V波段有源倍频器的设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对V波段有源倍频器进行了设计研究。该倍频器的设计在国内首次采用直接四次倍频放大的方案来实现,整个倍频器主要由V波段PHEMT四倍频器、V波段微带耦合带通滤波器、V波段输出放大器以及V波段探针型微带—波导转换器等几部分电路组成。其中重点论述了有源倍频器的工作原理、设计方法以及详细的设计过程。
     在整个设计过程中,充分利用了射频微波电路仿真设计软件Agilent ADS和Ansoft Serenade以及电磁场仿真设计软件Ansoft Ensemble和HFSS对电路进行设计和优化。根据仿真优化结果得到了V波段有源倍频器,当输入功率为6dBm时,在整个55.6~56.4GHz的工作频带内输出功率大于9dBm。该V波段有源倍频器可用于将微波信号拓展到毫米波段,为毫米波系统提供高稳定的本振源。
The thesis presents the research and design of a V-band frequency quadrupler. A direct EET quadrupler project was adopted first internally. The V-band frequency quadrupler mainly consists of the V-band PHEMT doubler, the V-band coupling microstrip band-pass filter, the V-band output amplifier, and the microstrip to waveguide transition.The principles, design method and process of PHEMT frequency doubler are presented particularly.
    Microwave and RF circuit simulation tools such as Agilent ADS, Ansoft Serenade and electromagnetic simulation tools such as Ansoft Ensemble and HFSS were used to design, simulate and optimize the circuits. The V-band frequency quadrupler was simulated, the power of input signal is 6dBm, and the power of output signal is greater than 9dBm over the 55.6~56.4GHz frequency range. This V-band frequency quadrupler can provide an ultra stability millimeter-wave source for the system of the millimeter-wave intersatellite link by quadrupling the frequency of a microwave source.
引文
1 倪雨生.卫星通信.北京:人民交通出版社,1997
    2 中国人民解放军总装备部军事训练教材编辑工作委员会编.卫星通信技术.北京:国防工业出版社,2000
    3 吕洪生,杨新德.实用卫星通信工程.北京:人民邮电出版社,1998
    4 雷震洲.移动卫星通信.北京:人民邮电出版社,1996
    5 习育才,左凤琴等.毫米波技术及其军事应用.北京:兵器工业出版社,1991
    6 蔡树榛.毫米波技术.上海:复旦大学出版社,1988
    7 费元春.固态倍频.北京:高等教育出版社,1985
    8 薛良金.毫米波工程基础.北京:国防工业出版社,1998
    9 清华大学《微带电路》编写组.微带电路.北京:人民邮电出版社,1976
    10 言华.微波固态电路.北京:北京理工大学出版社,1995
    11 金德宣,张晓梅.微电子焊接与封装.成都:电子科技大学出版社,1996
    12 甘本祓,吴万春.现代微波滤波器的结构与设计.北京:科学出版社.1973
    13 吴万春.集成固体微波电路.北京:国防工业出版社,1981
    14 费元春.微波固态频率源——理论、设计、应用.北京:国防工业出版社,1994
    15 谢怀彦.微波场效应晶体管器件.北京:人民邮电出版社.1982
    16 亢宝位.场效应晶体管理论基础.北京:科学出版社,1985
    17 雷蒙德,潘杰利.微波场效应晶体管的理论、设计和应用.北京:电子工业出版社,1987
    18 里茨金.倍频器与分频器.北京:北京人民邮电出版社,1982
    19 阎润卿,李英惠.微波技术基础.北京:北京理工大学出版社,1988
    20 Guillermo Gonalez.微波晶体管放大器分析与设计.北京:清华大学出版社,2003
    21 《中国集成电路大全》编委会.微波集成电路.北京:国防工业出版社,1995
    22 K.G.格普塔等.微波电路计算饥辅助设计.北京:科学出版社,1986
    23 高葆新.微波电路计算机辅助设计.北京:清华大学出版社,1986
    24 杨祥林,张兆镗,张祖舜.微波器件原理.北京:电子工业出版社,1994
    25 赵国湘,高葆新.微波有源电路.北京:国防工业出版社,1990
    26 王家礼.吴万春.毫米波集成电路的设计及其应用.西安:西安电子科技大学出版社,1989
    27 顾其诤,项加桢,袁孝康.微波集成电路设计.北京:人民邮电出版社,1978
    28 王惠功等编译.非线性微波毫米波电路分析与设计.北京:北京邮电学院出版社,1991
    
    
    29 苗敬峰.毫米波电路.南京:东南大学出版社,1988
    30 张尽颜,苗敬峰.MESFET倍频器的研究.东南大学学报.1994(1):12-16
    31 高树廷.倍频器的研究.半导体学报.1998(4):33-35
    32 朱国良,袁明文.3毫米波段低噪声GaAs PHEMT研究.半导体情报.1996,(4):19-23
    33 孙再吉.毫米波HEMT器件的开发与应用.电子工程师.1996(1):10-15
    34 章国豪,陶若燕.八毫米四倍频器.固体电子学研究与发展.1994(4):368-371
    35 杨军.W-Band倍频放大组件.火控雷达技术.2001(2):8-12
    36 梁新辉,朱迅,汪春梅.Ku波段倍频放大组件.微波与卫星通信.1998(4):38-40
    37 甘新华,刘景顺.低损耗四倍频器的CAD.无线电通信技术.1995(6):44-48
    38 陈庆,陆波.微波FET有源倍频器的工程设计.空间电子技术.2001(1-2):41-44
    39 张德智.微波有源倍频器的设计与CAP优化技术.现代电子.2000(2):42-47
    40 彭文峰.Ka波段宽带四倍频器的研制.微电子及基础产品.2003(12):56-59
    41 曹卫平,甘体国,喻志远.高效FET倍频器CAD技术.全国微波毫米波会议.2001:737-740
    42 J. Soares Augusto, M. Joao Rosario, Caldinhas Vaz, J. Costa Freire. MESFET倍频器的最佳设计.电讯技术.1994(4):56-61
    43 F. Maiwald etc. Planar schottky diode frequency multiplier for molecular spectroscopy up to 1.3 THz. IEEE Microwave and Guided Wave Letters, Vol. 9, No. 5, 1999, pp. 198-200
    44 N. R. Erickson. A High Efficiency Frequency Triplet For 230 GHz. 12th European Microwave Conference, 1982, pp. 288-292
    45 J. W. Archer. An Efficient 200-290GHz Triplet Incorporating A Novel Stripline Structure. IEEE Trans-MTT. Vol. 32, No. 4, 1984, pp. 416-420
    46 Kuo-Liang Deng, Huei Wang. A Miniature Broad-band PHEMT MMIC Balanced Distributed Doubler. IEEE Trans-MTT. Vol. 51, No. 4, 2003, pp. 1257-1261
    47 David M. Klymyshyn, Zhen Ma. Active Frequency-Multiplier Design Using CAD. IEEE Trans-MTT. Vol. 51, No. 4, 2003, pp. 1377-1385
    48 Toru Masuda, Vesa Lowenmark, Herbert Zirath, Rumen Kozhuharov. A High Spectral Purity GaAs PHEMT MMIC Balanced Frequency Quadruplet. IEEE GaAs Digest. 2003, pp. 255-258
    49 A. Eerrhof, H.J. Siweris, H. Tischer, W. Liebl, G. Jaeger, T. Grave. A 38/76 GHz Automotive Radar Chipset Fabricated by A Low Cost PHEMT Technology. IEEE MTT-S Digest, 2002, pp. 1855-1858
    50 Yutaka Mimino, Kanniehi Nakamura, Yuichi Hasegawa, Yoshio Aoki, Shigeru Kuroda, Tsuneo Tokumitsu. A 60 GHz Millimeter-wave MMIC Chipset for Broadband Wireless
    
    Access System Front-end. IEEE MTT-S Digest, 2002, pp. 1721-1724
    51 Belinda Piernas, Kenjiro Nishikawa, Tadao Nakagawa, Hitoshi Hayashi, Katsuhiko Araki. Analysis of Balanced Active Doubler for Broad-Band Operation——The Frequency-Tuning Concept. IEEE Trans-MTT. Vol. 50, No. 4, 2002, pp. 1120-1126
    52 M. Siddiqui, M. Quijije, A. Lawrence, B. Pitman, R. Katz, P. Tran, A. Chau, D. Davison, S. Din, R. Lai, D. Streit. GaAs Components for 60 GHz Wireless Communication Applications. 2002 GaAs Mantech Conference
    53 A. Werthof, H. Tischer, T. Grave. High Gain PHEMT Frequency Doubler for 76 GHz Automotive Radar. IEEE MTT-S Digest, 2001, pp. 107-109
    54 Vesna Radisic, Miro Micovic, Ming Hu, Paul Janke, Catherine Ngo, Loi Nguyen, Lorene Samoska, Matthew Morgan. 164-GHz MMIC HEMT Doubler. IEEE Trans-MTT. Vo1.11, No. 6, 2001, pp. 241-243
    55 Pekka Kangaslahti, Petteri Alinikula, Veikko Porra. Miniaturized Artificial Transmission Line Monolithic Millimeter Wave Frequency Doubler. IEEE Trans-MTT. Vol. 48, No. 4, 2000, pp. 510-518
    56 Eoin 0 Ciardha, Sverre U. Lidholm, Brendan Lyons. Generic-Device Frequency Multiplier Analysis—A Unified Approach. IEEE Trans-MTT. Vol. 48, No. 7, 2000, pp. 1134-1141
    57 Belinda Piernas, Hitoshi Hayashi, Kenjiro Nishikawa, Kenji Kamogawa, Tadao Nakagawa. A Broadband and Miniaturized V-Band PHEMT Frequency Doubler. IEEE Trans-MTT. Vol. 10, No. 7, 2000, pp. 276-278
    58 Y. Campos-Roca, L. Verweyen, M. Fern(?)ndez-Barciela, W. Bischof, M. C. Curr(?)s-Francos, E. S(?)nchez, A. H(?)lsmann, M. Schlechtweg. 38/76 GHz PHEMT MMIC Balanced Frequency Doublers in Coplanar Technology. IEEE Microwave and Guided Wave Letters. Vol. 10, No. 11, 2000, pp.484-486
    59 Yasushi Shizuki, Ynmi Fuchida, Fumio Sasaki, Kazuhiro Arai, Shigeru Watanabe. A 12/24GHz Frequency Doubler MMIC Using Resistive Series Feedback Circuit. IEEE MTT-S Digest, 1999, pp. 307-310
    60 Y. Campos Roca, L. Verweyen, M. Neumann, M. Fernandez Barciela, M.C. Curras Francos, E. Sanchez-Sanchez, A. Hulsmann, M. Schlechtweg. Coplanar pHEMT MMIC Frequency Multipliers for 76-GHz Automotive Radar. IEEE Microwave and Guided Wave Letters, Vol. 9, No. 6, 1999, pp. 242-244
    61 Andrey S. Yanev, Bogdan N. Todorov, and Vancety Z. Ranev. A Broad-Band Balanced HEMT Frequency Doubler in Uniplanar Technology. IEEE Trans-MTT. Vol. 46, No. 12,
    
    1998, pp. 2032-2035
    62 Long Tran, Michael Delaney, Russ Isobe, Derek Jang, Julia Brown. Frequency Translation MMICs Using InP HEMT Technology. IEEE MTT-S Digest, 1996, pp. 261-264
    63 Kazuo Shirakawa, Yoshihiro Kawasaki, Yoji Ohashi, Naofumi Okubo. A 15/60 GHz One-stage MMIC Frequency Quadrupter. IEEE Microwave and Millimeter Wave Monolithic Circuits Symposium, 1996, pp. 35-38
    64 M. Funabashi, T. inoue, K. Ohata, Kmaruhashi, Khosoya, M. Kuzuhara, K. Kanekawa, Y. Kobayashi. A 60GHz MMIC Stabilized Frequency Source Composed of A 30GHz DRO and A Doubler. IEEE MTT-S Digest, 1995, pp. 71-74
    65 H. Wang etc. A W-band source module using MMIC's. IEEE Trans-MTT. Vol. 43, May 1995, pp.1010-1015
    66 Mohammed Abdo-Tuko, Ralf Bertenburg, Ingo Wolff. A Balanced Ka-Band GaAs FET MMIC Frequency Doubler. IEEE Microwave and Guided Wave Letters. Vol. 4, No. 7, 1994, pp. 217-219
    67 O.P. Lunden, etc. A 60-GHz LNA using commercially available PM HEMTs for intersatellite and mobile communications. IEEE MTT-s Digest. 1994, pp. 1341-1344
    68 Arvind K. Sharma, Gerald P. Onak, Richard Lai, Kin L. Tan. A V-bandltigh-Efficiency Pseudomorphic HEMT Monolithic Power Amplifier. IEEE Trans-MTT. Vol. 42, No. 12, 1994, pp. 2603-2609
    69 H. Wang, K.W. Chang, D.C.W. Lo, K. L. Tan, D. Streit, G. S. Dow, B. R. Allen. A Monolithic 23.5 to 94 GHz Frequency Quadrupler Using 0.1 um Pseudomorphic ALGaAs/InGaAs/GaAs HEMT Technology. IEEE IEDM, 1993, pp. 255-258
    70 I. Angelov, H. Zirath, N. Rorsman, H. Oronqvist. A Balance Millimter Wave Doubler based on pseudomorphic HEMTs. IEEE MTT-S Digest, 1992, pp. 353-356
    71 Tsutomu Takenaka, Hirovo Ogawa. An Ultra-Wideband MMIC Balanced Frequency Doubler Using Line-Unified HEMTs. IEEE Trans-MTT. Vol. 40, No. 10, 1992, pp. 1935-1940
    72 TakahiroHiraoka, Tsuneo Tokumitsu, Masami Akaike. AMiniaturixed Broadband MMIC Frequcncy Doubler. IEEE MTT-S Digest, 1990, pp. 819-822
    73 Tetsuo Hirota, Hiroyo Ogawa. Iniplanar Monolithc Frequency Doublers. IEEE Trans-MTT. Vol. 37, No. 8, 1989, pp. 1249-1254
    74 Rowan Gilmore. Design of A Novel FEI Frequency Doubler Using A Harmonic Balance Algorithm. IEEE MTT-S Digest, 1986, pp. 585-588
    75 Rowan Gilmore. Nonlinear Circuit Design Using the Modified Harmonic Balance Algorithm. IEEE Trans-MTT. Vol. 34, No. 12, 1986, pp. 1294-1307
    
    
    76 Anand Gopinath, J. Bruce Rankin. Signal-Gate MESFET Frequency Doublers. IEEE Trans-MTT. Vol. 30, No. 6, 1982, pp. 869-875
    77 J.W. Archer. Millimeter Wavelength Frequency Multipliers, IEEE Trans-MTT. Vol. 29, No. 6, 1981, pp. 552-557
    78 David Lacombe, Jerome Cohen. Octave-Band Microstrip DC Blocks. IEEE Trans-MTT. Vol. 20, 1972, pp. 555-556
    79 Seung-Hwan Kim, Ji-Soo Lim, Jae-Hoon Choi. Design of A Ku-band Microstrip to Waveguide Transition. IEEE Trans-MTT. Vol.50, 2002, pp. 424-427
    80 Yoke-Choy Leong, Sander Weinreb. Full Band Waveguide-to-Microstrip Probe Transitions. IEEE MTT-S Digest, 1999, pp. 1435-1438
    81 Hui-Wen Yao, Amr Abdelmonem, Ji-Fuh Liang, and Kawthar A. Zaki. A Full Wave Analysis of Microstrip-to-Waveguide Transitions. IEEE MTT-S Digest, 1994, pp. 213-216
    82 Hui-Wen Yao, Amr Abdelmonem, Ji-Fuh Liang, Kawthar A. Zaki. Analysis and Design of Microstrip-to-Waveguide Transitions. IEEE Trans. Microwave Theory Tech., vol.42, Dec. 1994, pp. 2371-2380
    83 T.Q. HO, Yi-Chi SHIH. Spectral-domain Analysis of E-plane Waveguide to Microstrip Transition. IEEE Trans-MTT. Vol.37, 1989, pp. 388-392