MCFC-GT混合动力系统非线性特征及其协调控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高温燃料电池-燃气轮机混合动力系统是上世纪末、本世纪初刚刚兴起的一种高效、环保的新型动力系统,在未来发电领域具有广阔的应用前景。然而,高温燃料电池-燃气轮机混合动力系统是一个复合过程、一个复杂的能量转换过程,该类系统的非线性特性及其协调控制问题一直是悬而未决的难题。本文以由熔融碳酸盐燃料电池(MCFC)和燃气轮机(GT)等组成的混合动力系统为研究对象,提出了基于MCFC-GT混合动力系统非线性特征的协调控制方法。具体如下:
     (1)MCFC-GT混合动力系统数学模型的建立
     本文采用机理建模的方法,建立了MCFC-GT混合动力系统的集总参数模型,研究MCFC-GT混合动力系统的稳定运行以及对外界扰动的相应特性。
     (2)基于总能概念的MCFC-GT混合动力系统特性分析
     本文讨论了MCFC-GT混合动力系统不同工况下的工作性能,结果表明:MCFC-GT混合动力系统具有较高的发电效率,但系统的工况变化范围较小,可通过调节燃气轮机的转速来改善系统的变工况性能。然而,采用变转速燃气轮机的运行方式将削弱底层循环的作用,不利于充分发挥MCFC-GT混合动力系统的优势。
     (3)MCFC-GT混合动力系统的动态特性分析
     本文首先对MCFC的动态特性进行深入研究,得到了MCFC的温度分布特性。在此基础上来研究MCFC-GT混合动力系统的动态性能。结果表明:MCFC-GT混合动力系统在设计点工况下的工作性能最佳;系统对外界扰动的响应速度较慢,稳定时间较长。
     (4)实验研究
     本文进行了MCFC电堆、压气机性能及透平性能实验,对MCFC-GT混合动力系统的仿真模型进行了部分验证。仿真结果与实验数据能很好吻合。
     (5)MCFC-GT混合动力系统的协调控制研究
     MCFC-GT混合动力系统是被控特性非常复杂的对象,针对系统的非线性特性,本文提出了三种协调控制策略,建立了一个模糊协调控制器。对MCFC-GT混合动力协调控制系统的仿真研究表明,该控制方法稳定性好,且动态性能具有较小超调量和较短调节时间。
The high temperature fuel cell-gas turbine hybrid system is an advanced efficiency and ecological power system, which rose at the end of last century and the beginning of this century. It has a wide application prospect in the field of electric power. However, the problem of the nonlinear characteristics and the coordinated control on hybrid system is a worldwide difficult problem for its compound and complex conversion process of energy. This paper presents a molten carbonate fuel cell -gas turbine (MCFC-GT) hybrid system as the study object to research the method of the coordinated control based on nonlinear characteristics of MCFC-GT hybrid system. The details are listed as below:
     (1) Model building of MCFC-GT hybrid system
     Based on the mechanism modeling method, a lumped parameter model of MCFC-GT hybrid system is presented. The stable operating and the dynamic response performance of the hybrid system are discussed in this paper.
     (2) Research on characteristics of MCFC-GT hybrid system based on total energy concept
     This paper discusses the working performance of MCFC-GT hybrid system at diffirent work conditions. The results show that the hybrid system is high efficiency but the change range of work conditions is narrow. The work condition can be extended by a variable-speed gas turbine. However, this method of operation weakens the action of bottoming cycle. The advantage of hybrid system can’t been good use fully.
     (3) Research on dynamic performance of MCFC-GT hybrid system
     This paper deeply studies the dynamic characteristics of MCFC. Based on the distribution of the temperature dynamic characteristics of MCFC, the dynamic performance of MCFC-GT hybrid system is presented. The results show the best working performance of hybrid system appears at design working condition. The hybrid system need longer time to stabilization for external disturbance.
     (4) Experiment
     This paper presents the performance experiments of MCFC, compressor and turbine to proof the simulation model of MCFC-GT hybrid system partially. The simulation result and the experimental result inosculate very well.
     (5) Research on coordinated control of MCFC-GT hybrid system
     The controlled performance of MCFC-GT hybrid system is very complicated. According to the nonlinear characteristic of hybrid system, three coordinated control strategies are presented and a fuzzy coordinated controller is built. The simulation of control performance of hybrid system results show the control method is great stable. The dynamic performance brings smaller overshoot and shorter adjusting time.
引文
[1] J. Robert Selman. Molten-salt fuel cells—Technical and economic challenges [J]. Journal of Power Sources, 2006, 160(2): 852-857.
    [2] M.C. Williams, J.P. Strakey, Subhash C. Singhal. U.S. distributed generation fuel cell program [J]. Journal Power Sources, 2004, 131: 79-85.
    [3] Sammes, N.M.; Boersma, R.,Small-scale fuel cells for residential applications,Journal of Power Sources,2000,86(1-2):98-110.
    [4] 吴承伟,张伟. 国外燃料电池研究动向,能源工程,2003(2):1-5.
    [5] 孔宪文,桂敏言,冯玉全. 燃料电池发电技术现状与前景,东北电力技术,2002(3):28-33.
    [6] Paolo E. Santangelo, Paolo Tartarini. Fuel cell system and traditional technologies. Part I: experimental CHP approach[J]. Applied Thermal Enginerring, 2007, 27(8-9): 1278-1284.
    [7] János M. Beér. High efficiency electric power generation: The environmental role[J]. Progress in Energy and Combustion Science, 2007, 33(2): 107-134.
    [8] Derek W. Hengeveld and Shripad T. Revankar. Economic analysis of a combined heat and power molten carbonate fuel cell system [J]. Journal of Power Sources, In Press, Corrected Proof, Available online 5 January 2007.
    [9] Danilo Marra and Barbara Bosio. Process analysis of 1 MW MCFC plant[J]. International Journal of Hydrogen Energy, In Press, Corrected Proof, Available online 8 January 2007.
    [10] Grillo O, Magistri L, Massardo A F. Hybrid systems for distributed power generation based on pressurization and heat recovering of an existing 100 KW molten carbonate fuel cell [J]. J. Power Sources, 2003, 115(2): 252-267.
    [11] 翁一武,翁史烈,苏明. 以微型燃气轮机为核心的分布式供能系统[J]. 中国电力,2003,36(3):1-4.
    [12] Piero Lunghi, Roberto Bove, Umberto Desideri, Analysis and optimization of hybrid MCFC gas turbine plants, Journal of Powe Sources 118 (2003) 108-117.
    [13] S. Ubertini, P. Lunghi, Assessment of an ambient pressure MCFC: External heated GT hybrid plant with steam injection and post-combustion[J]. Fuel Cellls, 2001, 1: 174-180.
    [14] 麦克杜格尔. 燃料电池[M]. 北京:国防工业出版社,1983.
    [15] 毕道治,中国燃料电池的发展,电源技术,2000,(2):103-106.
    [16] 唐伦成,杨亭阁,王佳. 燃料电池技术及应用,化工进展,1995,(1):18-21.
    [17] 贾鸿飞,谢阳,王宇新. 生物燃料电池,电池,2000,30(2):86-89.
    [18] K. Joon. Critical issues and future prospects for molten carbonate fuel cells. Journal of Power Sources, 1996,61:129-133.
    [19] Joon K. Critical issue and future prospects for molten carbonate fuel cell . Journal of Power Sources, 1996, (61): 129-133.
    [20] Sy.A.Ali, Robert.R.Moritz, A turbogenerator for fuel cell /gas turbine hybrid power plant, Proceeding of: ASME TURBOEXPO 2001 June.4-7,2001, New Orleans, Louisiana, USA.
    [21] 林维明. 燃料电池系统,北京:化学工业出版社,1996.
    [22] Dicks, Andrew; Siddle, Angie. Assessment of commercial prospects of molten carbonate fuel cells [J]. Journal of Power Sources,2000, 86(1-2): 316-323.
    [23] Cassir, M.; Belhomme, C. Technological applications of molten salts: the case of the molten carbonate fuel cell,Plasmas & Ions,1999, 2(1):3-15.
    [24] Bosio, Barbara; Costamagna, Paola; Parodi, Filippo; Passalacqua, Biagio. Industrial experience on the development of the molten carbonate fuel cell technology,Journal of Power Sources 1998, 74(2):175-187.
    [25] Mark C. Williams and Hansraj C. Maru. Distributed generation—Molten carbonate fuel cells[J]. Journal of Power Sources, 2006, 160(2): 863-867.
    [26] Fuel Cell Engineering Corporation, Santa Clara, 2 MW Fuel Cell Demonstration Power Plant Test Report, prepared for EPRI, TR-108 252, July 1997.
    [27] Peter Heidebrecht, Kai Sundmachera, Molten carbonate fuel cell (MCFC) with internal reforming: model-based analysis of cell dynamics. Chemical Engineering Science, 2003(58): 1029–1036.
    [28] German project to operate Ansaldo MCFC on sewage off-gas, Fuel Cells Bulletin. 2004(1): 6-7.
    [29] Masayuki Miyazali, Tatsunori Okada et al. Development of an indirect internal reforming molten canbonate fuel cell stack. 27th Intersociety Energy Conversion Engineering Conference Proceedings, 1992.
    [30] Tsunefumi Ishikawa,Hiroo Yasue, Start-up, testing and operation of 1000 kW class MCFC power plant. Journal of Power Sources, 86 2000 145–150.
    [31] Ishikawa Tsunefumi,Yasue Hiroo. J Power Sources,2000,86:145.
    [32] Andrew L. Dicks. Molten carbonate fuel cells [J]. Current Opinion in Solid State andMaterials Science, 2004, 8(5): 379-383.
    [33] 骆仲泱,张小丹等. 高温燃料电池技术分析及前景展望,热力发电,2003(1):6-9.
    [34] M. Mangold, M. Krasnyk and K. Sundmacher. Development of physical models for the process control of a molten carbonate fuel cell system [J]. Chemical Engineering Science, 2004, 59(22-23): 4847-4852.
    [35] E. E. Achenbach. Three-dimensional and time-dependent simulation of a planar solid oxide fuel cell stack[J]. J. Power Sources, 1994, 49,: 333-348.
    [36] H. Fujimura, N. Kobayashi, K. Ohtsuka. Heat and mass Transfer in a molten carbonate fuel cell[J]. J SME Int, J, 1992, 35(1): 81-88.
    [37] Wei He. Power generation characteristics of molten carbonate fuel cell stack by using computational fluid dynamics technique, Part1: Moldelling equations and implementaion[J]. Internationl Journal of Energy Research, 1999(23):1345-1357.
    [38] Yoshihiro Mugikura, Fumihiko Yoshiba et al., Performance and life of 10kw molten carbonate fuel cell stack using Li/K and Li/Na carbonate as the electrolyte[J]. J. Power Souc., 1998,85: 108-115.
    [39] M. Yamaguchi et al . Analysis of Control Characteristics Using Fuel Cell Plant Simulator[J ]. IEEE Trans. Ind. Electron. 1990 ,37 (5) : 378-386.
    [40] Fukuzawa ,Mitsunori Cao ,Guangyi ,Masubuchi .Masami ,Control of MCFC by Feedback Linearization Technique [A]. Nippon Kikai Gakkai Ronbunshu , C Hen/ Transactions of the Japan Society of Mechanical Engineers[C] . 1996, Part C61 ,4270-4275.
    [41] T.Watanabe, E.Koda, et al. Development of Molten Carbonate Fuel Cell Stack Performance Analysis Model[J]. Yokosuda Research Laboratory, Japan, 1991, 30.
    [42] Barbara Bosio, Paola Costamagna, et al. Modeling and Experimentation of Molten Carbonate Fuel Cell Reactors in a Scale-up Process[J]. Chemical Engineering Science, 1999, 54, 2907-2916.
    [43] H.Fujimura, N.Kobayashi, k.Ohtsuka, ”Heat and Mass Transfer in a Molten Carbonate Fuel Cell(Performance and Temperature Distribution in a Cell Stack)” [J]. JSME int, 1992, 35: 81-88.
    [44] J.H.Koh, et al, “Effect of Various Stack Parameters on Temperature Rise in MCFC Stack” [J]. Journal of Power of Power Sources, 2000, 91: 161-171.
    [45] Morita H, Mugikura Y, Izaki Y, et al, Model of Cathode Reaction Resistance in Molten Carbonate Fuel cells[J]. Electrochemical Society, 1998, 45: 1511-1517.
    [46] Radall S. Gemmen, Eric Liese. Development Of Dynamic Modeling Tools For Solid And Molten Carbonate Hybrid Fuel Cell Gas Turbine Systems[J]. ASMETURBOEXPO 2000-GT-554.
    [47] 沈承,曹广益,朱新坚. 熔融碳酸盐燃料电池(MCFC)系统建模与控制的研究现状与发展[J]. 化工自动化及仪表,2001, 28(6): 10-16.
    [48] Wolf,T. L., Wilemski, G. Molten carbonate fuel cell performance model[J]. J. Electrochem. Soc., 1983, 130: 48-55.
    [49] Shigenori Mitsushima, Koichi Matsuzawa, Nobuyuki Kamiya, Ken-ichiro Ota. Improvement of MCFC cathode stability by additives[J]. Electrochimica Acta, 2002, 47(22-23): 3823-3830.
    [50] Barbara Bosio, Paola Costamagna, Filippo Parodi. Modeling and experimentation of molten carbonate fuel cell reactions in a scale-up process. Chemical Engineering Science, 1999, 54: 2107-2916.
    [51] F. Standaert, K. Hemmes, N. Woudstra. Analytical fuel cell modeling[J]. Journal of Power Sources, 1996, 63: 221-134.
    [52] W. He, Q. Chen. Three-dimensional simulation of a molten carbonate fuel cell stack using computational fluid dynamics technology [J]. Journal of Power sources, 1995, 55: 25-32.
    [53] W. He, Q. Chen. Three-dimensional simulation of a molten carbonate fuel cell stack under transient [J]. Journal of Power sources, 1998, 2(15): 182-192.
    [54] W. He. An investigation on the dynamic performance of molten carbonate fuel cell power-generation systems [J]. International Journal of Energy Research, 1998,22: 355-362.
    [55] White Paper on Distributed Generation, Nartional Rural Electric Cooperative Association, 1999.
    [56] James H. Watts, Microturbines: A New Class of Gas Turbine Engines, ASME International Gas Turbine Institute, Global Gas Turbine News, NO.1, 1999.01.
    [57] Jon Lane, Run Up to the millennium: State of the Power Generation Gas Industry, ASEM International Gas Turbine Institute, Global Gas Turbine News, NO.2, 2000.06.
    [58] T.A.Fuller, T.L.Wolf, J.Hartvigsen[J]. A Novel Fuel Cell/Microturbine Combined-Cycle System, Presented at the 2000 Fuel Cell Seminar, 2000.
    [59] P. Costamagna, L.Magistri, A. F. Massardo, Design and part-load performance of a hybrid system based on a solid oxide fuel cell reactor and a micro gas turbine. Journal of Power Sources , 2001(96): 352-368.
    [60] H. Ide, T. Yoshida, H.Ueda, N. Horiuchi. Natural gas reformed fuel cell power generation system. Proceedings of the IEEE, 1998,1517-1522.
    [61] Ito K, Gamou S, Yokoyama R. Optimal unit sizing of fuel cell cogeneration systems inconsideration of performance degradation. Flowers 1997, Florence, Italy, 1997.
    [62] S.Veyo, Westinghouse Fuel Cell Combined Cycle Systems, Westinghouse Science&Technology Center,1996.
    [63] 近藤,元博. 熔融碳酸盐燃料电池-微型燃气轮机混合发电装置的开发. 燃料电池,2003,3(1):23-26.
    [64] Development of molten carbonate fuel cell,IHI Engineering Review,2003(36)1: 5-13.
    [65] Lobachyov KV,Richter HJ, Addition of highly efficient bottoming cycles for the nth generation molten carbonate fuel cell power plant. ASME J Energy Res Technol 1997; 119: 103-108.
    [66] CHEMCAD Version 3.0, Chemistations Inc., Houston, Texas.
    [67] H. Maru, et al., Direct Fuel Cell/Turbine Hybrid System for Ultra High Efficiency Power Generation, Abstracts of the VII Grove Fuel Cell Symposium, London, September 2001.
    [68] G. De Simon, F. Parodi, M. Fermeglia and R. Taccani. Simulation of process for electrical energy production based on molten carbonate fuel cells [J]. Journal of Power Sources, 2003, 2(115): 210-218.
    [69] Liese, R.S. Gemmen, Dynamic modelling results of a 1 MW MCFC/GT power system, in: Proceedings of the ASME Turbo Expo 2002, Amsterdam, 3-6 June 2002.
    [70] Piero Lunghi, Stefano Ubertini and Umberto Desideri. Highly efficient electricity generation through a hybrid molten carbonate fuel cell-closed loop gas turbine plant [J]. Energy Conversion and Management, 2001, 42(14): 1657-1672.
    [71] P. J. Kortbeek, J. A. F. de Ruijter, P. C. van der Laag, F. Hagg and H. Barten. A dynamic simulator for a 250 kW class ER-MCFC system [J]. Journal of Power Sources, 1998, 71(1-2): 278-280.
    [72] Olivia Grillo, Loredana Magistri and Aristide F. Massardo. Hybrid systems for distributed power generation based on pressurisation and heat recovering of an existing 100 kW molten carbonate fuel cell [J]. Journal of Power Sources, 2003, 115(2): 252-267.
    [73] Danilo Marra and Barbara Bosio. Process analysis of 1 MW MCFC plant [J]. International Journal of Hydrogen Energy, In Press, Corrected Proof, Available online 8 January 2007.
    [74] 杨华. 熔融碳酸盐燃料电池本体与系统性能分析研究[D]. 中国科学院, 2001.
    [75] S.Veyo, Westinghouse Fuel Cell Combined Cycle Systems, Westinghouse Science&Technology Center,1996.
    [76] Kordesch K,Simader G. Fuel cells and their applications. Wheinheim:New York;1996.
    [77] Rory A. Roberts, Jack Brouwer, Eric Liese, Randall S. Gemmen. Dynamic simulation of carbonate fuel cell-gas turbine hybrid systems[J]. Journal of Engineering for Gas Turbines and Power, 2006, 128: 294-301.
    [78] Francisco Jurado. Robust control for fuel cell–microturbine hybrid power plant using biomass [J]. Energy, 2005, 30(10): 1711-1727.
    [79] Francisco Jurado. Study of molten carbonate fuel cell—microturbine hybrid power cycles[J]. Journal of Power Sources, Volume 111, Issue 1, 18 September 2002, Pages 121-129.
    [80] H. C. Maru, H. Ghezel-Ayagh. Direct carbonate fuel cell-gas turbine combined cycle power plant[J]. European Fuel Cell Forum, Lucerne, Switzerland, July 5-8, 2005.
    [81] H. Ghezel-Ayagh, M. D. Lukas, S. T. Junker. Dynamic modeling and simulation of a hybrid fuel cell/gas turbine power plant for control system development[J]. Proc of Fuelcell2004 The 2nd International Conf. on FC Sci., Eng. and Techn. June 14-16, 2004, Rochester, New York, USA.
    [82] Francisco Jurad, Manuel Valverde. Combined molten carbonate fuel cell and gas turbine systems for efficient power and heat generation using biomass. Electric Power Systems Research, 2003, 65: 223-232.
    [83] Campanari. S., Macchi,E., The combination of SOFC and Microturbine for Civil and industrial cogeneration[J], ASME Paper 99-GT-084, 1999.
    [84] 朱亮,姜长生,方炜. 基于非线性干扰观测器的不确定非线性系统鲁棒轨迹线性化控制[J]. 信息与控制,2006, 35(6):705-710.
    [85] 苏佰丽,陈增强,袁著祉. 多变量非线性系统的有约束模糊预测控制[J]. 哈尔滨工业大学学报,2006,38(10):1700-1704.
    [86] 刘达兴. 变频调速系统在 CFB 炉中应用的相关技术探讨[J]. 系统应用,2006,1: 72-75.
    [87] R. Yamapi, F.M. Moukam Kakmeni and J.B. Chabi Orou. Nonlinear dynamics and synchronization of coupled electromechanical systems with multiple functions [J]. Communications in Nonlinear Science and Numerical Simulation, 2007, 12(4): 543-567.
    [88] 吕泽华,赵土杭,陈刚,周康,刘志达. 热力系统自适应优化调度的研究[J]. 热力透平,2004, 33(4):260-265.
    [89] 张燕秦,徐向东,李明. 自适应模糊控制在热力系统容错控制中的应用[J]. 动力工程,2004,24(1):50-54.
    [90] 唐季军,杨凤艳,库德强. 强耦合多变量模糊温度控制系统的研究[J]. 机械制造与研究,2006, 35(3):48-50.
    [91] 马平,杨金芳,崔长春,胡胜坤. 解耦控制的现状及发展[J]. 控制工程,2005, 12(2):97-100.
    [92] 徐立新,强文义,周彦. 基于模糊神经网络的发电用单轴燃气轮机的解耦控制[J]. 汽轮机技术,2004, 46(6):421-424.
    [93] 何小宁,肖伸平,王兵,李浩. 多变量模糊控制系统的结构分解及其应用[J]. 计算机测量与控制,2005, 13(5):452-454.
    [94] 衣宝廉 燃料电池—原理?技术?应用[M]. 化学工业出版社 2003 年 8 月.
    [95] F. Yoshiba, T. Abe, T. Watanabe. Numerical analysis of molten carbonate fuel cell stack performance: diagnosis of internal conditions using cell voltage profiles, Journal of Power Sources,vol.87(2000)pp.21–27.
    [96] Plomp L, Sitters E F, Vessies C. Polarization Characteristics of novel molten carbonate fuel cell cathodes. J. Electrochem. Soc., 1991,138(2):629.
    [97] 杨顺虎.燃气一蒸汽联合循环发电设备及运行[M]. 北京:中国电力出版社,2003.
    [98] 毕小平,欧阳明高,左承基等. 一种适用于实时仿真的压气机特性计算方法[J]. 内燃机工程,1998,19(3):78-81.
    [99] 翁史烈. 燃气轮机与蒸气轮机[M]. 上海:上海交通大学出版社,1996.
    [100] 朱行健,王雪瑜. 燃气轮机工作原理及性能[M]. 北京:科学出版社,1992.
    [101] 倪维斗. 自动调节原理与透平机械自动调节[M]. 北京:机械工业出版,1991.
    [102] 朱聘冠. 换热器原理及设计,北京:清华大学出版社,1987.
    [103] 张世红,宋鹏,刘雪莲,周琦. 催化燃烧炉近零污染排放和其技术利用的研究,北京建筑工程学院学报,2005,21(1): 9-12.
    [104] 朱世勇. 环境与工业气体净化[M]. 北京:化学工业出版社,2001.]
    [105] 杜鹃,田成文,范庆伟. 催化燃烧技术研究进展及其应用[J]. 节能,2006,2:37-39.
    [106] 张世红,董庆珊,段之殷,周琦. 催化燃烧技术在锅炉中的应用研究[J]. 北京建筑工程学院学报,2006,22(3):24-28.
    [107] Chou CP, Chen JY, Evans GH, and Winters WS. Numerical Studies of Methane Catalytic Combustion inside a Monolith Honeycomb Reactor Using Multi-Step Surface Reactions. Combustion Science and Technology 2000; 150:27-58.
    [108] Oh SH, Mitchell PJ and Siewert RM. Methane oxidation over noble metal catalysts as related to controlling natural gas vehicle emissions. In: Silver JE and Summers(Eds), Catalytic control of air pollution: mobile and stationary sources, 202nd National Meeting of the American Chemical Society, 25-30 August 1991, ACS Series, Vol. 495, pp12-25.
    [109] Grillo O. Design and part load performance of a hybrid system based on a molten carbonate fuel cell- MCFC and a micro gas turbine [D]. University of Genoa, in Italian, June 2001.
    [110] Li Zhou, Huaxin Lin, Baolian Yi and Huamin Zhang. Study on a new structure of the separator plate assembly for molten carbonate fuel cell (MCFC) stacks [J]. Chemical Engineering Journal, 2007, 125(3): 187-192.
    [111] G. Durante, S. Vegni, P. Capobianco and F. Golgovici. High temperature corrosion of metallic materials in molten carbonate fuel cells environment [J]. Journal of Power Sources, 2005, 152(1): 204-209.
    [112] Baohua Zhu and G?ran Lindbergh. Corrosion behaviour of high-chromium ferritic steels in molten carbonate in cathode environment [J]. Electrochimica Acta, 2001, 46(17): 2593-2604.
    [113] S. F. Au, S. J. McPhail, N. Woudstra and K. Hemmes. The influence of operating temperature on the efficiency of a combined heat and power fuel cell plant [J]. Journal of Power Sources, 2003, 122(1): 37-46.
    [114] 邱吉宝. 加权残值法的理论与应用[M]. 宇航出版社,1991,5.
    [115] 周煦,王德民. 数值计算方法及程序设计[M]. 北京:机械工业出版社,1989.
    [116] 张志涌,刘瑞桢,杨祖樱. 掌握和精通 MATLAB[M]. 北京:北京航空航天大学出版社,1997.
    [117] H.B. Wilson, L.H. Turcotte. Advanced mathematics and mechanics applications using MATLAB[M]. Boca Raton: CRC Press, 1994.
    [118] Michael D L, Kwang Y L.An explicit dynamic model for direct reforming carbonate fuel cell stack[J]. IEEE Transaction on Energy Conversion, 2001,16(3):289-295.
    [119] 翁史烈,翁一武,苏明. 熔融碳酸盐燃料电池动态特性的研究[J]. 中国电机工程学报,2003,23(7): 168-172, 200.
    [120] 杨华,肖云汉,蔡睿贤.熔融碳酸盐燃料电池单体传热传质数值模拟[J].中国电机工程学报,2001,21(7):22-25.
    [121] Hamelin J. Agbossou K, and Laperriere A, et al. Int J Hydrogen Energy, 2001, 26: 625.
    [122] Patrick Ponticel. Automotive Engineering International, 2000, March: 170.
    [123] 杨献勇. 热工过程自动控制[M]. 清华大学出版社,2000,10.
    [124] A. Grauel, H. Mackenberg. Mathematical analysis of the Sugeno controller leadingto general design rules[J]. Fuzzy Set and Systems 1997, 85: 165-175.
    [125] 章兢. 防人智能控制与模糊控制神经网络融合技术[J]. 控制与决策,1999,14(5):428-432.
    [126] 章卫国,杨向忠. 模糊控制理论与应用[M]. 西北工业大学出版社,西安,1999.
    [127] 欧卫华. 组合型自适应模糊控制器的设计与分析[J]. 模糊系统与数学,2006, 20(6): 61-65.
    [128] 王庆东,冯增健,孙优贤. 锅炉热工过程先进控制策略验机综述[J]. 电力系统及其自动化学报,2004, 16(5): 75-80.
    [129] 张丽香,任高,段秋刚,降爱琴,张缠保. 基于特性预估补偿的模糊 PID 汽温控制系统[J]. 中国电力,2004, 37(12):63-65.
    [130] 陈彦桥,郑亚峰,刘吉臻,卫平宝. 基于动态解耦的模糊多模型协调控制系统应用研究[J]. 中国电机工程学报,2006, 26(12):166-170.
    [131] 李洪兴. 变论域自适应模糊控制器[J]. 中国科学,E 辑,1999,29(1):10-20.
    [132] 李洪兴.模糊控制的插值机理[J]. 中国科学,E 辑,1998,28(3):259-267
    [133] 单冬. 模糊控制原理及应用[M]. 北京:中国铁道出版社,1995.
    [134] 何平. 模糊控制器的设计及应用[M]. 北京:科学出版社,1997.