两个单核苷酸多态性对中国汉族人心肌梗死的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:本实验通过调查染色体9p21上两个单核甘酸多态性(rs10757274和rs2383206)的基因型和等位基因的分布频率,探讨两个单核苷酸多态性在中国汉族人群中对心肌梗死的影响。方法:采取医院为基础的病例对照研究;心肌梗死组为参照WHO制定的心肌梗死诊断标准判定为非致命性心肌梗死的患者共432例;对照组为无冠心病等病史的住院病人共430例,设置样本时男女比例不限;通过调查表确定吸烟、饮酒、血压等心肌梗死发病的风险因素;采集血样5ml/人;用酚-氯仿法提取DNA,对DNA进行纯化、定量;使用SNPstream系统扫描后,启动SNP admin程序进行数据分析。结果:1.两组间临床资料风险因素的比较,BMI、吸烟、高血压、糖尿病、高脂血症在心肌梗死组与对照组中有显著统计学差异(P<0.05)。2. rs10757274多态AA、AG、GG基因型频率在心肌梗死组及对照组中分别为24.7%、52.8%、22.5%及35.8%、47.0%、17.2%;rs2383206多态分别为23.6%、52.8%、23.6%及36.4%、45.2%、18.4%,基因型频率在心肌梗死组与对照组中有显著统计学差异(P<0.05),通过校正心肌梗死风险因素后差异依然存在。3. rs10757274多态A、G等位基因分布频率在心肌梗死组及对照组中分别为51.1%、48.9%及59.3%、4.7%;rs2383206多态分别为50.0%、50.0%及59.0%、41.0%,等位基因分布频率在心肌梗死组与对照组中有显著统计学差异(P<0.05)。4.应用多元logistic分析,rs10757274多态和rs2383206多态心肌梗死组与对照组的比值比分别为1.40和1.44。结论:1.实验证实BMI、吸烟、高血压、糖尿病、高脂血症为心肌梗死风险因素。2.rs10757274多态的和rs2383206与心肌梗死的发生有关,且均使心肌梗死患病风险增加,其中G等位基因的存在与心肌梗死有关。
Objective:Investigate the effect of two significant association of single nucleotide polymorphisms (SNPs) on chromosome 9p21: rs10757274 and rs2383206 to myocardial infarction (MI) in Chinese Hans,by comparing and analysing the genotypes frequencies and alleles frequencies in Case and Controls.Methods:In a hospital based case control study, cases were represented of the first hospitalized non-fatal myocardial infarction who were diagnosed by standard of World Health Organization (WHO) .A total of 432 patients were interviewed. Controls were 430 subjects without a history of coronary artery disease, cancer and disease of thyroid gland. The proportion of men to women in cases and controls are not limited. The cardiovascular risk factors waere based on questionnaires,for example Smoking,Body mass index (BMI),Hypertension and so on. The sample is 5 ml/person.Using method of Phenol-Chloroform to purify DNA and quantitative, to analyse data by SNP admin. Results:1.comparing risk factors of MI, significant differences in BMI, smoking, drinking, hypertension, diabetes, and hyperlipoidemia were observed between the cases and controls ( P<0.05) .2. the genotypes frequencies of rs10757274 in two groups were 24.7%、52.8%、22.5% and 35.8%、47.0%、17.2%;rs2383206 were 23.6%、52.8%、23.6% and 36.4%、45.2%、18.4%.The distributions of the genotypes frequencies were significantly different between two groups( P<0.05).The association remained after adjusting for risk factors.3. the allele frequencies of rs10757274 in two groups were 51.1%、48.9% and 59.3%、4.7%;rs2383206 were 50.0%、50.0% and 59.0%、41.0%.The distributions of the allele frequencies were significantly different between two groups( P<0.05) .4. In an additive model in logistic analysing, The Odds Ratios of rs10757274 and rs2383206 were 1.40 and 1.44. Conclusion:1.Research show BMI,Smoking,Hypertension,Diabetes,Hyperlipidemia were risk factors of MI.2.rs10757274 and rs2383206 increase the risk of MI. Allele (G) was association with MI.
引文
[1] Watkins H,Farall M,et al. Genetic susceptibility to coronary artery disease: from Promise to progress.[J] Nat Rev Genet, 2006, 7(3): 163-17.
    [2] Jan L. Breslow,Cardiovascular disease burden increases NIH funding decreases.[J] nature medicine, 1997, 6(3): 110-112
    [3]曹家琪.冠心病流行病学.中国协和医科大学联合出版社, 1995:65-90.
    [4]吴锡桂.我国人群冠心病流行现况与趋势.中国慢性病预防与控制[M].2003, 11(4): 190-191.
    [5] Dawber TR,Kannel WB. The Framingham study. An epidemiological approach to coronary heart disease.[J] Circulation,1966, 34:553-555.
    [6] McInnes GT,et al. Hypertension and coronary artery disease: cause and effect.[J] Hypertens Suppl , 1995, 13:49-56.
    [7] Epstein FH,et al. Genetics of is chemic heart disease.[J] Postgrad Med J, 1976, 52:477–480.
    [8] McCarthy JJ,Parker A,Salem R, et al. Large scale association anafysis for identification of genes underlying premature coronary heart disease: cumulative perspective from analysis of 111 candidate genes.[J] Med Genet, 2004, 41 (5): 334-341.
    [9] Chaer RA. Billeh R, Massad MG. Gnetics and gene manipulation therapy of premature coronary artery disease.[J] Cardiology, 2004, 101(1): 122-130.
    [10] Lloyd-Jones DM,Nam BH. D’Agostino RB Sr,et al. Parental cardiovascular disease as arisk factor for cardiovascular disease in middle-aged adults: a prospective study of parents and offspring.[J] JAMA, 2004, 291(18):2204-2011.19.
    [11] Shen GQ,Li L,Rao S,et al. Four SNPs on chromosome 9p21 in a South Korean Population implicate a genetic locus that confers high cross-race risk for development of coronary artery disease.Arterioscler Thromb Vasc Biol, 2008, 28:360–365.
    [12] Abdullah KG,et al. Four SNPs on chromosome 9p21 confer risk to premature, familial CAD and MI in an American Caucasian population.[J] Ann Hum Genet,2008,72(5): 654-657.
    [13] Shen, G. Q., Rao, S., Martinelli,et al. Association between four SNPs on chromosome 9p21 andmyocardialinfarction is replicated in an italian population.[J] Hum Genet,2008,53:144–150.
    [14] Zhou L, Zhang XM, He MA,et al. Associations Between Single NucleotidePolymorphisms on Chromosome 9p21 and Risk of Coronary Heart Disease in Chinese Han Population.[J] Arterioscler Thromb VascBiol, 2008, 28:2085–2089.
    [15] Cooper D N, Smith B A, Cooke H J, et al. An estimate of unique DNA sequence heterozygosity in the human genome . [J] HumGenet, 1985, 69: 201-205.
    [16] Reich D E, Schaffner S F, Daly MJ, et al. Human genome sequence variation and the influence of gene history, mutation and recombination . [J] Nature Genet, 2002, 32(1): 135-142.
    [17] Sachidanandam R, Weissman D, Schmidt S C, et al. A map of human genomesequence variation containing 1. 42million SNP. [J] Nature, 2001, 409: 928~933.
    [18] Collins F S, Guyer MS , Chakravarti A.Variations on a theme: Cataloging human DNA sequence variation .[J] Science, 1997,278(5343): 1580-1581.
    [19] Gottgens B, Barton LM, Gilbert J G, et al. Analysis of vertebrate SCL lociidentifies conserved enhancers . [J] Nature Biotechnol, 2000, 18: 181-186.
    [20] Loots GG, LocksleyRM, Blankespoor CM, et al. Identification of a coordinate regulator of interleukins 4, 13 and 5 by cross-speciessequence comparisons . [J] Science, 2000, 288 (5463): 136-140.
    [21] Tao H, Cox D R, Frazer K A. Allele-specific KRT1 expression is a complex trait . [J] PLoS Genet, 2006, 2 (6): 93.
    [22] Gwee P C, Tang K, Sew P H, et al. Strong linkage disequilibrium at the nucleotide analogue transporter ABCC5 gene locus .[J] Pharmacogenet Genomics, 2005, 15(2): 91-104.
    [23] Puffenberger E G, Kauffman E R, Bolk S, et al. Identity-by-descent and association mapping of a recessive gene for Hirschsprung disease on human chromosome 13q22 . [J] Hum Mol Genet, 1994, 3(8): 1217-1225.
    [24] Marotta C A, Wilson J T, Forget B G, et al. Human beta- globin messenger RNA. III. Nucleotide sequences derived from complementary DNA . [J] J Biol Chem,1977, 252: 5040-5053.
    [25] Eric L. App lication of SNP technologies in medicine: lessons learned and future challenges. [J] Genom e Res, 2001, 11: 927~929.
    [26] Bell P A, Chaturvedi S, Gelfand C A,et al. SNPstream UHT: ultra-high throughput SNP genotyping for pharmacogenomics and drug discovery. [J] Biotechniques, 2002, l:70- 77.
    [27]赵洛沙,焦昆立,刘传红等.同型半胱氨酸代谢相关酶基因多态性与心肌梗死关系的研究[J].中国心血管杂志,2006,11(6)414-417.
    [28]张岸平,宁树成,李占清等.汉族群体血管紧张素原基因T174M多态性与心肌梗死相关[J].第四军医大学学报,2005,26 (8)729:731.
    [29] David H. McDermott, Qiong Yang, et al.Murphy and Emelia J. Benjamin. CCL2 Polymorphisms Are Associated With Serum Monocyte Chemoattractant Protein-1 Levels and Myocardial Infarction in theFramingham Heart Study. [J] Circulation 2005;112;1113-1120.
    [30] David-Alexandre Tregouet, Sylvain Ricard, Viviane Nicaud , et al. In-Depth Haplotype Analysis of ABCA1 Gene Polymorphisms in Relation to PlasmaApoA1 Levels and Myocardial InfarctionThromb. [J] Vasc. Biol,2004,24:775-781.
    [31] McPherson Ruth, et al. A Common Allele on Chromosome 9 Associated with Coronary Heart Disease.[J] Science, 2008, 316: 1488–1491.
    [32] Helgadottir Anna, et al. A Common Variant on Chromosome 9p21 Affects the Risk of Myocardial Infarction.[J] Science, 316(8): 1491-1493.
    [33] Samani Nilesh J, et al. Genome-wide Association Analysis of Coronary Artery Disease.[J] N Engl J Med, 2007, 357: 443-453.
    [34] Hinohara K, Nakajima T, Takahashi M, et al. Replication of the association between a chromosome 9p21 polymorphism and coronary artery disease in Japanese and Korean populations.[J] Hum Genet, 2008, 53:357–359.
    [35] Dehghan A, van Hoek M, Sijbrands EJ, et al.Lack of association of two common polymorphisms on 9p21 with risk of coronary heart disease and myocardial infarction; results from a prospective cohort study.[J] BMC Medicine, 2008, 6: 1186-1741.
    [36] Schunkert H, Gotz A, Braund P, et al. Repeated replication and a prospective meta-analysis of the association between chromosome 9p21.3 and coronary artery disease.[J] Circulation 2008, 117(13):1675-1684.
    [37] Zeggini E, Weedon MN, Lindgren CM, et al. Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes.[J] Science 2007, 316: 1336–41.
    [38] Scott LJ, Mohlke KL, Bonnycastle LL, et al. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants.[J] Science , 2007, 316: 1341–1345.
    [39] Diabetes Genetics Initiative of Broad Institute of Harvard and MIT, Lund University, and Novartis Institutes of Biomedical Research et al. Genome-wideassociation analysis identifies loci for type 2 diabetes and triglyceride levels.[J]Science, 2007, 316: 1331–1336.
    [1] Cooper D N, Smith B A, Cooke H J, et al. An estimate of unique DNA sequence heterozygosity in the human genome . [J] HumGenet, 1985, 69: 201-205.
    [2] Reich D E, Schaffner S F, Daly MJ, et al. Human genome sequence variation and the influence of gene history, mutation and recombination.[J] Nature Genet, 2002,32(1): 135-142.
    [3] Collins F S, Guyer MS , Chakravarti A. Variations on a theme: Cataloging human DNA sequence variation . [J] Science, 1997,278(5343): 1580-1581.
    [4] Gottgens B, Barton LM, Gilbert J G , et al. Analysis of vertebrate SCL loci identifies conserved enhancers . [J] Nature Biotechnol, 2000, 18: 181-186.
    [5] Loots GG , LocksleyRM, Blankespoor CM , et al. Identification of a coordinate regulator of interleukins 4, 13 and 5 by cross-speciessequence comparisons . [J] Science, 2000, 288 (5463): 136-140.
    [6] Tao H, Cox D R, Frazer K A. Allele-specific KRT1 expression is a complex trait .[J] PLoS Genet , 2006, 2 (6): 93.
    [7] Gwee P C, Tang K, Sew P H, et al. Strong linkage disequilibrium at the nucleotide analogue transporter ABCC5 gene locus . [J] Pharmacogenet Genomics, 2005,
    [8] 15(2): 91-104.
    [9] Puffenberger E G , Kauffman E R, Bolk S, Matise T C, et al. Identity-by-descent and association mapping of a recessive gene for Hirschsprung disease on human chromosome 13q22 . [J] Hum Mol Genet, 1994, 3(8): 1217-1225.
    [10] Marotta C A, Wilson J T, Forget B G , et al. Human beta- globin messenger RNA.III. Nucleotide sequences derived from complementary DNA.[J] Biol Chem ,1977, 252: 5040-5053.
    [11] Sachidanandam R, Weissman D, Schmidt S C, et al. A map of human genome sequence variation containing 1.42million SNP.[J] Nature, 2001, 409: 928-933.
    [12] Eric L. App lication of SNP technologies in medicine: lessons learned and future challenges.[J] Genom e Res, 2001, 11: 927-929.
    [13] Holland PM, Abramson R D, Watson R , et al. Detection of specific polymerase chain reaction p roduct by utilizing the 5′→3′exonuclease activity of thermus aquaticus DNA polymerase.[J] Proc Natl Acad Sci USA, 1991, 88: 7276-7280.
    [14] Livak K J, Marmaro J, Todd J A. Towards fully automated genome-wide polymorphism screening.[J] Nature Genet, 1995, 9: 341-342.
    [15] HowellW M, JobsM, Gyllensten U, et al. Dynamic allele-specific hybridization. A new method for scoring single nucleotide polymorphisms.[J] Nat Biotechnol,
    [16] 1999, 17: 87-88.
    [17] Yagi S, Kramer F R. Molecular beacons: probes that fluoresce upon hybridization.[J] Nat B iotechnol, 1996, 14: 303-308.
    [18] Lyamichev V, Mast A L, Hall J G , et al. Polymorphism identification and quantitative detection of genomic DNA by invasive cleavage of oligonucleotideprobes.[J] Nat Biotechnol, 1999, 17: 292-296.
    [19] ShiM M. Technologies for individual genotyp ing: detection of genetic polymorphisms in drug targets and disease genes.[J] Am J Pharm acogenomics, 2002, 2: 197-205.
    [20] Fors L, Lieder KW, Vavra S H , et al. Large-scale SNP scoring from unamp lified genomic DNA.[J] Pharm acogenom ics, 2000, 1: 219-229.
    [21] Rao KV, Stevens PW, Hall J G , et al. Genotyping single nucleotide polymorphisms directly from genomic DNA by invasive cleavage reaction on microspheres.[J] Nucleic Acids Res, 2003, 31: 66.
    [22] Syvanen A C, Aaltosetala K, Harju L, et al. A primer-guided nucleotide incorporation assay in the genotyp ing of apolipop rotein .[J] E.Genomics, 1990, 8: 684-692.
    [23] RonaghiM, Uhlen M, Nyren P. A sequencing method based on real-time pyrophosphate.[J] Science, 1998, 281: 363-365.
    [24] Pastinen T, Kurg A, Metspalu A, et al. Minisequencing: A specific tool for DNA analysis and diagnostics on oligonucleotide arrays.[J] Genom e Res, 1997, 7: 606-614.
    [25] Chen X, Zehnbauer B, Gnirke A , et al. Fluorescence energy transfer detection as a homogeneous DNA diagnostic method.[J] Proc Natl Acad Sci USA, 1997, 94: 10756-10761.
    [26] Hirschhorn J N, Sklar P, Lindblad2Toh K, , et al. An array-based method for efficient single-nucleotide polymorphism genotyping.[J] Proc Natl Acad SciUSA, 2000, 97: 12164-12169.
    [27] Fan J B, Chen X, HalushkaM K, et al. Parallel genotyp ing of human SNP using generic high-density oligonucleotide tag arrays.[J] Genom e Res, 2000, 10: 853-860.
    [28] ZHOU GuoHua, GU ZhuoLiang, ZHANG J ieBing. P53 gene mutation detection by bioluminometry assay.[J] Acta Pharam ceutica Sinica, 2002, 37 (1) : 41-45.
    [29] Alderborn A, Kristofferson A, Hammerling U. Determination of single nucleotidepolymorphisms by real-time pyrophosphate DNAsequencing.[J] Genom e Res, 2000, 10: 124-1258.
    [30] Pourmand N, Elahi E, Davis RW, RonaghiM. Multip lex pyrosequencing.[J] Nucleic Acids Res, 2002, 30: 31.
    [31] Landegren U, Kaiser R, Sanders J, et al. A ligase-mediated gene detection technique.[J] Science, 1988, 241: 1077-1080.
    [32] Eggerding F A.A one-step coup led amp lification and oligonucleotide ligation procedure formultip lex genetic typing.[J] Genom e Res,1995, 4: 337-345.
    [33] Pickering J, Bamford A, Godbole V, et al. Integration of DNA ligation and rolling circle amp lification for the homogeneous, end-point detection of single nucleotide polymorphisms.[J] Nucleic Acids Res, 2002,30: 60.
    [34] Cho R J, MindrinosM, Richards D R , et al. Genome-wide mapping with biallelic markers in A rabidopsis thaliana.[J] Nature Genet, 1999, 23: 203-207.
    [35] OlivierM, Chuang L M, ChangM S, et al. High-throughput genotyp ing of single nucleotide polymorphisms using new bip lex invader technology.[J] Nucleic Acids Res, 2002,30: 53.
    [36] Sosnowski R G, Tu E, ButlerW F , et al. Rapid determination of single base mismatch mutations in DNA hybrids by direct electric field control.[J] Proc Natl Acad Sci USA,1997, 94: 1119-1123.
    [37] Edman C F, Raymond D E, Wu D J , et al. Electric field directed nucleicacid hybridization on microchips.[J] Nucleic Acids Res, 1997, 25:4907-4914.
    [38] Kohara Y, Noda H, Okano K , et al. DNA probes on beads arrayed in a cap illary,‘Bead-array’, exhibited high hybridization performance.[J] Nucleic Acids Res, 2002, 30: 87.
    [39] Xu H, Sha M Y, Wong E Y, , et al. Multip lexed SNP genotyping using the Qbead TM system: a quantum dot-encoded microsphere-based assay.[J] Nucleic Acids Res, 2003, 31: 43.
    [40] Armstrong B, StewartM, MazumderA. Suspension arrays for high throughput, multip lexed single nucleotide polymorphism genotyping.[J]Cytom etry, 2000, 40:102-108.
    [41] Brookes A J. The essence of SNPs. [J] Gene, 1999,234:177- 186.
    [42] Bell P A, Chaturvedi S, Gelfand C A ,et al. SNPstream UHT: ultra-high throughput SNP genotyping for pharmacogenomics and drug discovery. [J] Biotechniques, 2002, l:70-77.
    [43] Watkins H, Farall M, et al. Genetic susceptibility to coronary artery disease: fromPromise to progress. [J]Nat Rev Genet, 2006, 7(3): 163-17.
    [44]曹家琪.冠心病流行病学.中国协和医科大学联合出版社, 1995:65-90..
    [45]吴锡桂.我国人群冠心病流行现况与趋势.中国慢性病预防与控制. [M] 2003, 11(4): 190-191.
    [46] Dawber TR, Kannel WB. The Framingham study. An epidemiological approach to coronary heart disease. [J] Circulation, 1966, 34:553-555.
    [47] McInnes GT, et al. Hypertension and coronary artery disease: cause and effect.[J] Hypertens Suppl , 1995, 13: 49-56.
    [48] Epstein FH, et al. Genetics of ischemic heart disease. [J] Postgrad Med , 1976, 52:477–480.
    [49] McCarthy JJ,Parker A,Salem R, et al. Large scale association anafysis for identification of genes underlying premature coronary heart disease: cumulative perspective from analysis of 111 candidate genes. [J] Med Genet, 2004, 41 (5): 334-341.
    [50] Chaer RA. Billeh R, Massad MG. Gnetics and gene manipulation therapy of premature coronary artery disease. [J] Cardiology, 2004, 101(1): 122-130.
    [51] Lloyd-Jones DM, Nam BH. D’Agostino RB Sr, et al. Parental cardiovascular disease as arisk factor for cardiovascular disease in middle-aged adults: aprospective study of parents and offspring. [J] JAMA, 2004, 291(18): 2204-2011.
    [52] Cohen J , Pert semlidis A , Kotowski IK, et al . Low LDL cholesterol in individuals of Af rican descent resulting f rom frequent nonsense mutations in PCSK9 .[ J ] Nat Genet , 2005 , 37 (2) :161-165.
    [53] Pluskota E , Stenina OI , Krukovet s I , et al . Mechanism and effect of hrombospondin-4 polymorphisms on neutrophil function. [J] Blood , 2005 ,106 (12) :3970-3978.
    [54] Wang L , Fan C , Topol SE , et al . Mutation of MEF2A in an inherited disorder with features of coronary artery disease . [J] Science , 2003 , 302 (5650) :1578-1581.
    [55] Gonzalez P , Garcia-Cast ro M , Reguero J R , et al . The Pro279 Leu variant in the transcription factor MEF2A is associated wit h myocardial infarction [J] Med Genet ,2006 ,43 (2) :167-169.
    [56] Samani NJ , Erdmann J , Hall AS , et al . Genomewide association analysis of coronary artery disease .[J] N Engl J Med ,2007 , 357 (5) :443-453.
    [57] Ozaki K, Ohnishi Y, Iida A , et al. Functional SNPs in the lymphotoxin-alphagene that are associated with susceptibility to myocardial infarction . [J] NatGenet , 2002 ,32(4) :650-654.
    [58] Ozaki K, Inoue K, Sato H , et al . Functional variation in LGALS2 confers risk of myocardial infarction and regulates lymphotoxin-alpha secretion in vitro . [J] Nature ,2004 ,429 (6987) :72-75.
    [59] Helgadot tir A , Manolescu A , Thorleif sson G, et al . The gene encoding 52 lipoxygenase activating protein confers risk of myocardial infarction and st roke.[J] Nat Genet ,2004 ,36 (3) :233-239.
    [60] Helgadot tir A , Manolescu A , Helgason A , et al . A variant of t he gene encoding leukot riene A4 hydrolase conferset hnicity-specific risk of myorcardial infarction . [J] NatGenet ,2005 ,38 (1) :68-74.
    [61] Swanberg M , Lidman O , Padyukov L , et al . MHC2 TA is associated with differential MHC molecule expression and susceptibility to rheumatoid art hritis , multiple sclerosis and myocardial infarction . [J] Nat Genet , 2005 , 37 ( 5 ) :486-494.
    [62] Yamada Y, Izawa H , Ichihara S , et al . Prediction of the risk of myocardial infarction f rom polymorphisms in candidate genes. [J] N Engl J Med, 2002 ,347 (24) :1916-1923.
    [63] Kardys I , Klaver CC , Despriet DD , et al . A common polymorphism in the complement factor H gene is associated wit h increased risk of myocardial infarction : the Rotterdam study . [J] J Am Coll Cardiol , 2006 , 47 ( 8 ) :1568-1575.
    [64] Marx J . A clearer view of macular degeneration . [J] Science , 2006 ,311 (5768) : 1704-1705.
    [65] Ye Z , Liu EH , Higgins J P , et al . Seven haemostatic genepolymorphisms in coronary disease : meta-analysis of 66 ,155 cases and 91 , 307 cont rols . [J] Lancet , 2006 , 367(9524) : 651-658.