聚光多结太阳能电池的设计、制备及可靠性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球能源危机和环境污染的日益加剧,开发利用新型可再生清洁能源已经成为人们生产、生活,维持社会可持续发展的迫切需求。近年来开发利用太阳能,光伏发电技术已经吸引了人们的普遍关注,其中聚光光伏发电技术以其独特的优势,如较高的转换效率和较低的发电成本,已被公认为最具潜力的地面应用发电技术。聚光型多结化合物半导体太阳能电池是聚光发电技术的核心器件,具有目前最高的光电转换效率,良好的温度特性,抗辐射性能好,以及寿命长等优点。本论文主要从电池结构设计、器件制备以及可靠性三个方面对聚光多结化合物半导体太阳能电池开展研究,具体研究内容如下:
     (1)开展聚光多结化合物半导体太阳能电池的理论研究和结构设计。首先将聚光Ga0.5In0.5P/GaAs/Ge三结太阳能电池分成三个子电池,分别研究pn结掺杂浓度、界面特性、载流子迁移率等参数对各子电池性能的影响,其次设计并优化各子电池结构,其中考虑到高倍聚光测试要求,着重优化了GaInP顶电池发射层结构。最后完成子电池间电流匹配的优化设计,从而获得了高性能的聚光Ga0.5In0.5P/GaAs/Ge三结太阳能电池,1000倍聚光测试下具有38.1%的转换效率。
     (2)对聚光GaInP/InGaAs/Ge三结太阳能电池关键工艺技术进行研究。首先运用金属有机化学气相沉积(MOCVD)外延生长技术,不断摸索外延生长工艺,克服外延反相畴、晶格匹配以及GaInP有序化等外延问题,进而生长完成高质量、高转换效率的单结子电池;优化高掺杂超薄外延层的生长条件,获得了峰值隧穿电流密度达150A/cm2的高性能GaAs隧穿结;完成高质量、低表面缺陷的三结太阳能电池的外延生长。其次优化设计电极占空比,获得优化的电极图形;设计并制备Al2O3/TiO2双层减反膜结构,使得电池短路电流提升33.3%。最后成功制备高效聚光GaInP/InGaAs/Ge三结太阳能电池,在1000倍聚光条件下实现了39.2%的转换效率。
     (3)开展聚光多结化合物半导体太阳能电池的可靠性研究。首先运用三维(3-D)等效电路模型分别考察了光照和外接恒流源情况下电池表面缺陷的缺陷行为,发现对具有表面缺陷的三结电池进行作用,使用外接恒流源的方式将比直接光照的方式使电池衰退的更快。其次依据IEC62108检验标准,对表面良好和表面缺陷样品进行快速老化实验研究,老化测试结果表明,表面良好和表面缺陷样品性能衰退均在8%以内,完全满足IEC62108检验标准要求。
     (4)开展新型Ⅲ-Ⅴ族化合物半导体太阳能电池的理论研究工作。首先,研究了应力补偿多量子阱GaAs太阳能电池在不同组分多量子阱In1-xGaxAs/GaAsyP1-y结构下的电池性能,与标准GaAs电池对比发现,应力补偿多量子阱GaAs电池具有较高的短路电流,但是开路电压和填充因子相对较低,电池效率低于标准GaAs电池。另外,提出了新型应力补偿多量子阱AlGaAs/GaAs电池结构设计,模拟结果显示新型电池结构具有比标准电池更高的短路电流和开路电压,但是填充因子较应力补偿多量子阱GaAs电池和标准电池低。其次,针对无定形GaInP/InGaAs/Ge三结电池的特殊结构,研究电池在不同位错密度下的性能变化,发现当位错密度大于106/cm2时电池转换效率明显降低。同时获得不同聚光倍数下电池的性能参数,300倍聚光下电池指出了最高的转换效率。最后,开展新型InGaN太阳能电池的理论研究,优化设计n-on-p型InGaN电池结构,获得了20.8%的较高转换效率,同时讨论位错密度对InGaN电池性能的影响,发现相比于GaAs太阳能电池,InGaN太阳能电池具有更好的稳定性和耐久性。
Since the global energy crisis and environmental pollution are increasingly serious, it is vital for the sustainable development of human society to explore renewable energy. Recently, photovoltaic technology has attracted increasing attention, which can convert sunlight into electricity. Concentrator photovoltaic with its special advantages, such as higher efficiency and lower cost, has been recognized to be the most promising power generation technology for terrestrial application. Concentrator multijunction solar cell is the key of concentrator photovoltaic, and has the highest photoelectric conversion efficiency, good temperature characteristic, superior radiation-resistant property, and long lasting lifetime span, and so on. This work is mainly divided into three parts, cell design, device fabrication and reliability study for the III-V compound semiconductor concentrator multi-junction solar cells, and the main achievements are summarized as follows:
     1. The theoretical study on concentrator GaInP/GaAs/Ge triple-junction solar cell was carried out. Firstly, by changing the doping concentration of p-and n-layer, interface recombination and carrier mobility, and so on, the characteristics of three subcells from concentrator GaInP/GaAs/Ge triple-junction solar cell, GalnP top cell, GaAs middle cell and Ge bottom cell, were investigated. Secondly, in order to achieve high efficiency under high concentration, the subcell structures, especially emitter structure of GaInP top cell, were designed and optimized. Finally, by complying with current matching of subcells, high-efficient concentrator Ga0.5In0.5P/GaAs/Ge triple-junction solar cell was obtained with efficiency of 38.1%at 1000 suns.
     2. The key techniques of growing concentrator GaInP/InGaAs/Ge triple-junction solar cell were studied. By exploring the MOCVD growth process, we solve the problems for expitial growth, such as anti-phase domains, lattice-matching, and ordering in GalnP semiconductor, and achieve the epitaxial growth of high-quality and high-efficient single-junction subcells, Ga0.51In0.49P top subcell, In0.01Ga0.99As middle subcell and Ge bottom subcell. By optimizing the growth condition for high-doping and ultrathin epitaxial layer, high-performance GaAs tunneling junction with peak tunneling current density of 150A/cm2 was obtained. And epitaxial growth of high quality triple-junction solar cell with lower surface defect was achieved. Then, investigating into the influence of the ratio of electrode width and space on characteristics of multijunction solar cells, the optimal electrode pattern was obtained. By designing and optimizing antireflection film structure, the optimal Al2O3/TiO2 dual-layer film shown superior performance, enhancing short-circuit current of solar cell by 33.3%. Finally, the high-performance GaInP/InGaAs/Ge triple-junction solar cell was obtained with efficiency of 39.2%at 1000 suns.
     3. Reliability of concentrator multi-junction solar cell was studied. First, by 3-D equivalent circuit model, the characteristics of surface defect of multi-junction solar cells were studied under illumination and external constant current source, respectively, and it was found that the power degradation of multijunction solar cell with surface defect is greater under external constant current source than that under illumination. Then, according to IEC 62108 standard the accelerated aging tests of cell samples with good surface and defective surface were carried out, and the aging results showed that the performance degradation of all samples was within 8%, meeting the requirement of IEC 62108 standard.
     4. The theoretical study on the novel III-V compound semiconductor solar cells was carried out. Firstly, the characteristics of strain-compensated multi-quantum well GaAs solar cells with different molar fraction In1-xGaxAs/GaAsyP1-y multi-quantum wells were simulated, and in contrast with GaAs control sample, strain-compensated multi-quantum well GaAs solar cells showed higher short-circuit current, but lower open-circuit voltage, fill factor, and efficiency. In addition, the novel strain-compensated multi-quantum well AlGaAs/GaAs solar cell was studied, and shown higher short-circuit current and open-circuit voltage, but the lowest fill factor. Secondly, considering the special structure of metamorphic GaInP/InGaAs/Ge triple-junction solar cell, the influence of dislocation density on performance parameters of solar cell was studied, and it was found that solar cell efficiency shows visual degradation with more than 106/cm2 of dislocation density. In addition, investigating into efficiency dependence of metamorphic GaInP/InGaAs/Ge triple-junction solar cell on sun concentration, the highest efficiency was obtained at 300 suns. Finally, the theoretical study on the novel InGaN solar cell was carried out, and the higher efficiency of 20.8%was obtained by using n-on-p device structure. By investigating into the influence of dislocation density on the characteristics, the greater stability and durability of InGaN solar cell was shown compared with GaAs solar cell.
引文
[1]周庆凡.世界能源开发利用现状和格局.中国能源,2002,12:4-8.
    [2]2011中国光伏产业发展报告.2011.
    [3]F. C. Marques. Sprayed SnO Antireflection Coating on Textured Silicon Surface for Solar Cell Applications. IEEE Transactions on Electron Devices,1998,45: 1619-1622.
    [4]孙云,王俊清,杜兆峰.CIS和CIGS薄膜太阳电池的研究.太阳能学报,2001,2:192~195.
    [5]M. A. Green. Recent developments and further prospects for third generation and other advanced cells.4th World Conference on Photovoltaic Energy Conversion. USA:IEEE,2006.15-19
    [6]H. Cotal, C. Fetzer, J. Boisvert, et al. Ⅲ-Ⅴ multijunction solar cells for concentrating photovoltaics. Energy and Environmental Science,2009,2:174-192.
    [7]张忠卫,陆剑锋,池卫英等.砷化镓太阳电池技术的进展与前景.上海航天,2003,3:33~38.
    [8]T. Takamoto, E. Ikeda, H. Kurita. Over 30%efficient InGaP/GaAs tandem solar cells. Applied Physics Letters,1997,70(3):381-383.
    [9]N. H. Karam, R. R. King, B. T. Cavicchi, et al.. Development and characterization of high-efficiency Ga0.5In0.5P/GaAs/Ge dual-and triple-junction solar cells. IEEE Transactions on Electron Devices,1999,46(10):2116-2125.
    [10]F. Dimroth. High-efficiency solar cells from Ⅲ-Ⅴ compound semiconductors. physica status solidi (c),2006,3(3):373-379.
    [11]T. V. Torchynska, G. P. Polupan. Ⅲ-Ⅴ material solar cells for space application. Semicondactor Physics, Quantum Electronics and Optoelectronics,2002,5(1): 63-70.
    [12]M. Yamaguchi. Ⅲ-Ⅴ compound multi-junction solar cells:present and future. Solar Energy Materials and Solar Cells,2003,75(1):261-269.
    [13]R. R. King, C. M. Fetzer, D. C. Law, et al. Advanced Ⅲ-Ⅴ multijunction cells for space.4th World Coference on Photovoltaic Energy Conversion. USA:IEEE,2006. 1757-1762
    [14]A. W. Bett, F. Dimroth, W. Guter, et al. Highest efficiency multi-junction solar cell for terrestrial and space application.24th European PV Solar Energy Conference and Exhibition. Germany:Congress Center and International Fair,2009.1-6
    [15]M. Wiemer, V. Sabnis, H. Yuen.43.5%efficient lattice matched solar cells. Proceedings of SPIE,2011,8108:810804.
    [16]M. D. Pashley, K. W. Haberern. Compensating surface defects induced by Si doping of GaAs. Physical Review Letters,1991,67(19):2697-2700.
    [17]C. R. Abernathy, S. J. Pearton, R. Caruso, et al. Ultrahigh doping of GaAs by carbon during metalorganic molecular beam epitaxy. Applied Physics Letters,1989, 55(17):1750-1752.
    [18]Y.-A. Chang, Z.-Y. Li, H.-C. Kuo, et al. Efficiency improvement of single-junction InGaP solar cells fabricated by a novel micro-hole array surface texture process. Semiconductor Science and Technology,2009,24:085007.
    [19]P. Bermel, C. Y. Luo, L. R. Zeng, et al. Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals. Optics Express,2007,15(25): 16986-17000.
    [20]B. P. Yu, C. H. Chang, C. H. Chiu, et al. Efficiency Enhancement of GaAs Photovoltaics Employing Antireflective Indium Tin Oxide Nanocolumns. Advanced Materials,2009,21(16):1618-1621.
    [21]R. Groenen, J Loffler, P. M. Sommeling, et al. Surface textured ZnO films for thin film solar cell applications by expanding thermal plasma CVD. Thin Solid Films, 2001,392(2):226-230.
    [22]M. Y. Chiu, C. H. Chang, M. A. Tsai, et al. Improved optical transmission and current matching of a triple-junction solar cell utilizing sub-wavelength strucutres. Optics Express,2010,18(S3):A308-A313.
    [23]S. A. Ringel, J. A. Carlin, C. L. Andre, et al. Single-junction InGaP/GaAs solar cells grown on Si substrates with SiGe buffer layers. Progress in Photovoltaics: Research and Applications,2002,10(6):417-426.
    [24]K. A. Bertness, S. R. Kurtz, D. J. Friedman, et al.29.5%efficient GaInP/GaAs tandem solar cells. Applied Physics Letters,1994,65(8):989-991.
    [25]施敏著,赵鹤鸣等译.半导体器件物理与工艺.(第二版).苏州:苏州大学出版社,2002.217-220
    [26]W. Guter, M. Meusel, W. Kostler, et al. Towards the industrialization of concentrator solar cells with efficiencies above 40%. AIP Conference Proceedings, 2010,1277:3-6.
    [27]R. R. King, A. Boca, W. P. Hong, et al. Band-gap-engineered architectures for high-efficiency multijunction concentrator solar cells.24th European PV Solar Energy Conference and Exhibition. Germany:Congress Center and International Fair,2009.55-61
    [28]L. M. Fraas, J. E. Avery, V. S. Sundaram, et al. Over 35%efficient GaAs/GaSb stacked concentrator cell assemblies for terrestrial applications.21st IEEE Photovoltaic Specialist Conference. USA:IEEE,1990.190-195
    [29]N. H. Karam, R. R. King, M. Haddad, et al. Recent Development in High Efficiency Ga0.5In0.5P/GaAs/Ge Dual-and Triple-junction Solar Cells:Steps to Next Generation PV Cells. Solar Energy Materials and Solar Cells,2001,66(1): 453-456.
    [30]T. Shirata, K. Eberl. Electronic properties of InGaP grown by solid-source molecular-beam epitaxy with a GaP decomposition source. Applied Physics Letters, 1994,65(3):356-358.
    [31]M. Ikeda, K. Kaneko. Selenium and zinc doping in Ga0.5In0.5P and (Al0.5Ga0.5)0.5In0.5P grown by metalorganic chemical vapor deposition. Journal of Applied Physics,1989,66(11):5285-5289.
    [32]D. J. Friedman, J. M. Olson. Analysis of Ge junctions for GaInP/GaAs/Ge three-junction solar cells. Progress in Photovoltaics:Research and Applications, 2000,9(3):179-189.
    [33]O. A. Galikova, B. Ya Moizhez, L. S. Stibanr. Hole mobility of germanium as a function of concentration and temperature. Soviet Physics-Solid State,1962,3: 2259-2265.
    [34]A. Maabdorf, S. Gramlich, E. Richter, et al. Minority-carrier kinetics in heavily doped GaAs:C studied by transient photoluminescence. Journal of Applied Physics, 2002,91(8):5072-5078.
    [35]S. Y. Cheng. An InGaP/AlGaAs/GaAs heterojunction bipolar transistor with zero conduction-band discontinuity. Superlattices and Microstructures,2003,33(1): 1-7.
    [36]M. Y. Ghannam, J. Poortmans, J. F. Nijs, et al. Theoretical study of the impact of bulk and interface recombination on the performance of GaInP/GaAs/Ge triple junction solar cells.3rd World Conference on Photovoltaic Energy Conversion. USA:IEEE,2003.666-669
    [37]P. J. Faine, S. R. Kurtz, J. M. Olson. Modeling of two-junction, series-connected tandem solar cells using top-cell and coating thicknesses as adjustble parameters. 21st IEEE Photovoltaic Specialists Conference. USA:IEEE,1990.339-344
    [38]M. V. Hobalen. Direct optical transitions from the split-off valence band to the conduction band in germanium. Journal of Physics and Chemistry of Solids,1962, 23(6):821-822.
    [39]E. F. Schubert, N. E. J. Hunt, R. J. Malik, et al. Temperature and modulation characteristics of resonant-cavity light-emitting diodes. Journal of Lightwave Technology,1996,14(7):1721-1729.
    [40]H. Masui, N. N. Fellows, S. Nakamura, et al. Optical polarization characteristics of light emission from sidewalls of primary-color light-emitting diodes. Semiconductor Science and Technology,2008,23(7):072001.
    [41]T. Egawa, B. Zhang, H. Ishikawa. High performance of InGaN LEDs on (111) silicon substrates grown by MOCVD. IEEE Electron Device Letters,2005,26(3): 169-171.
    [42]W. S. Wong, T. Sands, N. W. Cheung, et al. Fabrication of thin-film InGaN light-emitting diode membranes by laser lift-off. Applied Physics Letters,1999, 75(10):1360-1362.
    [43]G. B. Stringfellow. Organometallic vapor-phase epitaxy:theory and practice. (2nd edition). New York:Academic Press,1999.3-26
    [44]张进城.AlGaN/GaN异质结材料生长与HEMT器件制造研究:[博士论文].西安电子科技大学,2003.
    [45]R. Mcconneel, M. Symko-davies. Multijunction photovoltaic technologies for high-performance concentrators.4th World Conference on Photovoltaic Energy Conversion. USA:IEEE,2006.733-736
    [46]M. Yamaguchi, T. Takamoto, K. Araki, et al. Multi-junction III-V solar cells: current status and future potential. Solar Energy,2005,79(1):78-85.
    [47]M. K. Hudait, S. B. Krupanidhi. Self-annihilation of antiphase boundaries in GaAs epilayers on Ge substrates grown by metal-organic vapor-phase epitaxy. Journal of Applied Physics,2001,89:5972-5979.
    [48]N. H. Cho, B. C. De Cooman, C. B. Carter, et al. Antiphase boundaries in GaAs. Applied Physics Letters,1985,47(8):879-881.
    [49]Y. Li, L. J. Giling. A closer study on the self-annihilation of antiphase boundaries in GaAs epilayers. Journal of Crystal Growth,1996,163(3):203-211.
    [50]Y. Li, G. Salviati, M. M. G. Bongers, et al. On the formation of antiphase domains in the system of GaAs on Ge. Journal of Crystal Growth,1996,163(3):195-202.
    [51]Y. Li, L. Lazzarini, L. J. Giling, et al. On the sublattice location of GaAs grown on Ge. Journal of Applied Physics,1994,76(10):5748-5753.
    [52]L. Lazzarini, L. Nasi, G. Salviati, et al. Antiphase disorder in GaAs/Ge heterostructures for solar cells. Micron,2000,31(3):217-222.
    [53]R. R. King, C. M. Fetzer, P. C. Colter, et al. High-efficeincy space and terrestrial multijunction solar cells through bandgap control in cell structures.29th IEEE Photovoltaic Specialists Conference. USA:IEEE,2002.776-781
    [54]J. M. Olson, S. R. Kurtz, A. E. Kibbler, et al. A 27.3%efficient Gao.5Ino.5P/GaAs tandem solar cell. Applied Physics Letters,1990,56(7):623-625.
    [55]A. Gomyo, T. Suzuki, K. Kobayashi, et al. Evidence for the existence of an ordered state in Gao.5Ino.5P grown by metalorganic vapor phase epitaxy and its relation to band-gap energy. Applied Physics Letters,1987,50(11):673-675.
    [56]A. Gomyo, K. Kobayashi, S. Kawata, et al. Studies of GaxIn1-xP layers gown by metalorganic vapor phase epitaxy:Effects of V/III ratio and growth temperature. Journal of Crystal Growth,1986,77(1):367-373.
    [57]A. Gomoyo, T. Suzuki, S. Iijima. Observation of strong ordering in GaxIn1-xP alloy semiconductors. Physical Review Letters,1988,60(25):2645-2648.
    [58]董建荣,李晓兵.MOCVD和GSMBE生长Ga0.5In0.5P外延层中有序结构的研究.半导体学报,1996,17(9):641~645.
    [59]S. R. Kurtz, J. M. Olson, D. J. Friedman, et al. Ordering and disordering of doped Ga0.5In0.5P. Journal of Electronic Materials,1994,23(5):431-435.
    [60]J. H. Neave, P. K. Larsen, B. A. Joyce, et al. Some observation on Ge:GaAs (001) and GaAs:Ge (001) interfaces and films. Journal of Vacuum Science and Technology B:Microelectronics and Nanometer Structures,1983,1(3):668-674.
    [61]S. M. Ting, E. A. Fitzgerald. Metal-organic chemical vapor deposition of single domain GaAs on Ge/GexSi1-x/Si and Ge substrates. Journal of Applied Physics, 2000,87(5):2618-2628.
    [62]C. Algora, V. Diaz. Influence of series resistance on guidelines for manufacture of concentrator p-on-n GaAs solar cells. Progress in Photovoltaics:Research and Applications,2000,8(2):211-225.
    [63]B. Galiana, C. Algora, I. Rey-Stolle. Explanation for the dark Ⅰ-Ⅴ curve of III-V concentrator solar cells. Progress in Photo voltaics:Research and Applications, 2008,16(4):331-338.
    [64]B. Galiana, C. Algora, I. Rey-Stolle. Comparison of 1D and 3D analysis of the front contact influence on GaAs concentrator solar cell performance. Solar Energy Materials and Solar Cells,2006,90(16):2589-2604.
    [65]P. Yu, C. C. Chang, C. H. Chiu, et al. Efficiency enhancement of GaAs photovoltaics employing antireflective Indium Tin Oxide nanoclumns. Advanced Materials,2009,21(16):1618-1621.
    [66]H. C. Chen, C. C. Lin, H. W. Wang, et al. Efficiency enhancement in single-junction InGaP solar cells by using self-assembled nanospheres. IEEE Photonics Technology Letters,2011,23(11):691-693.
    [67]J. Tommila, V. Polojarvi, A. Aho, et al. Nanostructured broadband antireflection coatings on AlInP fabricated by nanoimprint lithography. Solar Energy Materials and Solar Cells,2010,94(10):1845-1848.
    [68]C. E. Valdivia, E. Desfonds, D. Masson, et al. Optimization of antireflection coating design for multi-junction solar cells and concentrator systems. Proceedings of SPIE,2008,7099:709915.
    [69]T. J. Chen, Z. M. Liu, L. F. Wang. The surface and interface recombination in polycrystalline silicon solar cells. Acta Energiae Solaris Sinica,2000,21(2): 133-139.
    [70]S. Padovani, A. Del Negro, M. Antonipieri, et al. Triple junction InGaP/InGaAs/Ge solar cells for high concentration photovoltaics application:Degradation tests of solar receivers. Microelectronics Reliability,2010,50(9):1894-1898.
    [71]C. Algora. Reliability of III-V concentrator solar cells. Microelectronics Reliability, 2010,50(9):1193-1198.
    [72]Concentrator photovoltaic (CPV) modules and assemblies-Design qualification and type approval.2007.
    [73]J. Wu, W. Walukiewicz, K. M. Yu, et al. Superior radiation resistance of InGaN alloys:Full-solar-spectrum photovoltaic material sysytem. Journal of Applied Physics,2003,94(10):6477-6482.
    [74]R. Dahal, J. Li, K. Aryal, et al. InGaN/GaN multiple quantum well concentrator solar cells. Applied Physics Letters,2010,97:073115.
    [75]J. F. Muth, J. H. Lee, I. K. Shmagin, et al. Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements. Applied Physics Letters,1997,71(18):2572-2574.
    [76]K. Barnham, I. Ballard, J. Barnes, et al. Quantum well solar cells. Applied Surface Science,1997,113:722-733.
    [77]D. Derkacs, W. V. Chen, P. M. Matheu, et al. Nanoparticle-induced light scattering for improved performance of quantum-well solar cells. Applied Physics Letters, 2008,93:091107.
    [78]A. Alemu, J. A. H. Coaquira, A. Freundlich. Dependence of device performance on carrier escape sequence in multi-quantum-well p-i-n solar cells. Journal of Applied Physics,2006,99(8):084506.
    [79]K. W. J. Barnham, G. Duggan. A new approach to high-efficiency multi-band-gap solar cells. Journal of Applied Physics,1990,67(7):3490-3493.
    [80]N. J. Ekins-Daukes, J. Adams, I. M. Ballard, et al. Physics of quantum well solar cells. Proceedings of SPIE,2009,7211:72110L.
    [81]N. J. Ekins-Daukes, K. W. J. Barnham, J. P. Connolly, et al. Strain-balanced GaAsP/InGaAs quantum well solar cells. Applied Physics Letters,1999,75(26): 4195-4197.
    [82]C. G. Van de Walle. Band lineups and deformation potentials in the model-solid theory. Physical Review B,1989,39(3):1871-1883.
    [83]J. Minch, S. H. Park, T. Keating, et al. Theory and experiment of In1-xGaxAsyP1-y and In1-x-yGaxAlyAs long-wavelength strained quantum-well lasers. IEEE Journal of Quantum Electronics,1999,35(5):771-782.
    [84]J. E. Cunningham, K. W. Goossen, M. Williams, et al. Pseudomorphic InGaAs-GaAsP quantum well modulators on GaAs. Applied Physics Letters,1992, 60(6):727-729.
    [85]D. B. Bushnell, T. N. D. Tibbits, K. W. J. Barnham, et al. Effect of well number on the performance of quantum-well solar cells. Journal of Applied Physics,2005, 97(12):124908.
    [86]K. Barnham, J. Connolly, P. Griffin, et al. Voltage enhancement in quantum well solar cells. Journal of Applied Physics,1996,80(2):1201-1206.
    [87]R. R. King, D. C. Law, K. M. Edmondson, et al.40%efficient metamorphic GalnP/GaInAs/Ge multijunction solar cells. Applied Physics Letters,2007,90(18): 183516.
    [88]W. Guter, J. Schone, S. P. Philipps, et al. Current-matched triple-junction solar cell reaching 41.1%conversion efficiency under concentrated sunlight. Applied Physics Letters,2009,94(22):223504.
    [89]F. Dimroth, U. Schubert, A. W. Bett.25.5%efficient Gao.35Ino.65P/Ga0.83In0.17As tandem solar cells grown on GaAs substrates. IEEE Electron Device Letters,2000, 21(5):209-212.
    [90]S. C. Jain, M. Willander, J. Narayan, et al. Ⅲ-nitrides:Growth, characterization, and properties. Journal of Applied Physics,2000,87:965-1006.
    [91]R. Dahal, B. Pantha, J. Li, et al. InGaN/GaN multiple quantum well solar cells with long operating wavelenghts. Applied Physics Letters,2009,94:063505.
    [92]S. Nakamura. InGaN/AlGaN blue-light-emitting diodes. Journal of Vacuum Science and Technology,1995,13(3):705-710.
    [93]H. Hamzaoui, A. S. Bouazzi, B. Rezig. Theoretical possibilities of InxGa1-xN tandem PV structures. Solar Energy Materials and Solar Cells,2005,87(1): 595-603.
    [94]G. F. Brown, J. W. Ager Ⅲ, W. Walukiewicz, et al. Finite element simulations of compositionally graded InGaN solar cells. Solar Energy Materials and Solar Cells, 2010,94(3):478-483.
    [95]B. R. Jampana, A. G. Melton, M. Jamil, et al. Design and Realization of wide-band-gap (2.67eV) InGaN pn junction solar cell. IEEE Electron Device Letters,2010,31(1):32-34.
    [96]C. J. Neufeld, N. G. Toledo, S. C. Cruz, et al. High quantum efficiency InGaN/GaN solar cells with 2.95eV bandgap. Applied Physics Letters,2008,93(14):143502.
    [97]O. Ambacher, J. Smart, J. R. Shealy, et al. Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N-and Ga-face AlGaN/GaN heterostructures. Journal of Applied Physics,1999,85(6):3222-3233.
    [98]M. Shimizu, K. Hiramatsu, N. Sawaki. Metalorganic vapor phase epitaxy growth of InGaN/GaN layered structures and reduction of indium droplets. Journal of Crystal Growth,1994,145(1):209-213.
    [99]T. T. Mnatsakanov, M. E. Levinshtein, L. I. Pomortseva, et al. Carrier mobility model for GaN. Solid-State Electronics,2003,47(1):111-115.
    [100]L. Hsu, W. Walukiewicz. Modeling of InGaN/Si tandem solar cells. Journal of Applied Physics,2008,104(2):024507.
    [101]J. Wu, W. Walukiewicz, K. M. Yu, et al. Small band gap bowing in InGaN alloys. Applied Physics Letters,2002,80(25):4741-4743.
    [102]R. Aleksiejunas, M. Sudzius, V. Gudelis, et al. Carrier transport and recombination in InGaN/GaN heterostructures, studied by optical four-wave mixing technique. physica status solidi (c),2003,0(7):2686-2690.
    [103]M. Yamaguchi, C. Amano. Efficiency calculations of thin-film GaAs solar cells on Si substrates. Journal of Applied Physics,1985,58(9):3601-3606.