphocyte cell surface characteristics[J]. Clin Exp Immunol 1982; 48(1):231-8.
    11. Gross M, Top I, Laux I, et al. Beta-2-microglobulin is an androgen-regulated secreted protein elevated in serum of patients with advanced prostate cancer [J]. Clin Cancer Res.2007; 13(7):1979-86.
    12. Rowley DR, Dang TD, McBride L, et al. Beta-2 microglobulin is mitogenic to PC-3 prostatic carcinoma cells and antagonistic to transforming growth factor beta 1 action[J]. Cancer Res.1995; 55(4):781-6.
    13. Jacobs EL, Haskell CM. Clinical use of tumor markers in oncology [J]. Curr Probl Cancer.1991;15(6):299-360.
    14. Bunning RA, Haworth SL, Cooper EH. Serum beta-2-microglobulin levels in urological cancer [J]. J Urol.1979; 121(5):624-5.
    15. Abdul M, Hoosein N. Changes in beta-2 microglobulin expression in prostate cancer [J]. Urol Oncol.2000; 5(4):168-172.
    16. Kitamura H, Torigoe T, Asanuma H, et al. Down-regulation of HLA class I antigens in prostate cancer tissues and up-regulation by histone deacetylase inhibition [J]. J Urol.2007; 178(2):692-6.
    17. Blades RA, Keating PJ, Mc William LJ, et al. Loss of HLA class I expression in prostate cancer:implications for immunotherapy [J]. Urology.1995 Nov; 46(5):681- 6.
    18. Cabrera T, Lopez-Nevot MA, Gaforio JJ, et al. Analysis of HLA expression in human tumor tissues[J]. Cancer Immunol Immunother.2003; 52(1):1-9.
    19. Hicklin DJ, Wang Z, Arienti F, et al. beta2-Microglobulin mutations, HLA class I antigen loss, and tumor progression in melanoma [J]. J Clin Invest.1998; 101(12):2720-9.
    20. Chang CC, Campoli M, Restifo NP, et al. Immune selection of hot-spot beta 2-microglobulin gene mutations, HLA-A2 allospecificity loss, and antigen-processing machinery component down-regulation in melanoma cells derived from recurrent metastases following immunotherapy [J]. J Immunol.2005; 174(3):1462-71.
    21. Mori M, Terui Y, Ikeda M, et al. Beta(2)-microglobulin identified as an apoptosis-inducing factor and its characterization[J]. Blood.1999; 94(8):2744-53.
    22. Mori M, Terui Y, Tanaka M, et al. Antitumor effect of beta2-microglobulin in leukemic cell-bearing mice via apoptosis-inducing activity:activation of caspase-3 and nuclear factor-kappaB [J]. Cancer Res.2001; 61(11):4414-7.
    23. Nomura T, Huang WC, Zhau HE, et al. Beta2-microglobulin promotes the growth of human renal cell carcinoma through the activation of the protein kinase A, cyclic AMP-responsive element-binding protein, and vascular endothelial growth factor axis[J]. Clin Cancer Res.2006; 12(24):7294-305.
    24. Yang J, Qian J, Wezeman M, et al. Targeting beta2-microglobulin for induction of tumor apoptosis in human hematological malignancies[J]. Cancer Cell.2006; 10(4):295-307.
    25. Nomura T, Huang WC, Seo S, et al. Targeting beta2-microglobulin mediated signaling as a novel therapeutic approach for human renal cell carcinoma [J]. J Urol. 2007; 178(1):292-300.
    26. Small EJ. Prostate cancer, Incidence, management and outcomes [J]. Drugs Aging. 1998; 13(1):71-81.
    27. Balint E, Sprague SM. Beta(2)-microglobulin and bone cell metabolism[J]. Nephrol Dial Transplant.2001;16(6):1108-11.
    28. Miyata T, Kawai R, Taketomi S, et al. Possible involvement of advanced glycation end-products in bone resorption [J]. Nephrol Dial Transplant.1996; 11 Suppl 5:54-7.
    29. Huang WC, Xie Z, Konaka H, et al. Human osteocalcin and bone sialoprotein mediating osteomimicry of prostate cancer cells:role of cAMP-dependent protein kinase A signaling pathway[J]. Cancer Res.2005; 65(6):2303-13.
    30. Huang WC, Wu D, Xie Z, et al. beta2-microglobulin is a signaling and growth-promoting factor for human prostate cancer bone metastasis [J]. Cancer Res.2006; 66(18):9108-16.
    31. Tafuro S, Meier UC, Dunbar PR, et al. Reconstitution of antigen presentation in HLA class Ⅰ-negative cancer cells with peptide-beta2m fusion molecules [J]. Eur J Immunol.2001; 31(2):440-9.
    32. Bergen M, Chen R, Gonzalez R. Efficacy and safety of HLA-B7/beta-2 microglobulin plasmid DNA/lipid complex (Allovectin-7) in patients with metastatic melanoma [J]. Expert Opin Biol Ther.2003; 3(2):377-84.
    33. Salamone FN, Gleich LL, Li YQ, et al. Major histocompatibility gene therapy:the importance of haplotype and beta 2-microglobulin [J]. Laryngoscope.2004; 114(4):612-5.
    34. Marchion D, Munster P. Development of histone deacetylase inhibitors for cancer treatment [J]. Expert Rev Anticancer Ther.2007; 7(4):583-98.
    35. Duvic M, Vu J. Vorinostat:a new oral histone deacetylase inhibitor approved for cutaneous T-cell lymphoma [J]. Expert Opin Investig Drugs.2007; 16(7):1111-20.