肝细胞癌中WIF-1基因甲基化及其表达的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肝细胞癌(以下简称肝癌)是临床上最常见的恶性肿瘤之一,其发病率和在肿瘤相关死亡中占据的比例均很高,严重威胁着人类的健康,因此,肝癌的防治成为肿瘤研究的重要课题。肝癌的发生发展是一个涉及多基因多步骤的复杂过程,其分子机制仍未完全阐明,抑癌基因启动子区异常高甲基化可导致抑癌基因失活,是肝癌发生的重要原因之一。本文通过检索相关文献,分析肝癌发生的分子途径,选取Wnt途径中WIF-1基因作为研究对象,检测其在肝癌中的甲基化和表达水平,结合临床资料探讨其临床意义。
     目的:探讨WIF-1基因启动子区甲基化的状态与WIF-1 mRNA表达和肝癌发生发展的关系,评价检测肝癌WIF-1基因启动子区甲基化和基因表达的临床意义。
     方法:收集53例成对的肝癌及相应癌旁组织,采用实时定量甲基化特异性PCR (Q-MSP)技术对组织中WIF-1基因的甲基化水平进行相对定量检测;应用实时定量RT-PCR (Q-RT-PCR)检测53例成对肝癌及相应癌旁组织、22例肝炎后肝硬化、4例慢性肝炎和11例正常肝组织的WIF-1 mRNA的表达水平,分析WIF-1甲基化状态与mRNA表达水平的关系以及两者与临床资料间的相关性。
     结果:Q-MSP检测结果表明WIF-1基因在肝癌组织和癌旁组织中甲基化阳性例数分别为20例(37.7%)和3例(5.7%),癌组织中WIF-1基因甲基化频率显著高于癌旁组织(P<0.001);ROC分析表明WIF-1基因甲基化水平的差异可以高效地鉴别癌组织与非癌组织(AUC=0.714,P<0.001);Kaplan-Meier生存曲线分析显示甲基化阳性病例组的无瘤生存期显著低于甲基化阴性病例组(P<0.05);WIF-1基因的甲基化状态与性别、年龄、肿块数目、是否肝硬化、Child-pugh分级及TNM分期等因素均未见明显相关(P>0.05)。
     对WIF-1 mRNA在各组组织中表达水平的分析显示:正常肝组织与肝硬化、肝癌、癌旁组织组间的表达均存在统计学差异(P<0.05),正常肝组织组基因表达水平高于除慢性肝炎的其它各组;肝癌组基因表达水平显著低于癌旁组织组(P<0.05)。WIF-1基因表达水平与临床资料相关性分析未见明显相关性,高表达组和低表达组的无瘤生存期未见统计‘学差异(P>0.05)。
     53例成对肝癌及癌旁组织标本中,肝癌组织相对于癌旁组织WIF-1表达显著下调的有31例,其中,在甲基化阳性、阴性标本里分别为11例(55%)和20例(60.6%)。肝癌与癌旁组织WIF-1 mRNA表达的下调与甲基化状态之间未见相关性(P>0.05)。
     结论:检测WIF-1基因的甲基化状况有助于肝癌的诊断与预后评估,可能作为一种具有临床诊断价值的分子标志物。WIF-1基因在肝癌组织中的表达下调除受基因启动子甲基化影响外可能还存在其他机制。
Hepatocellular carcinoma (HCC) is one of the most common life-threatening malignancies in the world with a high mortality and morbility. Carcinogenesis and development of HCC is a complicated process with multiple gene participated and multiple phase developed, and the molecular mechanism of hepatocarcinogenesis remains unclear. Aberrant methylation of tumor suppressor genes is an important reason of tumorigenesis.So, we selected WIF-1 gene as a target for testing the methylation and expression level in tissue samples and estimating their clinical significance.
     AIM:To investigate the level of promoter methylation and geneexpression of WIF-1 in hepatocellular carcinoma. To estimate the value of aberrant methylation and expression of WIF-1 as a biomarkerfor diagnosis and prognosis of HCC.
     METHODS:We collected 53 tumor and adjacent non-tumor tissuesamples, and tested methylation status of WIF-1 in these samples quantitatively by quantitative methylation specific polymerase chain reaction (Q-MSP).The expression of WIF-1 was determined by quantitative real-time reverse transcriptase PCR (Q-RT-PCR). Then we investigated the correlation among methylation status, mRNA expression, and clinicopathological data.
     RESULTS:The results of Q-MSP analysis indicated that the methylation of WIF-1 in HCC increased significantly compared with adjacent non-tumor tissues(P< 0.001).ROC analysis demonstrated methylation of WIF-1 could distinguish the tumor lesions from non-malignant tissuesefficiently (AUC=0.714, P<0.001).The methylation of WIF-1 had no significant correlation with patients gender, age, tumor number, liver cirrhosis status, Child-pugh grade, and TNM stage(P>0.05). Kaplan-Meier survival analysis showed the patients with lower methylation had a better disease-free survival time(P<0.05).
     The analysis of Q-RT-PCR showed that normal liver tissues had a significantly higher expression of WIF-1 than other kinds of tissues except for chronic hepatitis tissues.Tumor tissues compared with adjacent non-tumor tissueshad a lower expression level of WIF-1(P<0.05).
     Among 53 HCCs and their corresponding nontumorous liver tissues, the prominent down-regulation of WIF-1 (by>2-fold) was observed in 31 of 53 HCCs compared with nontumorous liver tissues.The number of samples with prominent down-regulation were 11(55.0%) in aberrant hypermethylated HCCs and 20(60.6%) in the tumor samples without hypermethylation, respectively.
     CONCLUSION:The promoter hypermethylation of WIF-1 is a common event in HCC and may plays an important role at the stage of hepatocarcinogenesis, and the methylation level of WIF-1 may server as a potential biomarker for diagnosis and prognosis of HCC. WIF-1 methylation and other factors mediated the expression of WIF-1.
引文
[1]Natasha Walzer and Laura M Kulik. Hepatocellular carcinoma:latest developments [J]. Curr Opin Gastroenterol,2008,24:312-319.
    [2]Herath N.I, Leggett B.A., and MacDonald G.A. Review of genetic and epigenetic alterations in hepatocarcinogenesis [J]. J Gastroenterol Hepatol,2006,21:15-21.
    [3]Eads CA, Danenberg KD, Kawakami K, et al. Methylight:a high-throughput assay to measure DNA methylation [J]. Nudeic Acids Res,2000,28:E32.
    [4]Alexandra Klaus and Walter Birchmeier. Wnt signaling and its impaction development and cancer [J]. Nature Reviews Cancer,2008,8:387-397.
    [5]Kawano Y, Kypta R. Secreted antagonists of the Wnt signaling pathway [J]. J Cell Sci.2003,116:2627-2634.
    [6]Aguilera O, Munoz A, Esteller M, et al. Epigenetic alterations of the Wnt/beta-catenin pathway in human disease [J]. Endocr Metab Immune Disord Drug Targets.2007,7(1):13-21.
    [7]Urakami S, Shiina H, Enokida H, et al. Combination analysis of hypermethylated Wnt-antagonist family genes as a novel epigenetic biomarker panel for bladder cancer detection [J]. Clin Cancer Res.2006,12(7 Pt 1):2109-2116.
    [8]Hsieh JC, Kodjabachian L, Rebbert ML, et al. A new secreted protein that binds to Wnt proteins and inhibits their activities [J]. Nature 1999,398:431-436.
    [9]Wissmann C, Wild PJ, Kaiser S, et al. WI F-1, a component of the Wnt pathway, is down-regulated in prostate, breast, lung, and bladder cancer [J]. Pathol 2003, 201(2):204-212.
    [10]Julien Mazieres, Biao He, Liang You, et al. Wnt Inhibitory Factor-1 Is Silenced by Promoter Hypermethylation in Human Lung Cancer [J]. Cancer research, 2004,64:4717-4720.
    [11]Hiroaki Taniguchi, et al. Frequent epigenetic inactivation of Wnt inhibitory factor-1 in human gastrointestinal cancers [J]. Oncogene,2005,24:7946-7952.
    [12]Julien M, Biao He, Liang You, et al. Wnt inhibitory factor-1 is silenced by pZXSromoter hypermethylation in human lung cancer [J]. Cancer Res,2004,64 (14):4717.
    [13]Sonny Batra, Yihui Shi, Kristopher M, et al. Wnt inhibitory factor-1, a Wnt antagonist, is silenced by promoter hypermethylation in malignant pleural mesothelioma [J]. BBRC,2006,342 (4):1228.
    [14]Yu-Ching Lin, Liang You, Zhidong Xu, et al. Wnt signaling activation and WIF-1 silencing in nasopharyngeal cancer cell lines [J]. Biochem Biophys Res Commun,2006,41 (2):635.
    [15]白同,杨斌等,APC和CDKN2A基因甲基化定量分析对肝细胞癌的诊断价值[J].世界华人消化杂志,2009,17(29):3001-3007.
    [16]Herman JG, Graff JR, Myohanen S, et al. Methylation-specific PCR:a novel PCR assay for methylation status of CpG islands [J]. Proc Natl Acad Sci,1996,93: 9821-9826.
    [17]Calvisi DF, Ladu S, Gorden A, et al Thorgeirsson, Mechanistic and prognostic significance of aberrant methylation in the molecular pathogenesis of human hepatocellular carcinoma[J]. J Clin Invest,2007,117:2713-2722.
    [18]International union against cancer (UICC). Sobin LH, Wittekind C, eds. TNM classification of malignant tumors [M].6th Ed. New York:Wiley-Liss,2002: 81-83.
    [19]Eads CA, Lord RV, Wickramasinghe K, et al. Epigenetic patterns in the progression of esophageal adenocarcinoma [J]. Cancer Res,2001,61:3410-3418.
    [20]Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C (T) method [J]. Nat Protoc.,2008,3:1101-1108.
    [21]Suzuki T, Yano H, Nakashima Y, et al. Beta-catenin expression in hepatocellular carcinoma:a possible participation of beta-catenin in the dedifferentiation process [J]. J Gastroenterol Hepatol,2002,17(9):994-1000.
    [22]Eidler HB, UtsuyamaM, Nagaoka S, et al. Expression level of Wnt signaling components possibly influences the biological behavior of colorectal cancer in different age groups [J]. Exp Mol Pathol,2004,76(3):224-233.
    [23]Lustig B, Behrens J. The Wnt signaling pathway and it sroleintum or development [J]. J Cancer Res Clin Oncol,2003,129 (4):199-221.
    [24]Chan AO, Rashid A. CpG island methylation in precursors of gastrointestinal malignancies [J]. Curr Mol Med,2006,6:401-408.
    [25]Kawano Y, Kypta R. Secreted antagonist s of the Wnt signalling pathway [J]. J Cel 1 Sci,2003,116 (13):26-27.
    [26]Matsubayashi H, Canto M, Sato N, et al. DNA methylation alterations in the Pancreatic juice of patients with suspected pancreatic disease [J]. Cancer Res, 2006,66(2):1208-1217.
    [27]Muller HM, Widschwendter A, Fiegl H, et al. A DNA methylation pattern similar to normal tissue is associated with better prognosis in human cervical cancer [J]. Cancer Lett,2004,209:231-236.
    [28]娄诚,杨斌,高英堂,等.肝细胞癌多基因甲基化异常及其临床意义[J].中华肿瘤杂志,2008,30:831-836.
    [29]Ding Z, Qian YB, Zhu LX, and Xiong QR:Promoter methylation and mRNA expression of DKK-3 and WIF-1 in hepatocellular carcinoma [J]. World JGastroenterol,2009,15:2595-2601.
    [30]C.S. Chim, et al. Infrequent Wnt inhibitory factor-1 (WIF-1) methylation in chronic lymphocytic leukemia [J]. Leukemia Research,2006,30:1135-1139
    [31]Yu J, Tao Q, Cheng YY, Lee KY, et al. Promoter methylation of the Wnt/beta-catenin signaling antagonist Dkk-3 is associated with poor survival in gastric cancer[J]. Cancer,2009,115:49-60.
    [32]Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C (T)) method [J]. Methods, 2001,25:402-408.
    [33]Tannapfel A, Wittekind C. Genes involved in hepatocellular carcinoma: deregulation in cell cycling and apoptosis [J].Virchows Arch,2002,440 (4): 345-352.
    [34]Eads CA, Lord RV, Kurumboor SK, et al. Fields of aberrant CpG island hypermethylation in Barrett's esophagus and associated adenocarcinoma [J]. Cancer Res,2000; 60:5021-5026.
    [35]Chen J, Rocken C, Lofton-Day C, et al. Molecular analysis of APC promoter methylation and protein expression in colorectal cancer metastasis[J]. Carcinogenesis,2005,26(1):37-43. 制剂作为抗肿瘤治疗方法时,我们必须首先确定DNA甲基化抑制剂或者DNA去甲基化抑制剂的相对副作用。我们目前所了解的是DNA甲基化抑制剂可通过激活抑癌基因而抑制或阻止肿瘤生长,但具有诱导肿瘤转移的危险;另一方面,DNA去甲基化抑制剂通过逆转相关基因的甲基化而抑制肿瘤转移,但不确定是否会导致抑癌基因的高甲基化而促进肿瘤生长还有待进一步去探究。
    DNA甲基化是肿瘤发生中的早期事件,对一些肿瘤特异基因的甲基化状态进行筛查有望用于肿瘤的早期诊断。DNA甲基化是一种可逆过程,应用DNA甲基化抑制剂可以使一些重要基因发生去甲基化,恢复正常功能。因此,敏感性、特异性更高的肝细胞癌甲基化基因、更方便的检测方法、特异性更强的去甲基化药物等需要进一步去研究。而且肿瘤表观遗传治疗的有效性已在体外及动物实验中得到证实,部分临床试验也取得了非常满意的结果,但是肝细胞癌的发生发展是一个多因素参与的复杂过程,不能简单地以DNA的甲基化来解释,所以DNA甲基化如何与其他致癌因素协同作用促进肝细胞癌的发生发展仍需进一步研究。目前,肿瘤表观遗传治疗有可能成为肿瘤综合治疗的一部分,对提高化疗、放疗的敏感性,减少肿瘤的复发和转移起一定作用。而且更深入地研究DNA甲基化和组蛋白密码的关系有望在基因调控和肝细胞癌发生上获得新的突破,并可能提出新的治疗靶点,将成为肝细胞癌基因治疗今后研究的一个方向。
    [1]ZenderL, XueW, Cordon-cardoc, et al. Generation and analysis of genetically defined liver carcinomas derived from bipotential liver progenitors [J]. Cold Spring Harb Symp Quant Biol,2005,70:251-261.
    [2]Parkin DM, Bray F, Ferlay J, Pisani P.Global cancer statistics,2002[J]. CA Cancer J Clin,2005,55(2):74-108.
    [3]J air KW, Bachman KE, Suzuki H, et al. De novo CpG island methylation in human cancer cells [J]. Cancer Res,2006,66(2):682-692.
    [4]Li X, Konger P, Sandstedt B, et al. Promoter-specific methylation and expression:of IGF-2 and h19 are involved in human hepatoblaatoma [J]. Int J Cancer,1998,75(2):176-180.
    [5]progribny IP, James SJ, Jemigan S, et al. Genomic hypomethylaton is specific for preneoplastic liver in folate/methyl deficient rats and does not occur in non-target tissues[J]. Mutat Res,2004,548(1-2):53-59.
    [6]Counts-JL, Goodman JI. Alterrations in DNA methylation may play a variety of roles in carcinogensis [J]. Cell,1995,83(1):13-15.
    [7]Liew C T, Li HM, Lo KW, et al. High frequency of p16 NK4A gene alteration in hepatocellular carcinoma [J]. Oncogene,1999,18(3):789-795.
    [8]YeoW, Wong N, WongW L, et al. High frequency of promoter hypermethylation of RASSF1A in tumor and plasma of patientswith hepatocellular carcinoma[J]. Liver Int,2005,25 (2):266-272.
    [9]Hsu L S, Lee H C, Chau G Y, et al. Aberrant methylation of EDNRB and p16 genes in hepatocellular carcinoma (HCC) in Taiwan[J]. Oncol Rep,2006,15 (2): 507-511.
    [10]HIDEYASU TAKAGI, SHIGERU SASAKI, et al.Fequent epigenetic inactivation of SFRP genes in hepatocellular carcinoma [J]. Gastroenterology, 2008,43:378-389.
    [11]Shen L, Ahuja N, Shen Y, Habib NA, Toyota M, Rashid A, IssaJP. DNA methylation and environmental exposures in human hepatocellular carcinoma [J]. J Natl Cancer Inst,2002,94:755-761.
    [12]Liu WJ, Wang L, Wang JP, Li JQ, Zhang CQ, Zheng L, YuanYF. Correlations of CpG island methylator phenotype and OPCML gene methylation to carcinogenesis of hepatocellular carcinoma [J]. Ai Zheng 2006,25:696-700.
    [13]Zhang C, Li Z, Cheng Y, Jia F, Li R, Wu M, Li K, Wei L. CpG island methylator phenotype association with elevated serum Alpha-fetoprotein level in hepatocellular carcinoma [J]. Clin Cancer Res,2007,13:944-952.
    [14]Chalitchagorn K, Shuangshoti S, Hourpai N, et al. Distinctive pattern of LNE-1 methylation level in normal tissues and the association with carcinogenesis[J]. Oncogene,2004,23:8841-8846.
    [15]Sato N, Fukushima N,Maehara N, et al. SPARC/osteonectin is a frequent target for aberrant methylation in pancreatic adenocarcinoma anda mediator of tumor-stromal interactions [J]. Oncogene,2003,22:5021-5030.
    [16]Tao L, Li Y, Kramer PM, et al. Hypomethylation of DNA and the insulin-like growth factor-II gene in dichloroacetic and trichloroacetic acid-promoted mouse liver tumors[J]. Toxicology,2004,196:127-136.
    [17]Lin CH, Hsieh SY, Sheen IS, et al. Genome-wide hypomethylation in hepatocellular carcinogenesis. Cancer Res,2001,61:4238-4243.
    [18]Sansom OJ, Berger J, Bishop SM, et al. Deficiency of Mbd2 suppresses intestinal tumorigenesis [J]. Nat Genet,2003,34:145-147.
    [19]Takai D, Yagi Y, Habib N, et al. Hypomethylation of LINE1 retrotransposon in human hepatocellular carcinomas, but not in surrounding liver cirrhosis[J]. Jpn J Clin Oncol,2000,30:306-309.
    [20]Saito Y, Kanai Y, Sakamoto M, et al. Exp ression of mRNA for DNA methyltransferases and methyl-CpG-binding proteins and DNA methylation status on CpG islands and pericentromeric satellite regions during human hepatocarcinogenesis [J]. Hepatology,2001,33:561-568.
    [21]Zhang Y, Reinberg D.Transcription regulation by histone methylation:interplay between different covalent modifications of the core histone tails [J].Genes Dev, 2001,15:2343-2360.
    [22]齐健,朱尤庆,罗俊,等.分泌型Wnt拮抗基因甲基化在结直肠肿瘤发生发展中的作用[J].中华医学杂志,2007,87(28):1954-1957.
    [23]Wong IH, Zhang J, Lai PB, el al. Quantitative analysis of tumor-derived methylated p16INK4a sequences in plasma, serum, and blood cells of hepatocellular carcinoma patients[J]. Clin Cancer Res,2003,9(3):1047-1052.
    [24]Schagdarsurengin U, Wilkens L, Steinemann D, et al. Frequent epigenetic inactivation of the RASSF1A gene in hepatocellular carcinoma [J]. Oncogene, 2003,22(12):1866-1871.
    [25]Okochi O, Hibi K, SakaiM, et al. Methylation-mediated silen-cing of SOCS-1 gene in hepatocellular carcinoma derived from cir-rhosis [J]. Clin Cancer Res, 2003,9 (14):5295-5298.
    [26]Tchou JC, Lin X, Freije D, et al. GSTP1 CpG island DNA hypermethylation in hepatocellular carcinomas [J]. Int J Oncol,2000,16 (4):663-676.