抗前列腺癌单链抗体介导的靶向siRNA抑制Notch1基因抗肿瘤实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
前列腺癌是男性发病率第二位的恶性肿瘤,我国前列腺癌发病率也逐年升高,其发病增长率已居泌尿生殖系肿瘤之首。前列腺癌具有潜伏性长、发病率高的特点。在我国70岁以上男性人群中,高达25%的人患有前列腺癌。但临床上前列腺癌早期诊断率低,因而多数患者失去了早期手术根治的机会。
     通过siRNA下调Notch1基因可以有效抑制人类前列腺癌细胞的生长。然而如何靶向输送siRNA进入特定细胞是临床应用此技术的主要障碍。最近有研究表明,单链抗体介导的靶向输送系统是高效下调相应基因的有效方法。为了解决RNA干扰技术在体内应用缺乏靶向性的难题,我们拟通过抗前列腺癌单链抗体的融合基因,并予以优化,进行表达、纯化后获得融合蛋白scFv-Fdt-HA2-tp(sFH-tP),构建成siRNA靶向输送系统。利用FITC-siRNA在体内外验证这一系统的有效性;随后验证靶向输送的针对Notch1基因抑制效果最佳的siRNA在体内外对前列腺癌细胞生长的抑制作用。利用这一靶向输送系统不但能克服siRNA在体内输送效率低下,还避免siRNA大量应用时所产生的“脱靶”效应、非特异性免疫反应等问题,实现对肿瘤生长的高效抑制,为RNA干扰技术在前列腺癌的临床治疗中的应用提供理论、实验依据。目前前列腺特异性膜抗原(PSMA)被认为是一个较明确的前列腺抗原。
     我们的前期研究工作表明Notch信号通路中的Notch1在前列腺癌的发生、发展中发挥重要作用,应用siRNA抑制前列腺癌细胞内Notch1基因的表达,引起细胞周期阻滞、细胞凋亡,表明肿瘤细胞的生长受到有效的抑制,因此通过siRNA抑制Notch1基因有望成为一种有效的针对前列腺癌的基因治疗方法。但由于缺乏有效的靶向给药输送系统,常常出现药物的“脱靶”现象,限制了此技术的进一步应用。本课题是在获得高亲和力的特异性抗前列腺癌单链抗体(scFv)的基础上,拟将其与不同的基因片段融合并予以优化,构建成融合蛋白。使单链抗体介导的靶向输送系统与特异性的siRNA结合后,在抗体的介导下到达靶细胞,随抗体内化入细胞到达靶点,从而高效抑制Notch1基因的表达。利用抗体介导siRNA可以特异性的到达肿瘤部位,从而实现特异、高效的抗肿瘤作用,同时避免siRNA大量应用时所产生的“脱靶”效应,此策略将为RNAi技术在肿瘤研究、治疗中的应用开辟新途径。
     本研究的目的是评估单链抗体及两种融合蛋白是否可以有效的将特异性siRNA输送到PSMA阳性的前列腺癌细胞内。融合蛋白由抗PSMA单链抗体(scFv)、鱼精蛋白截短体(tp)构成。将弗林蛋白酶(Furin)、流感病毒的融合肽(HA2)片段序列插入到单链抗体及鱼精蛋白截短体之间构成另一融合蛋白。我们的结果表明,siRNA能够被融合蛋白特异性的输送到PSMA阳性的前列腺癌细胞内,sFH-tP融合蛋白效果更明显。应用前列腺癌细胞系及前列腺癌荷瘤裸鼠模型,验证靶向输送系统引导下siRNA是否能够在体内实现对Notch1的高效抑制,实现抗肿瘤效果。进一步的研究证实了siNotch1融合蛋白可以在体内及体外有效地抑制前列腺癌细胞的增殖。本研究成果将开创一种高效、特异、安全可行的治疗前列腺癌新疗法,具有重大的临床意义与广阔的应用前景。
Prostate cancer is the second leading cause of death in America and isbecoming morecommon in China. Prostate cancer is characterized with the latency and high incidence.InChina,25percent of men over70suffer from Prostate cancer,but only a few can becomethe patients with clinical symptoms.
     The down-regulation of Notch1by small interfering RNA (siRNA) can significantlyinhibit human prostate cancer cell growth. The delivery of siRNA into specific cells is akey requirement for its clinical application. Recent reports have indicated thatantibody-mediated siRNA delivery is an effective approach for targeted knockdown ofspecific genes in appropriate cells. Prostate-specific membrane antigen (PSMA) isregarded as an ideal target for the delivery of therapeutic agents to prostate cancer cells.Our previous work showed that Notch1take a great role in prostate cancer developmentand siRNA targeting Notch1inhibition result in cell cycle arrest. So it is an effectivemethod of prostate cancer gene therapy by siRNA of Notch1if we can target delivery ofsiRNA effectively. We plan to fuse the human truncated protamine (tp) frigment sequenceto the3'terminus of the specific high DNA binding affinity scFv, which we have synthesized before. After optimization, the specific Notch1targeting siRNA can deliver toprostate cancer cell and internalization. So under the leading of fusion protein, siRNA caninhibitthe specific tumor cell with high performance and without "target off" effect. Thismethod will open new avenues for future targeted therapies of this tumor.
     The purpose of the present study was to evaluate whether siRNA can be efficientlydelivered into PSMA-positive prostate cancer cells using two fusion proteins, s-tP andsFH-tP. These fusion proteins are composed of an anti-PSMA single chain antibody (scFv,abbreviated as an “s”) and a truncated protamine (tp); and in sFH-tP a furincleavage site and an HA2fragment sequence (FH) were inserted between the scFv and tPdomains. Our results showed that siRNA can be specifically delivered into PSMA-positiveLNCaP cells by these two fusion proteins, with the sFH-tP fusion protein being moreeffective. Efficient knockdown of Notch1by siNotch1delivered by either fusion proteinwas observed in PSMA-positive LNCaP cells and in LNCaP xenografted nude mice.Further experiments confirmed that the fusion protein-delivered siNotch1could efficientlyinhibit PSMA-positive LNCaP cell proliferation and promote apoptosis both in vitro andin vivo. Our data describe a promising strategy for the targeted delivery of siRNA toPSMA-positive prostatecancer cells using anti-PSMA scFv fusion proteins.
引文
1. Carthew RW, Sontheimer EJ. Origins and Mechanisms of miRNAs and siRNAs.Cell.2009;136:642-55.
    2. Soutschek J, Akinc A, Bramlage B, Charisse K, Constien R, Donoghue M, et al.Therapeutic silencing of an endogenous gene by systemic administration ofmodified siRNAs. Nature.2004;432:173-8.
    3. de Fougerolles A, Vornlocher HP, Maraganore J, Lieberman J. Interfering withdisease: a progress report on siRNA-based therapeutics. Nat Rev Drug Discov.2007;6:443-53.
    4. Wang Z, Li Y, Banerjee S, Kong D, Ahmad A, Nogueira V, et al. Down-regulationof Notch-1and Jagged-1inhibits prostate cancer cell growth, migration andinvasion, and induces apoptosis via inactivation of Akt, mTOR, and NF-kappaBsignaling pathways. J Cell Biochem.2010;109:726-36.
    5. Wang Z, Li Y, Ahmad A, Banerjee S, Azmi AS, Kong D, et al. Down-regulation ofNotch-1is associated with Akt and FoxM1in inducing cell growth inhibition andapoptosis in prostate cancer cells. J Cell Biochem.2011;112:78-88.
    6. Bin Hafeez B, Adhami VM, Asim M, Siddiqui IA, Bhat KM, Zhong W, et al.Targeted knockdown of Notch1inhibits invasion of human prostate cancer cellsconcomitant with inhibition of matrix metalloproteinase-9and urokinaseplasminogen activator. Clin Cancer Res.2009;15:452-9.
    7. Zhao Z, Ma W, Zeng G, Qi D, Ou L, Liang Y. Small interference RNA-mediatedsilencing of prostate stem cell antigen attenuates growth, reduces migration andinvasion of human prostate cancer PC-3M cells. Urol Oncol.2011.
    8. Sledz CA, Holko M, de Veer MJ, Silverman RH, Williams BR. Activation of theinterferon system by short-interfering RNAs. Nat Cell Biol.2003;5:834-9.
    9. Jackson AL, Bartz SR, Schelter J, Kobayashi SV, Burchard J, Mao M, et al.Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol.2003;21:635-7.
    10. Kariko K, Bhuyan P, Capodici J, Weissman D. Small interfering RNAs mediatesequence-independent gene suppression and induce immune activation bysignaling through toll-like receptor3. J Immunol.2004;172:6545-9.
    11. Dykxhoorn DM, Lieberman J. The silent revolution: RNA interference as basicbiology, research tool, and therapeutic. Annu Rev Med.2005;56:401-23.
    12. Ryther RC, Flynt AS, Phillips JA,3rd, Patton JG. siRNA therapeutics: bigpotential from small RNAs. Gene Ther.2005;12:5-11.
    13. Chiu SJ, Ueno NT, Lee RJ. Tumor-targeted gene delivery via anti-HER2antibody(trastuzumab, Herceptin) conjugated polyethylenimine. J Control Release.2004;97:357-69.
    14. Guillem VM, Tormo M, Revert F, Benet I, Garcia-Conde J, Crespo A, et al.Polyethyleneimine-based immunopolyplex for targeted gene transfer in humanlymphoma cell lines. J Gene Med.2002;4:170-82.
    15. Li S, Tan Y, Viroonchatapan E, Pitt BR, Huang L. Targeted gene delivery topulmonary endothelium by anti-PECAM antibody. Am J Physiol Lung Cell MolPhysiol.2000;278:L504-11.
    16. Chen SY, Zani C, Khouri Y, Marasco WA. Design of a genetic immunotoxin toeliminate toxin immunogenicity. Gene Ther.1995;2:116-23.
    17. Li X, Stuckert P, Bosch I, Marks JD, Marasco WA. Single-chainantibody-mediated gene delivery into ErbB2-positive human breast cancer cells.Cancer Gene Ther.2001;8:555-65.
    18. Song E, Zhu P, Lee SK, Chowdhury D, Kussman S, Dykxhoorn DM, et al.Antibody mediated in vivo delivery of small interfering RNAs via cell-surfacereceptors. Nat Biotechnol.2005;23:709-17.
    19. Wen WH, Liu JY, Qin WJ, Zhao J, Wang T, Jia LT, et al. Targeted inhibition ofHBV gene expression by single-chain antibody mediated small interfering RNAdelivery. Hepatology.2007;46:84-94.
    20. Yao YD, Sun TM, Huang SY, Dou S, Lin L, Chen JN, et al. Targeted delivery ofPLK1-siRNA by ScFv suppresses Her2+breast cancer growth and metastasis.Sci Transl Med.2012;4:130ra48.
    21. Wolf P, Alt K, Wetterauer D, Buhler P, Gierschner D, Katzenwadel A, et al.Preclinical evaluation of a recombinant anti-prostate specific membrane antigensingle-chain immunotoxin against prostate cancer. J Immunother.2010;33:262-71.
    22. Ghosh A, Heston WD. Tumor target prostate specific membrane antigen (PSMA)and its regulation in prostate cancer. J Cell Biochem.2004;91:528-39.
    23. Stegmann T, Delfino JM, Richards FM, Helenius A. The HA2subunit of influenzahemagglutinin inserts into the target membrane prior to fusion. J Biol Chem.1991;266:18404-10.
    24. Cross KJ, Langley WA, Russell RJ, Skehel JJ, Steinhauer DA. Composition andfunctions of the influenza fusion peptide. Protein Pept Lett.2009;16:766-78.
    25. Jemal A, Siegel R, Xu J, Ward E. Cancer statistics,2010. CA Cancer J Clin.2010;60:277-300.
    26. Sim HG, Cheng CW. Changing demography of prostate cancer in Asia. Eur JCancer.2005;41:834-45.
    27. Javidan J, Deitch AD, Shi XB, de Vere White RW. The androgen receptor andmechanisms for androgen independence in prostate cancer. Cancer Invest.2005;23:520-8.
    28. Taplin ME, Balk SP. Androgen receptor: a key molecule in the progression ofprostate cancer to hormone independence. J Cell Biochem.2004;91:483-90.
    29. Haelens A, Tanner T, Denayer S, Callewaert L, Claessens F. The hinge regionregulates DNA binding, nuclear translocation, and transactivation of theandrogen receptor. Cancer Res.2007;67:4514-23.
    30. Shang Y, Myers M, Brown M. Formation of the androgen receptor transcriptioncomplex. Mol Cell.2002;9:601-10.
    31. Louie MC, Yang HQ, Ma AH, Xu W, Zou JX, Kung HJ, et al. Androgen-inducedrecruitment of RNA polymerase II to a nuclear receptor-p160coactivatorcomplex. Proc Natl Acad Sci U S A.2003;100:2226-30.
    32. Taplin ME, Rajeshkumar B, Halabi S, Werner CP, Woda BA, Picus J, et al.Androgen receptor mutations in androgen-independent prostate cancer: Cancerand Leukemia Group B Study9663. J Clin Oncol.2003;21:2673-8.
    33. Shi XB, Ma AH, Xia L, Kung HJ, de Vere White RW. Functional analysis of44mutant androgen receptors from human prostate cancer. Cancer Res.2002;62:1496-502.
    34. Lee LF, Louie MC, Desai SJ, Yang J, Chen HW, Evans CP, et al. Interleukin-8confers androgen-independent growth and migration of LNCaP: differentialeffects of tyrosine kinases Src and FAK. Oncogene.2004;23:2197-205.
    35. Papatsoris AG, Karamouzis MV, Papavassiliou AG. The power and promise of"rewiring" the mitogen-activated protein kinase network in prostate cancertherapeutics. Mol Cancer Ther.2007;6:811-9.
    36. Neto AS, Tobias-Machado M, Wroclawski ML, Fonseca FL, Pompeo AC, DelGiglio A. Molecular oncogenesis of prostate adenocarcinoma: role of the humanepidermal growth factor receptor2(HER-2/neu). Tumori.2010;96:645-9.
    37. Hirano D, Okada Y, Minei S, Takimoto Y, Nemoto N. Neuroendocrinedifferentiation in hormone refractory prostate cancer following androgendeprivation therapy. Eur Urol.2004;45:586-92.
    38. Amorino GP, Parsons SJ. Neuroendocrine cells in prostate cancer. Crit RevEukaryot Gene Expr.2004;14:287-300.
    39. Sakai I, Miyake H, Terakawa T, Fujisawa M. Inhibition of tumor growth andsensitization to chemotherapy by RNA interference targeting interleukin-6in theandrogen-independent human prostate cancer PC3model. Cancer Sci.2011;102:769-75.
    40. Holzbeierlein J, Lal P, LaTulippe E, Smith A, Satagopan J, Zhang L, et al. Geneexpression analysis of human prostate carcinoma during hormonal therapyidentifies androgen-responsive genes and mechanisms of therapy resistance. AmJ Pathol.2004;164:217-27.
    41. Gregory CW, Johnson RT, Jr., Mohler JL, French FS, Wilson EM. Androgenreceptor stabilization in recurrent prostate cancer is associated withhypersensitivity to low androgen. Cancer Res.2001;61:2892-8.
    42. Chen CD, Welsbie DS, Tran C, Baek SH, Chen R, Vessella R, et al. Moleculardeterminants of resistance to antiandrogen therapy. Nat Med.2004;10:33-9.
    43. Henshall SM, Quinn DI, Lee CS, Head DR, Golovsky D, Brenner PC, et al.Altered expression of androgen receptor in the malignant epithelium andadjacent stroma is associated with early relapse in prostate cancer. Cancer Res.2001;61:423-7.
    44. Olapade-Olaopa EO, Moscatello DK, MacKay EH, Sandhu DP, Terry TR, WongAJ, et al. Alterations in the expression of androgen receptor, wild type-epidermalgrowth factor receptor and a mutant epidermal growth factor receptor in humanprostate cancer. Afr J Med Med Sci.2004;33:245-53.
    45. Chetram MA, Odero-Marah V, Hinton CV. Loss of PTEN permitsCXCR4-mediated tumorigenesis through ERK1/2in prostate cancer cells. MolCancer Res.2011;9:90-102.
    46. Peyromaure M, Debre B, Mao K, Zhang G, Wang Y, Sun Z, et al. Management ofprostate cancer in China: a multicenter report of6institutions. J Urol.2005;174:1794-7.
    47. Higgins GS, McLaren DB, Kerr GR, Elliott T, Howard GC. Outcome analysis of300prostate cancer patients treated with neoadjuvant androgen deprivation andhypofractionated radiotherapy. Int J Radiat Oncol Biol Phys.2006;65:982-9.
    48. Madan RA, Aragon-Ching JB, Gulley JL, Dahut WL. From clinical trials toclinical practice: therapeutic cancer vaccines for the treatment of prostate cancer.Expert Rev Vaccines.2011;10:743-53.
    49. Mabjeesh NJ, Zhong H, Simons JW. Gene therapy of prostate cancer: current andfuture directions. Endocr Relat Cancer.2002;9:115-39.
    50. Xing L, Sun X, Deng X, Kotedia K, Urano M, Koutcher JA, et al. Expression ofthe bifunctional suicide gene CDUPRT increases radiosensitization andbystander effect of5-FC in prostate cancer cells. Radiother Oncol.2009;92:345-52.
    51. Zhao FJ, Li H, Zeng H, Wei Q, Li X. Bystander effect of target-regulated uracilphosphoribosyltransferase/5-fluorouracil suicide gene system on prostate cancercell. Sichuan Da Xue Xue Bao Yi Xue Ban.2008;39:394-7.
    52. Nakanishi H, Mazda O, Satoh E, Asada H, Morioka H, Kishida T, et al. Nonviralgenetic transfer of Fas ligand induced significant growth suppression andapoptotic tumor cell death in prostate cancer in vivo. Gene Ther.2003;10:434-42.
    53. Lu Y. Transcriptionally regulated, prostate-targeted gene therapy for prostatecancer. Adv Drug Deliv Rev.2009;61:572-88.
    54. Naruishi K, Timme TL, Kusaka N, Fujita T, Yang G, Goltsov A, et al. Adenoviralvector-mediated RTVP-1gene-modified tumor cell-based vaccine suppresses thedevelopment of experimental prostate cancer. Cancer Gene Ther.2006;13:658-63.
    55. Suzuki M, Takayanagi A, Shimizu N. Targeted gene delivery using humanizedsingle-chain antibody with negatively charged oligopeptide tail. Cancer Sci.2004;95:424-9.
    56. Elbakri A, Nelson PN, Abu Odeh RO. The state of antibody therapy. HumImmunol.2010;71:1243-50.
    57. Verma R, Boleti E, George AJ. Antibody engineering: comparison of bacterial,yeast, insect and mammalian expression systems. J Immunol Methods.1998;216:165-81.
    58. Hudson PJ, Souriau C. Engineered antibodies. Nat Med.2003;9:129-34.
    59. Yoshida S, Kobayashi T, Matsuoka H, Seki C, Gosnell WL, Chang SP, et al. T-cellactivation and cytokine production via a bispecific single-chain antibodyfragment targeted to blood-stage malaria parasites. Blood.2003;101:2300-6.
    60. Lode HN, Xiang R, Becker JC, Gillies SD, Reisfeld RA. Immunocytokines: apromising approach to cancer immunotherapy. Pharmacol Ther.1998;80:277-92.
    61. Marshall KW, Marks JD. Engineering and characterization of a novel fusionprotein incorporating B7.2and an anti-ErbB-2single-chain antibody fragmentfor the activation of Jurkat T cells. J Immunother.2001;24:27-36.
    62. Goel A, Colcher D, Baranowska-Kortylewicz J, Augustine S, Booth BJ,Pavlinkova G, et al. Genetically engineered tetravalent single-chain Fv of thepancarcinoma monoclonal antibody CC49: improved biodistribution andpotential for therapeutic application. Cancer Res.2000;60:6964-71.
    63. Ueno A, Arakawa F, Abe H, Matsumoto H, Kudo T, Asano R, et al. T-cellimmunotherapy for human MK-1-expressing tumors using a fusion protein of thesuperantigen SEA and anti-MK-1scFv antibody. Anticancer Res.2002;22:769-76.
    64. Shinohara N, Demura T, Fukuda H. Isolation of a vascular cell wall-specificmonoclonal antibody recognizing a cell polarity by using a phage displaysubtraction method. Proc Natl Acad Sci U S A.2000;97:2585-90.
    65. Huston JS, Levinson D, Mudgett-Hunter M, Tai MS, Novotny J, Margolies MN, etal. Protein engineering of antibody binding sites: recovery of specific activity inan anti-digoxin single-chain Fv analogue produced in Escherichia coli. Proc NatlAcad Sci U S A.1988;85:5879-83.
    66. Carter P. Improving the efficacy of antibody-based cancer therapies. Nat RevCancer.2001;1:118-29.
    67. Kim MK, Jeong HJ, Kao CH, Yao Z, Paik DS, Pie JE, et al. Improved renalclearance and tumor targeting of99mTc-labeled anti-Tac monoclonal antibodyFab by chemical modifications. Nucl Med Biol.2002;29:139-46.
    68. Israeli RS, Powell CT, Fair WR, Heston WD. Molecular cloning of acomplementary DNA encoding a prostate-specific membrane antigen. CancerRes.1993;53:227-30.
    69. Marchal C, Redondo M, Padilla M, Caballero J, Rodrigo I, Garcia J, et al.Expression of prostate specific membrane antigen (PSMA) in prostaticadenocarcinoma and prostatic intraepithelial neoplasia. Histol Histopathol.2004;19:715-8.
    70. Sokoloff RL, Norton KC, Gasior CL, Marker KM, Grauer LS. A dual-monoclonalsandwich assay for prostate-specific membrane antigen: levels in tissues, seminalfluid and urine. Prostate.2000;43:150-7.
    71. Kim JY, Kim CH, Stratford IJ, Patterson AV, Hendry JH. The bioreductive agentRH1and gamma-irradiation both cause G2/M cell cycle phase arrest andpolyploidy in a p53-mutated human breast cancer cell line. Int J Radiat OncolBiol Phys.2004;58:376-85.
    72. Clackson T, Hoogenboom HR, Griffiths AD, Winter G. Making antibodyfragments using phage display libraries. Nature.1991;352:624-8.
    73. Wright GL, Jr., Grob BM, Haley C, Grossman K, Newhall K, Petrylak D, et al.Upregulation of prostate-specific membrane antigen after androgen-deprivationtherapy. Urology.1996;48:326-34.
    74. Liu H, Rajasekaran AK, Moy P, Xia Y, Kim S, Navarro V, et al. Constitutive andantibody-induced internalization of prostate-specific membrane antigen. CancerRes.1998;58:4055-60.
    75. Frankel AD, Pabo CO. Cellular uptake of the tat protein from humanimmunodeficiency virus. Cell.1988;55:1189-93.
    76. Green M, Loewenstein PM. Autonomous functional domains of chemicallysynthesized human immunodeficiency virus tat trans-activator protein. Cell.1988;55:1179-88.
    77. Futaki S, Suzuki T, Ohashi W, Yagami T, Tanaka S, Ueda K, et al. Arginine-richpeptides. An abundant source of membrane-permeable peptides having potentialas carriers for intracellular protein delivery. J Biol Chem.2001;276:5836-40.
    78. McKee ML, FitzGerald DJ. Reduction of furin-nicked Pseudomonas exotoxin A:an unfolding story. Biochemistry.1999;38:16507-13.
    79. Taupiac MP, Bebien M, Alami M, Beaumelle B. A deletion within thetranslocation domain of Pseudomonas exotoxin A enhances translocationefficiency and cytotoxicity concomitantly. Mol Microbiol.1999;31:1385-93.
    80. Wolf P, Elsasser-Beile U. Pseudomonas exotoxin A: from virulence factor toanti-cancer agent. Int J Med Microbiol.2009;299:161-76.
    81. Choe S, Bennett MJ, Fujii G, Curmi PM, Kantardjieff KA, Collier RJ, et al. Thecrystal structure of diphtheria toxin. Nature.1992;357:216-22.
    82. Oh KJ, Senzel L, Collier RJ, Finkelstein A. Translocation of the catalytic domainof diphtheria toxin across planar phospholipid bilayers by its own T domain.Proc Natl Acad Sci U S A.1999;96:8467-70.
    83. Potala S, Sahoo SK, Verma RS. Targeted therapy of cancer using diphtheriatoxin-derived immunotoxins. Drug Discov Today.2008;13:807-15.
    84. Skehel JJ, Cross K, Steinhauer D, Wiley DC. Influenza fusion peptides. BiochemSoc Trans.2001;29:623-6.
    85. Wharton KA, Johansen KM, Xu T, Artavanis-Tsakonas S. Nucleotide sequencefrom the neurogenic locus notch implies a gene product that shares homologywith proteins containing EGF-like repeats. Cell.1985;43:567-81.
    86. Lai EC. Notch signaling: control of cell communication and cell fate.Development.2004;131:965-73.
    87. Miele L. Notch signaling. Clin Cancer Res.2006;12:1074-9.
    88. Edbauer D, Winkler E, Regula JT, Pesold B, Steiner H, Haass C. Reconstitutionof gamma-secretase activity. Nat Cell Biol.2003;5:486-8.
    89. Fryer CJ, White JB, Jones KA. Mastermind recruits CycC:CDK8tophosphorylate the Notch ICD and coordinate activation with turnover. Mol Cell.2004;16:509-20.
    90. Kopan R, Ilagan MX. Gamma-secretase: proteasome of the membrane? Nat RevMol Cell Biol.2004;5:499-504.
    91. Oswald F, Winkler M, Cao Y, Astrahantseff K, Bourteele S, Knochel W, et al.RBP-Jkappa/SHARP recruits CtIP/CtBP corepressors to silence Notch targetgenes. Mol Cell Biol.2005;25:10379-90.
    92. Stancheva I, Collins AL, Van den Veyver IB, Zoghbi H, Meehan RR. A mutantform of MeCP2protein associated with human Rett syndrome cannot bedisplaced from methylated DNA by notch in Xenopus embryos. Mol Cell.2003;12:425-35.
    93. Lopez SL, Rosato-Siri MV, Franco PG, Paganelli AR, Carrasco AE. TheNotch-target gene hairy2a impedes the involution of notochordal cells bypromoting floor plate fates in Xenopus embryos. Development.2005;132:1035-46.
    94. MacKenzie F, Duriez P, Wong F, Noseda M, Karsan A. Notch4inhibitsendothelial apoptosis via RBP-Jkappa-dependent and-independent pathways. JBiol Chem.2004;279:11657-63.
    95. Sarmento LM, Huang H, Limon A, Gordon W, Fernandes J, Tavares MJ, et al.Notch1modulates timing of G1-S progression by inducing SKP2transcriptionand p27Kip1degradation. J Exp Med.2005;202:157-68.
    96. Sun Y, Lowther W, Kato K, Bianco C, Kenney N, Strizzi L, et al. Notch4intracellular domain binding to Smad3and inhibition of the TGF-beta signaling.Oncogene.2005;24:5365-74.
    97. Milner LA, Bigas A. Notch as a mediator of cell fate determination inhematopoiesis: evidence and speculation. Blood.1999;93:2431-48.
    98. Artavanis-Tsakonas S, Rand MD, Lake RJ. Notch signaling: cell fate control andsignal integration in development. Science.1999;284:770-6.
    99. Sainson RC, Harris AL. Regulation of angiogenesis by homotypic andheterotypic notch signalling in endothelial cells and pericytes: from basicresearch to potential therapies. Angiogenesis.2008;11:41-51.
    100. Okajima T, Matsuda T. Roles of O-fucosyltransferase1and O-linked fucose innotch receptor function. Methods Enzymol.2006;417:111-26.
    101. Kang JH, Lee EH, Park SW, Chung IY. MUC5AC expression throughbidirectional communication of Notch and epidermal growth factor receptorpathways. J Immunol.2011;187:222-9.
    102. Cook M, Yu XM, Chen H. Notch in the development of thyroid C-cells and thetreatment of medullary thyroid cancer. Am J Transl Res.2010;2:119-25.
    103. Chen Y, Li D, Liu H, Xu H, Zheng H, Qian F, et al. Notch-1signaling facilitatessurvivin expression in human non-small cell lung cancer cells. Cancer Biol Ther.2011;11:14-21.
    104. Yuan ZR, Kobayashi N, Kohsaka T. Human Jagged1mutants cause liver defectin Alagille syndrome by overexpression of hepatocyte growth factor. J Mol Biol.2006;356:559-68.
    105. Wolfe MS. APP, Notch, and presenilin: molecular pieces in the puzzle ofAlzheimer's disease. Int Immunopharmacol.2002;2:1919-29.
    106. Roy M, Pear WS, Aster JC. The multifaceted role of Notch in cancer. Curr OpinGenet Dev.2007;17:52-9.
    107. Weijzen S, Rizzo P, Braid M, Vaishnav R, Jonkheer SM, Zlobin A, et al.Activation of Notch-1signaling maintains the neoplastic phenotype in humanRas-transformed cells. Nat Med.2002;8:979-86.
    108. Maillard I, Pear WS. Notch and cancer: best to avoid the ups and downs. CancerCell.2003;3:203-5.
    109. Kadesch T. Notch signaling: the demise of elegant simplicity. Curr Opin GenetDev.2004;14:506-12.
    110. Yoon K, Gaiano N. Notch signaling in the mammalian central nervous system:insights from mouse mutants. Nat Neurosci.2005;8:709-15.
    111. Bolos V, Grego-Bessa J, de la Pompa JL. Notch signaling in development andcancer. Endocr Rev.2007;28:339-63.
    112. Fuller RS, Brake AJ, Thorner J. Intracellular targeting and structuralconservation of a prohormone-processing endoprotease. Science.1989;246:482-6.
    113. Thomas G. Furin at the cutting edge: from protein traffic to embryogenesis anddisease. Nat Rev Mol Cell Biol.2002;3:753-66.
    114. Aagaard L, Rossi JJ. RNAi therapeutics: principles, prospects and challenges.Adv Drug Deliv Rev.2007;59:75-86.
    115. Mello CC, Conte D, Jr. Revealing the world of RNA interference. Nature.2004;431:338-42.
    116. Dorsett Y, Tuschl T. siRNAs: applications in functional genomics and potentialas therapeutics. Nat Rev Drug Discov.2004;3:318-29.
    117. Moffatt S, Wiehle S, Cristiano RJ. Tumor-specific gene delivery mediated by anovel peptide-polyethylenimine-DNA polyplex targeting aminopeptidaseN/CD13. Hum Gene Ther.2005;16:57-67.
    118. Novina CD, Sharp PA. The RNAi revolution. Nature.2004;430:161-4.
    119. Davenport RJ. Gene silencing. A faster way to shut down genes. Science.2001;292:1469-71.
    120. Irie N, Sakai N, Ueyama T, Kajimoto T, Shirai Y, Saito N. Subtype-andspecies-specific knockdown of PKC using short interfering RNA. BiochemBiophys Res Commun.2002;298:738-43.
    121. Hannon GJ. RNA interference. Nature.2002;418:244-51.
    122. Li Z, Zhao R, Wu X, Sun Y, Yao M, Li J, et al. Identification and characterizationof a novel peptide ligand of epidermal growth factor receptor for targeteddelivery of therapeutics. FASEB J.2005;19:1978-85.
    123. Sui G, Soohoo C, Affar el B, Gay F, Shi Y, Forrester WC. A DNA vector-basedRNAi technology to suppress gene expression in mammalian cells. Proc NatlAcad Sci U S A.2002;99:5515-20.
    124. Holen T, Amarzguioui M, Wiiger MT, Babaie E, Prydz H. Positional effects ofshort interfering RNAs targeting the human coagulation trigger Tissue Factor.Nucleic Acids Res.2002;30:1757-66.
    125. Kim DH, Rossi JJ. Strategies for silencing human disease using RNAinterference. Nat Rev Genet.2007;8:173-84.
    126. Nguyen T, Menocal EM, Harborth J, Fruehauf JH. RNAi therapeutics: an updateon delivery. Curr Opin Mol Ther.2008;10:158-67.
    127. Akhtar S, Benter IF. Nonviral delivery of synthetic siRNAs in vivo. J Clin Invest.2007;117:3623-32.
    128. Judge AD, Sood V, Shaw JR, Fang D, McClintock K, MacLachlan I.Sequence-dependent stimulation of the mammalian innate immune response bysynthetic siRNA. Nat Biotechnol.2005;23:457-62.
    129. Li CX, Parker A, Menocal E, Xiang S, Borodyansky L, Fruehauf JH. Delivery ofRNA interference. Cell Cycle.2006;5:2103-9.
    130. Li H, Fu X, Chen Y, Hong Y, Tan Y, Cao H, et al. Use of adenovirus-deliveredsiRNA to target oncoprotein p28GANK in hepatocellular carcinoma.Gastroenterology.2005;128:2029-41.
    131. Gurzov EN, Izquierdo M. RNA interference against Hec1inhibits tumor growthin vivo. Gene Ther.2006;13:1-7.
    132. Osada H, Tatematsu Y, Yatabe Y, Horio Y, Takahashi T. ASH1gene is a specifictherapeutic target for lung cancers with neuroendocrine features. Cancer Res.2005;65:10680-5.
    133. Zhang SZ, Pan FY, Xu JF, Yuan J, Guo SY, Dai G, et al. Knockdown of c-Met byadenovirus-delivered small interfering RNA inhibits hepatocellular carcinomagrowth in vitro and in vivo. Mol Cancer Ther.2005;4:1577-84.
    134. Tomar RS, Matta H, Chaudhary PM. Use of adeno-associated viral vector fordelivery of small interfering RNA. Oncogene.2003;22:5712-5.
    135. Bitko V, Musiyenko A, Shulyayeva O, Barik S. Inhibition of respiratory virusesby nasally administered siRNA. Nat Med.2005;11:50-5.
    136. Thakker DR, Natt F, Husken D, Maier R, Muller M, van der Putten H, et al.Neurochemical and behavioral consequences of widespread gene knockdown inthe adult mouse brain by using nonviral RNA interference. Proc Natl Acad Sci US A.2004;101:17270-5.
    137. de Fougerolles AR. Delivery vehicles for small interfering RNA in vivo. HumGene Ther.2008;19:125-32.
    138. Oliveira S, Storm G, Schiffelers RM. Targeted delivery of siRNA. J BiomedBiotechnol.2006;2006:63675.
    139. Lewis DL, Wolff JA. Systemic siRNA delivery via hydrodynamic intravascularinjection. Adv Drug Deliv Rev.2007;59:115-23.
    140. Chiu YL, Rana TM. siRNA function in RNAi: a chemical modification analysis.RNA.2003;9:1034-48.
    141.Morrissey DV, Blanchard K, Shaw L, Jensen K, Lockridge JA, Dickinson B, et al.Activity of stabilized short interfering RNA in a mouse model of hepatitis Bvirus replication. Hepatology.2005;41:1349-56.
    142. Wolfrum C, Shi S, Jayaprakash KN, Jayaraman M, Wang G, Pandey RK, et al.Mechanisms and optimization of in vivo delivery of lipophilic siRNAs. NatBiotechnol.2007;25:1149-57.
    143. McNamara JO,2nd, Andrechek ER, Wang Y, Viles KD, Rempel RE, Gilboa E, etal. Cell type-specific delivery of siRNAs with aptamer-siRNA chimeras. NatBiotechnol.2006;24:1005-15.
    144. Kim HK, Davaa E, Myung CS, Park JS. Enhanced siRNA delivery using cationicliposomes with new polyarginine-conjugated PEG-lipid. Int J Pharm.2010;392:141-7.
    145. Felgner PL, Gadek TR, Holm M, Roman R, Chan HW, Wenz M, et al.Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. ProcNatl Acad Sci U S A.1987;84:7413-7.
    146. Li SD, Chono S, Huang L. Efficient gene silencing in metastatic tumor by siRNAformulated in surface-modified nanoparticles. J Control Release.2008;126:77-84.
    147. Santel A, Aleku M, Keil O, Endruschat J, Esche V, Fisch G, et al. A novelsiRNA-lipoplex technology for RNA interference in the mouse vascularendothelium. Gene Ther.2006;13:1222-34.
    148.Zimmermann TS, Lee AC, Akinc A, Bramlage B, Bumcrot D, Fedoruk MN, et al.RNAi-mediated gene silencing in non-human primates. Nature.2006;441:111-4.
    149. Gray MJ, Van Buren G, Dallas NA, Xia L, Wang X, Yang AD, et al. Therapeutictargeting of neuropilin-2on colorectal carcinoma cells implanted in the murineliver. J Natl Cancer Inst.2008;100:109-20.
    150. Malone RW, Felgner PL, Verma IM. Cationic liposome-mediated RNAtransfection. Proc Natl Acad Sci U S A.1989;86:6077-81.
    151. Rozema DB, Lewis DL, Wakefield DH, Wong SC, Klein JJ, Roesch PL, et al.Dynamic PolyConjugates for targeted in vivo delivery of siRNA to hepatocytes.Proc Natl Acad Sci U S A.2007;104:12982-7.
    152. Hu-Lieskovan S, Heidel JD, Bartlett DW, Davis ME, Triche TJ.Sequence-specific knockdown of EWS-FLI1by targeted, nonviral delivery ofsmall interfering RNA inhibits tumor growth in a murine model of metastaticEwing's sarcoma. Cancer Res.2005;65:8984-92.
    153. Medarova Z, Pham W, Farrar C, Petkova V, Moore A. In vivo imaging of siRNAdelivery and silencing in tumors. Nat Med.2007;13:372-7.
    154. Lee SY, Huh MS, Lee S, Lee SJ, Chung H, Park JH, et al. Stability and cellularuptake of polymerized siRNA (poly-siRNA)/polyethylenimine (PEI) complexesfor efficient gene silencing. J Control Release.2010;141:339-46.
    155. Meade BR, Dowdy SF. Exogenous siRNA delivery using peptide transductiondomains/cell penetrating peptides. Adv Drug Deliv Rev.2007;59:134-40.
    156. Kumar P, Wu H, McBride JL, Jung KE, Kim MH, Davidson BL, et al.Transvascular delivery of small interfering RNA to the central nervous system.Nature.2007;448:39-43.
    157.Akhtar S, Benter I. Toxicogenomics of non-viral drug delivery systems for RNAi:potential impact on siRNA-mediated gene silencing activity and specificity. AdvDrug Deliv Rev.2007;59:164-82.
    158. Peer D, Zhu P, Carman CV, Lieberman J, Shimaoka M. Selective gene silencingin activated leukocytes by targeting siRNAs to the integrin lymphocytefunction-associated antigen-1. Proc Natl Acad Sci U S A.2007;104:4095-100.
    159. Kumar P, Ban HS, Kim SS, Wu H, Pearson T, Greiner DL, et al. T cell-specificsiRNA delivery suppresses HIV-1infection in humanized mice. Cell.2008;134:577-86.
    160. Grimm D, Streetz KL, Jopling CL, Storm TA, Pandey K, Davis CR, et al.Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNApathways. Nature.2006;441:537-41.
    161. Zhang X, Shan P, Jiang D, Noble PW, Abraham NG, Kappas A, et al. Smallinterfering RNA targeting heme oxygenase-1enhancesischemia-reperfusion-induced lung apoptosis. J Biol Chem.2004;279:10677-84.
    162. Song E, Lee SK, Wang J, Ince N, Ouyang N, Min J, et al. RNA interferencetargeting Fas protects mice from fulminant hepatitis. Nat Med.2003;9:347-51.
    163. Wang X, Skelley L, Cade R, Sun Z. AAV delivery of mineralocorticoid receptorshRNA prevents progression of cold-induced hypertension and attenuates renaldamage. Gene Ther.2006;13:1097-103.
    164. Landen CN, Jr., Chavez-Reyes A, Bucana C, Schmandt R, Deavers MT,Lopez-Berestein G, et al. Therapeutic EphA2gene targeting in vivo using neutralliposomal small interfering RNA delivery. Cancer Res.2005;65:6910-8.
    165. Morrissey DV, Lockridge JA, Shaw L, Blanchard K, Jensen K, Breen W, et al.Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs.Nat Biotechnol.2005;23:1002-7.
    166. Sorensen DR, Leirdal M, Sioud M. Gene silencing by systemic delivery ofsynthetic siRNAs in adult mice. J Mol Biol.2003;327:761-6.
    167. Urban-Klein B, Werth S, Abuharbeid S, Czubayko F, Aigner A. RNAi-mediatedgene-targeting through systemic application of polyethylenimine(PEI)-complexed siRNA in vivo. Gene Ther.2005;12:461-6.
    168. Vornlocher HP. Antibody-directed cell-type-specific delivery of siRNA. TrendsMol Med.2006;12:1-3.
    169. Guo S, Tschammer N, Mohammed S, Guo P. Specific delivery of therapeuticRNAs to cancer cells via the dimerization mechanism of phi29motor pRNA.Hum Gene Ther.2005;16:1097-109.
    170. Rossi JJ. Receptor-targeted siRNAs. Nat Biotechnol.2005;23:682-4.
    171. Miele L, Miao H, Nickoloff BJ. NOTCH signaling as a novel cancer therapeutictarget. Curr Cancer Drug Targets.2006;6:313-23.
    172. Zayzafoon M, Abdulkadir SA, McDonald JM. Notch signaling and ERKactivation are important for the osteomimetic properties of prostate cancer bonemetastatic cell lines. J Biol Chem.2004;279:3662-70.
    173. Lu PY, Xie F, Woodle MC. In vivo application of RNA interference: fromfunctional genomics to therapeutics. Adv Genet.2005;54:117-42.
    174. Hillier SM, Maresca KP, Femia FJ, Marquis JC, Foss CA, Nguyen N, et al.Preclinical evaluation of novel glutamate-urea-lysine analogues that targetprostate-specific membrane antigen as molecular imaging pharmaceuticals forprostate cancer. Cancer Res.2009;69:6932-40.