蜂窝状金属丝网催化剂的制备及其贫燃条件下选择催化还原NO_x的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
整体式金属载体由于具有比陶瓷载体更高的机械强度、导热率和更低的排气阻力,在现代汽车尾气治理领域受到越来越广泛的关注。但是,金属载体的比表面积很小,使用时需要在表面负载一层高比表面积的陶瓷涂层,而金属载体与陶瓷涂层材料的热膨胀系数相差较大,使得载体与涂层之间的结合强度较差,涂层易皲裂、剥落。这是限制整体式金属载体在实际中不能被广泛应用的一个原因。其次,由于金属载体加工程序复杂,相应增加了载体的制作成本。近年来,贫燃发动机因良好的燃油经济性和排放特性,成为车用发动机发展的一个重要方向。但是贫燃条件下,汽车尾气中含有大量的氧气使得传统的三效催化剂对NO_x的去除几乎没有效果。而利用尾气中未燃烧完全的烃类为还原剂,选择催化还原NO_x是一种具有潜力的净化贫燃发动机尾气的方法。目前烃类选择催化还原NO_x的催化反应一般反应温度较高,催化活性窗口较窄,以贵金属为催化活性组分时还存在选择性差,产物中有大量N_2O副产物等问题。
     针对金属载体以及贫燃条件下选择催化还原NO_x中存在的问题,本研究采用电沉积法在金属丝网表面制备氧化铝涂层,然后将负载有氧化铝涂层的金属丝网加工成蜂窝状金属丝网载体,并将其应用于贫燃条件下丙烯选择催化还原NO_x的研究。主要开展了以下几个方面的工作:
     (1)采用电沉积法,在金属不锈钢丝网表面负载氧化铝涂层。具体考察了影响涂层生长的因素,例如电沉积液、沉积电压、沉积时间、Zeta电位,聚丙烯酸浓度等。实验结果显示,以氧化铝的乙醇溶液为电沉积液,将溶液的pH值控制在8.8附近,聚丙烯酸浓度为2.035 mg·L~(-1),超声分散40 min时,电沉积液能稳定存在,并且适宜电沉积过程的进行。此时,采用沉积电压为10 V,沉积时间为10 min可以在金属丝网基体表面制备适宜厚度的氧化铝涂层。
     进一步探索了提高涂层附着强度的方法,实验结果表明,采用HCl对金属丝网载体进行预处理不仅可以清洗其表面的污染物,而且可以提高涂层与基体的结合强度;在电沉积液中添加异丙醇铝可以提高涂层的抗热振性能,其浓度为0.27 g·L~(-1)时经过13个热振循环实验后,涂层的损失率为5.0 wt.%;通过加入铝粉、在800℃焙烧温度提高涂层与金属基体的结合力,增强了涂层的抗热振性能和抗机械振动性能,而且氧化铝涂层的表面形态以及性质没有因焙烧温度的升高而被损坏。SEM电镜显示涂层表面均匀没有皲裂,XRD表明氧化铝涂层仍是主要以γ-Al_2O_3晶形存在。将制备的涂层浸渍硝酸镧后,能明显的提高涂层的抗机械振动性能,超声振荡达到35 min时,涂层的损失率仅为44.0wt.%。
     (2)将负载氧化铝涂层的平板状和瓦楞状金属丝网交替堆积,加工成型为蜂窝状金属丝网载体。通过计算发现,与孔密度相近的堇青石载体(孔密度为50)相比较,蜂窝状金属丝网载体具有更高的前端开口程度和几何比表面积;与薄壁堇青石载体(孔密度为400)相比较,几何表面积仅降低25.0%左右;蜂窝状金属丝网载体没有因为比表面积的增加而增大载体的压力降。从成型工艺看,蜂窝状金属丝网载体成型简单,以金属丝网包裹,接头处不需要焊接,在一定程度上降低了制作成本。
     (3)制备了Pd/Al_2O_3、Pd/TiO_2/Al_2O_3、Pd/CeZr/TiO_2/Al_2O_3三种蜂窝状金属丝网催化剂,并采用丙烯选择催化还原NO_x的实验来评价其在贫燃条件下对NO_x的催化活性。结果表明Pd含量为0.23%时,Pd/CeZr/TiO_2/Al_2O_3蜂窝状金属丝网催化剂在低温条件下具有较高的催化活性,而且催化活性窗口较宽,出口产物没有检测到N_2O的生成。N_2和C_3H_6-O_2-N_2中进行的TPD实验结果说明,在Pd/CeZr/TiO_2/Al_2O_3蜂窝状金属丝网催化剂中存在两个不同的含氮中间产物的形成中心,一个是在TiO_2,另一个是在CeZr混合氧化物,而且它们也是NO_x催化反应的活性中心。进一步系统地考察了Pd的含量、氧气的含量和空速对Pd/CeZr/TiO_2/Al_2O_3蜂窝状金属丝网催化剂催化活性的影响以及催化剂的稳定性。
     (4)比较了颗粒状催化剂、50目和400目堇青石催化剂和蜂窝状金属丝网催化剂对丙烯选择催化还原NO_x反应的催化性能,结果显示蜂窝状金属丝网催化剂在低温下具有最高的NO_x转化率。非稳态实验表明,蜂窝状金属丝网催化剂比堇青石催化剂能更快对温度的变化做出响应。而且蜂窝状金属丝网催化剂对丙烯具有较低的起燃温度。
     总之,本研究采用电沉积法可以在金属丝网载体上制备附着牢固的氧化铝涂层;以Pd为催化活性组分的蜂窝状金属丝网催化剂,在低温下对NO_x具有较好的还原能力,并且显示出比整体式陶瓷载体更优越的催化性能和热响应性能。这为蜂窝状金属丝网催化剂实际应用于汽车尾气净化处理提供实验依据。
Metallic monoliths offer plenty of advantages over ceramic monoliths, such as stronger mechanical strength, higher thermal conductibility and lower pressure drop, and now have become most attractive supports in automotive emissions controls. However, the metallic monoliths could not be applied in practice because of the low specific surface area. It is necessary to deposit the ceramic oxide washcoat with high surface area over metallic monoliths. Since thermal expansion coefficient of the metallic support is different from the ceramic oxide washcoat, the adhesion of washcoat is poor which leads to the washcoat chap and flake away. Otherwise, metallic monoliths are expensive due to complicated manufacturing and the high price of metal materials. Recently, lean-bum engines have become the main option for the vehicles due to lower consumption of fuel and lower emission. However, the exhaust from the lean-burn engines contains a large amount of oxygen, the three-way catalysts have been proved to be not efficient on removing NO_x. The selective catalytic reduction of NO_x by hydrocarbons (HC-SCR) has attracted considerable interest as a method to control emissions from engines operated under lean-burn conditions. Nevertheless, the rather high reaction temperature and narrow window are the main drawbacks of these catalysts to be used under lean-burn conditions. Specially, supported precious metal catalysts exhibit low selectivity of N_2, N_2O being formed in substantial amounts.
     In this study,γ-Al_2O_3 washcoat on wire mesh was prepared by electrophoretic deposition and selective catalytic reduction of NO_x by propene over the wire-mesh honeycomb catalysts was performed under lean burn conditions. The main works are as following:
     (1) Washcoat deposited on metallic wire mesh was prepared usingγ-Al_2O_3 powders by electrophoretic deposition. The preparation parameters of washcoat were investigated, such as the deposited solution, the deposited voltage, the deposited time, Zeta potential and the amount of polyscylic acid. The alumina powders were dispersed in ethanol and pH was about 8.8. Then, polyscylic acid was added as additives and its concentration was 2.035 mg·L~(-1). Finally, the suspension was mixed in an ultrasonic bath for 40 min. The suspension was stable and suitable for the electrophoretic deposition experiment. Under this condition, a uniformly thickness alumina washcoat on metallic wire mesh was prepared under 10 V for 10 min.
     In order to improve the washcoat adhesion, wire meshes were dipped in HCl solution for wiping off the dirts and enhancing the cohesion between the wire mesh and washcoat. When the concentration of aluminum isopropoxide was 0.27 g·L~(-1), the sample exhibited excellent adhesion onto the support in thermal shock, losing only 5.0 wt.% after 13 times of thermal shock. The ability of thermal resistant and vibration resistant was improved by adding aluminum powders and higher calcinations temperature, and the phase structure of washcoat doesn't change due to increase temperature. SEM showed that alumina washcoat was even and no chap. XRD revealedγ-Al_2O_3 was main monocrystalline presented in the coating. In addition, after the samples were immersed in lanthanum nitrate solution, the loss of washcoat decreased and it was 44.0 wt.% for 35 min in ultrasonic test.
     (2) After depositing Al_2O_3 washcoat, the wrie-mesh honeycomb was manufactured by stacking alternatively corrugated and plain wire meshes. The calculation results showed that the wire-mesh honeycomb had more open frontal area (OFA) and geometric surface area (GSA) than cordierite monolith with 50 cpsi. The GSA of wire-mesh honeycomb decreased 25% relative to thin wall cordierite monolith with 400 cpsi. But the pressure drop of wire-mesh honeycomb didn't increase due to the increasing of GSA. The manufacture process of wire-mesh honeycomb was simply. Metallic wire mesh was adopted to pack the honeycomb and it didn't need to solder the joining, which could reduce the price of wire-mesh honeycomb.
     (3) The selective catalytic reduction of NO_x by C_3H_6 was investigated over Pd/Al_2O_3, Pd/TiO_2/Al_2O_3, Pd/CeZr/TiO_2/Al_2O_3 wire-mesh honeycomb prepared under lean-burn conditions. The results showed that 0.23%- Pd/CeZr/TiO_2/Al_2O_3 wire-mesh honeycomb catalyst exhibited high catalytic activity at low temperature over a broad temperature range and N_2O was not detected in measurable quantities in the outlet flow and other byproducts containing nitrogen were not detected. The results of temperature-programmed desorption experiments in N_2 and in C_3H_6-O_2-N_2 mixture suggested that there were two storage site of ad-NO_x on Pd/CeZr/TiO_2/Al_2O_3 wire-mesh honeycomb catalyst, one was TiO_2 and another was CeZr. Except of the storage site, TiO_2 and CeZr also participated in selective catalytic reduction reaction. The effect of Pd content, oxygen, space velocity and reaction time on the catalytic activity of Pd/CeZr/TiO_2/Al_2O_3 wire-mesh honeycomb catalyst was further investigated.
     (4) Comparing with pellet catalyst, cordieilte monolith catalysts with 50 and 400 cpsi, wire-mesh honeycomb catalyst exhibited highest activity of removal NO_x at low temperature. In unsteady-state experiment, conversion of NO_x over wire-mesh honeycomb catalyst was quickly stabilized in short time after temperature elevation, though that of ceramic monolith catalyst was slowly increased and it should be taken more time for reaching a steady-state conversion. Furthermore, the light-off temperature of propene was lowest.
     In conclusion, the firm alumina washcoat on wire mesh honeycomb was prepared by electrophoretic deposition. Pd supported on wire-mesh honeycomb showed better activity for selective catalytic reduction of NO_x by propene than ceramic monolithic catalysts under lean burn condition at low temperature, which provide the theoretical and experimental basis for the application of wire-mesh honeycomb in automotive exhaust treatment.
引文
[1] 郑小明,周仁贤.环境保护中的催化治理技术.北京:化学工业出版社.2003.
    [2] 蒋文举.大气污染控制工程.北京:高等教育出版社.2006.
    [3] Fritz A, Pitchon V. The current state of research on automotive lean NO_x catalysis. Applied Catalysis B: Environmental. 1997, 13 (1): 1-25.
    [4] 郝吉明,傅立新,贺克斌.城市机动车排放污染控制:国际经验分析与中国的研究成果.北京:中国环境科学出版社.2001.
    [5] 王建听,傅立新,黎维彬.汽车排气污染治理及催化转化器.北京:化学工业出版社.2000.
    [6] 杜彩.机动车尾气的污染现状与控制.环境研究与监测.2006,19(4):24-26.
    [7] 郭伊均,陈盛梁.汽车排气污染及控制对策.重庆环境科学.1997,19(3):9-13.
    [8] 国家环保局.机动车排放污染防治技术政策,环境保护.1996,10:6.
    [9] Gulati S. Structured Catalysts and Reactors. New York: A. Cybulski and J. Moulijn, eds., Marcel Dekker. 1996.
    [10] 王亚军,曾庆轩,冯长根,汽车尾气净化催化剂载体.工业催化.1999,6:3-7
    [11] J.J.伯顿.新型催化材料.北京:石油工业出版社.1984.
    [12] Groppi G, Tronconi E. Honeycomb supports with high thermal conductivity for gas/solid chemical processes. Catalysis Today. 2005, 105(3-4): 297-304.
    [13] 邵潜,龙军,贺振富.规整结构催化剂及反应器.北京:化学工业出版社.2005.
    [14] Tronconi E, Groppi G. A study on the thermal behavior of structured plate-type catalysts with metallic supports for gas/solid exothermic reactions. Chemical Engineering Science. 2000, 55(24): 6021-6036.
    [15] 周燕,徐晓红,陈虹.堇青石质蜂窝陶瓷载体.陶瓷研究.2002,17:9-12.
    [16] 张益群,余立挺,马建新.构件化催化剂的研究现状与应用.工业催化.2003,11(1):1-7.
    [17] 张宏艳,牟元平,常志伟.汽车尾气净化三效催化剂研究进展.化工科技.2006,14(5):70-72.
    [18] 张益群,余立挺,马建新.构件化催化剂的研究现状与应用.工业催化.2003,11(1):1-7.
    [19] 刘菊荣,宋绍富.汽车尾气净化技术及催化剂的发展.石油化工高等学校校报.2004,17(1):31-36
    [20] Heck R M, Farrauto R J, Gulati S T, Catalytic air pollution control. New York: John Wiley & Sons, Inc. 2002.
    [21] 陈勇军.多孔金属蜂窝载体制备工艺研究;研究生学位论文.昆明:昆明理工大学,2004.
    [22] 张益群,邬敏忠,周伟等.用于摩托车尾气净化催化剂的金属蜂窝载体.工业催化.2001,9(5):50-54.
    [23] Ahlstrom-Silversand A F, Odenbrand C U I. Thermally sprayed wire-mesh catalysts for the purification of flue gases from small-scale combustion of bio-fuel Catalyst preparation and activity studies. Applied Catalysis A: General. 1997, 153(1-2): 177-201.
    [24] Jiang Z D, Chung K S, Kim G R, Chung J S. Mass transfer characteristics of wire-mesh honeycomb reactors. Chemical Engineering Science. 2003, 58(7): 1103-1111.
    [25] Yang K S, Jiang Z D, Chung J S. Electrophoretically Al-coated wire mesh and its application for catalytic oxidation of 1,2-dichlorobenzene. Surface and Coating Technology. 2003, 168(2-3): 103-110.
    [26] Ahlstrrm-Silversand A F, Odenbrand C U I, Modeling catalytic combustion of carbon monoxide and hydrocarbons over catalytically active wire meshes. Chemical Engineering Journal. 1999, 73(3): 205-216.
    [27] Yang K S, Choi J S, Lee S H et al. Development of Al/Al_2O_3-coated wire-mesh honeycombs for catalytic combustion of volatile organic compounds in air. Industrial & Engineering Chemistry Research. 2004, 43(4): 907-912.
    [28] Yang K S, Choi J S, Chung J S. Evaluation of wire-mesh honeycomb containing porous Al/Al_2O_3 layer for catalytic combustion of ethyl acetate in air. Catalysis Today. 2004, 97(2-3): 159-165.
    [29] Valentini M, Groppi G, Cristiani C et al. The deposition of γ-Al_2O_3 layers on ceramic and metallic supports for the preparation of structured catalysts. Catalysis Today. 2001, 69(1-4): 307-314.
    [30] 马正青,黎文献,谭敦强等.溶胶.凝胶法制备Al_2O_3·ZrO_2复合陶瓷涂层研究表面技术.2001,30(4):33-36.
    [31] Zapf R, Kolb G, Pennemann H et al. Basic study of adhesion of several alumina-based washcoats deposited on stainless steel microchannels. Chemical Engineering and Technology. 2006, 29(12): 1509-1512.
    [32] Zhao S, Zhang J Z, Weng D et al. A method to form well-adhered γ-Al_2O_3 layers on FeCrAl metallic supports. Surface and Coating Technology. 2003, 167 (1): 97-105.
    [33] 袁媛,马元辉,尹民等.低频RF-等离子处理对医用不锈钢表面润湿性能的影响.华东理工大学学报.2005,4(4):460-465.
    [34] Kucharczyk B, Tylus W, Kepinski L. Pd-based monolithic catalysts on metal supports for catalytic combustion of methane. Applied Catalysis B: Environmental. 2004, 49(1): 27-37.
    [35] Truyen D, Courty M, Alphonse P et al. Catalytic coatings on stainless steel prepared by sol-gel route. Thin Solid Films. 2006, 495(1-2): 257-261.
    [36] 刘煊,赵云昆,卢军等.汽车尾气净化催化剂金属载体表面预处理的研究.贵金属.2005,26(1):12-16.
    [37] 张润铎,全燮,杨凤林等.制备蜂窝状筛网进行NH_3选择性催化还原NO的反应.催化学报.2002,23(1):46-50.
    [38] Zhang R D, Quan X, Yang, F L et al. Study of a novel wire-mesh-honeycomb catalyst-Preparation and catalytic performance. Journal of Molecular Catalysis (China). 2002, 16(3): 199-203.
    [39] Wiessmeier G, Hnicker D. Heterogeneously catalyzed gas-phase hydrogenation of cis, trans, trans-1, 5, 9-cyclododecatriene on palladium catalysts having regular pore systems. Industrial & Engineering Chemistry Research. 1996, 35(12): 4412-4416.
    [40] 杨培霞,安茂忠.预处理工艺对制备多孔阳极氧化铝膜的影响.材料工程.2005,9:26-29.
    [41] 大田裕.日本铝材复合氧化膜涂层技术的现状.轻合金加工技术.2004,32(2):1-5.
    [42] 汪利峰,应卫勇,房鼎业等.电解负载法制备Pt/Al_2O_3/Al催化剂.环东理工大学学报.2003,29(5):452-455.
    [43] Lee S J, Gavriilidis A. Au catalysts supported on anodized aluminium for low-temperature CO oxidation. Catalysis Communication. 2002, 3(9): 425-428.
    [44] Ni Z, Seebauer E G, Masel R I. Effects of microreactor geometry on performance: Differences between posted reactors and channel reactors. Industrial & Engineering Chemistry Research. 2005, 44(12): 4267-4271.
    [45] 金云舟,钱君律,伍艳辉.溶胶.凝胶法制备催化剂的研究进展.工业催化.2006,14(11):60-63.
    [46] 朱永法,李巍,何俣等.不锈钢金属丝网上TiO_2纳米薄膜光催化剂的研究.高等学校化学学报.2003,24(3):465-468.
    [47] 闫惠忠,孔繁清,赵增祺等.催化剂载体FeCrAlY材料磷化工艺研究.中国稀土学报.2002,20:46-49.
    [48] 闫惠忠,孔繁清,赵增祺等.溶胶.凝胶法制备金属基γ-Al_2O_3活性涂层的研究.中国稀土学报.2002,20:88-91
    [49] 田茂东,王立秋,张守臣等.用溶胶凝胶法在烧结多孔金属基体上负载SiO_2膜.大连理工大学学报.1999,39(1):49-52.
    [50] Beers A E W, Nijhuis T A, Aadlers N et al. BEA coating of structured supports-performance in acylation. Applied Catalysis A: General. 2003, 243(2): 237-250.
    [51] Ferrandon M, Berg M, Bjornbom E. Thermal stability of metal-supported catalysts for reduction of cold-start emissions in a wood-fired domestic boiler. Catalysis Today. 1999, 53(4): 647-659.
    [52] 王家明,袁芳芳,诸霞等.金属载体催化剂的涂层研究.中国稀土学报.2004,22(4):579-584.
    [53] Men Y, Gnaser H, Zapf R et al. Steam reforming of methanod over Cu/CeO_2/γ-Al_2O_3 catalysts in a microchannel reactor. Applied Catalysis A: General. 2004, 277(2): 83-90.
    [54] Wu X D, Weng D, Zhao S et al. Influence of an aluminized intermediate layer on the adhesion of a γ-Al_2O_3 washcoat on FeCrAl. Surface and Coating Technology. 2005, 190(2-3): 434-439.
    [55] 杨立英,李成岳,刘辉.金属基体上铝溶胶涂层的制备.催化学报.2004,25(4):283-288.
    [56] Agrafiotis C, Tsetsekou A. The effect of powder characteristics on washcoat quality. Part Ⅰ: Alumina washcoats. Journal of the European Ceramic Society. 2000, 20(7): 815-824.
    [57] Agrafiotis C, Tsetsekou A, Stournaras C J et al. Evaluation of sol-gel methods for the synthesis of doped-ceria environmental catalysis systems. Part Ⅰ: preparation of coatings. Journal of the European Ceramic Society. 2002, 22(1): 15-25.
    [58] Liu C J, Vissokov G P, Jang B W L. Catalyst preparation using plasma technologies. Catalysis Today. 2002, 72(3-4): 173-184.
    [59] 于开录,刘昌俊,夏清等.低温等离子体技术在催化剂领域的应用.化学进展.2002,14(6):456-461.
    [60] 吴晓东,翁端,陈震等.等离子喷涂NiCrAl/ZrO_2过渡层对FeCrAl/γ-Al_2O_3结合性能的影响.清华大学学报(自然科学版).2002,42(10):1293-1296.
    [61] Pranevicius L, Pranevicius L L, Valatkevicius P et al. Plasma spray deposition of Al-Al_2O_3 coating doped with metal oxides: catalytic application. Surface and Coating Technology. 2000, 123(2-3): 122-128.
    [62] Ismagilov Z R, Pldyacheva O Y, Solonenko O P et al. Application of plasma spraying in the preparation of metal-supported catalysts. Catalysis Today. 1999, 51(3-4): 411-417.
    [63] 吴晓东,翁端,徐鲁华等.等离子体喷涂氧化铝涂层的结构与性能研究.稀土.2002,23(1):1-5.
    [64] Boccaccini A R, Kaya C, Chawla K K. Use of electrophoretic deposition in the processing of fibre reinforced ceramic and glass matrix composites: a review. Composites Part A: Applied Science and Manufacturing. 2001, 32(8): 997-1006.
    [65] Ferrari B., Moreno R., Sarkar P et al. Electrophoretic deposition of MgO from organic suspension. Journal of the European Ceramic Society. 2000, 20 (2): 99-106.
    [66] Chen C Y, Chen S Y, Liu D M. Electrophoretic deposition forming of porous alumina membranes. Acta material. 1999, 47(9): 2717-2726.
    [67] Boccaccini A R, Kaya C. Alumina ceramic based on seeded boehmite and electrophoretic deposition. Ceramics international. 2002, 28 (8): 893-897.
    [68] Besra L, Liu M. A review on fundamentals and applications of electrophoretic deposition (EPD). Progress in Material Science. 2007, 52 (1): 1-61.
    [69] Sato N, Kawachi M, Noto K et al. Effect of particle size reduction on crack formation in electrophoretically deposited YBCO films. Physical C: Superconductivity. 2001, 357-360(2): 1019-1022.
    [70] Simovic K, Miskovic-Stankovic V B, Kicevic D et al. Electrophoretic deposition of thin alumina films from water suspension. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2002, 209(1): 47-55.
    [71] Boccaccini A R, Schindler U, Kruger H G. Ceramic coatings on carbon and metallic fibres by electrophoretic deposition. Materials Letters. 2001, 51 (3): 225-230.
    [72] Vorob'eva M P, Greish A A, Ivanov A V et al. Preparation of catalyst carriers on the basis of alumina supported on metallic gauzes, Applied Catalysis A: General. 2000, 199(2): 257-261.
    [73] Moreno R, Ferrari B. Effect of the slurry properties on the homogeneity of alumina deposits obtained by aqueous electrophoretic deposition. Materials Research Bulletin. 2000, 35: 887-897.
    [74] Jean J H. Electrophoretic deposition of Al_2O_3-SiC composite. Materials Chemistry and Physics. 1995, 40(4): 285-290.
    [75] Yang K S, Mul G, Choi J S et al. Development of TiO_2/Ti wire-mesh honeycomb for catalytic combustion of ethyl acetate in air. Applied Catalysis A: General. 2006, 313(1): 86-93.
    [76] 朱立群.功能膜层的电沉积理论与技术.北京:北京航空航天大学出版社.2005.
    [77] Wang C, Ma J, Cheng W, Zhang R, Thick hydroxyapatite coatings by electrophoretic deposition, Materials Letters. 2002, 57(1): 99-105.
    [78] Ferrari B, Morreno R. Electrophoretic deposition of aqueous alumina slips. Journal of the European Ceramic Society. 1997, 17(4): 549-556.
    [79] Shelef M, McCabe R W. Twenty-five years after introduction of automotive catalysts: what next? Catalysis Today. 2000, 62(1): 35-50.
    [80] Heck R M, Farrauto R J. Automobile exhaust catalysts. Applied Catalysis A: General 2001, 221 (1-2): 443-457.
    [81] Koltsakis G C, Stamatelos A M. Catalytic automotive exhaust aftertreatment. Progress in Energy and Combustion Science. 1997, 23(1): 1-39.
    [82] Ogata A, Obuchi A, Ohi A et al. Active sites and redox properties of supported Palladium catalysts for nitric oxide direct decomposion. Journal of Catalysis 1993, 144(2): 452-459.
    [83] Amirnazmi A, Benson J E, Boudart M. Oxygen inhibition in the decomposition of NO on metal oxides and platinum. Journal of Catalysis. 1973, 30(1): 55-56.
    [84] Amimazmi A, Boudart M. Decomposition of nitric oxides on platinum. Journal of Catalysis. 1975, 39(3): 383-394.
    [85] Takahashi N, Shinjoh H, Tomoko L et al. The new concept 3-way catalyst for automotive lean-burn engine: NOx storage and reduction catalyst. Catalysis Today, 1996, 27(1-2): 63-69.
    [86] Zhou G, Luo T, Gorte R J. An investigation of NO_x storage on Pt-Bao-Al_2O_3. Applied Catalysis B: Environmental. 2006, 64(1-2): 88-95.
    [87] James D, Fourre E, Ishii M et al. Catalytic decomposition/regeneration of Pt/Ba(NO_3)_2 catalysts: NO_x storage and reduction. Applied Catalysis B: Environmental. 2003, 45(2): 147-159.
    [88] Liu Z Q, Anderson J A. Influence of reductant on the thermal stability of stored NO_x in Pt/Ba/Al_2O_3 NO_x storage and reduction traps. Journal of Catalysis. 2004, 224(1): 18-27.
    [89] Gomez-garcia M A, Pitchon W, Kiennemann A. Removal of NO_x from lean exhaust gas by storage/reduction on supported on Ce_xZr_(4_x)O_8. Environmental Science & Technology. 2005, 39(2): 638-644.
    [90] 王睿,吴丹,赵大传等.实现NO_x吸附分解的杂多化合物催化新体系研究.现代化工.2006,26(2):120-124.
    [91] Pajonk G M. Some catalytic applications of aerogels for environmental purpose. Catalysis Today. 1999, 52(1): 3-13.
    [92] Bhattacharyya S, Das R K. Catalytic control of automotive NO_x: a review. International Journal of Energy Research. 1999, 23: 351-369.
    [93] Amiridis M D, Zhang T J, Farrauto R J. Selective catalytic reduction of nitric oxide by hydrocarbons. Applied Catalysis B: environmental. 1996, 10(1-3): 203-227.
    [94] Garcia-Cortes J M, Perez-Ramirez J, Illan-Gomez M J et al. Comparative study of Pt-based catalysts on different supports in the low-temperature de-NO_x-SCR with propene. Applied Catalysis B: Environmental. 2001, 30(3-4): 399-408.
    [95] Denton P, Giroir-Fendler A, Praliaud H et al. Role of the nature of the support (alumina or silica), of the support porosity, and of the Pt dispersion in the selective reduction of NO by C_3H_6 under lean-burn conditions. Journal of Catalysis. 2000, 189(2): 410-420.
    [96] Li J H, Hao J M, Fu L X et al. Cooperation of Pt/Al_2O_3 and In/Al_2O_3 catalysts for NO reduction by propene in lean burn condition. Applied Catalysis A: General. 2004, 265(1): 43-52.
    [97] Neylon M K, Castagnola M J, Castagnola N B et al. Coated bifunctional catalysts for NO_x SCR with C_3H_6 Part 1: water-enhanced activity. Catalysis Today. 2004, 96(1-2): 53-60.
    [98] Iwamoto M, Hamada H. Removal of nitrogen monoxide from exhaust gases through novel catalytic processes. Catalysis Today. 1991,10(1): 57-71.
    [99] Held W, Kong A, Kichter T et al. Catalytic NO_x reduction in net oxidizing exhaust gas. SAE paper. 1990, No. 900496.
    [100] Gilot P, Guyon M, Stanmore B R. A review of NO_x reduction on zeolitic catalysts under diesel exhaust conditions. Fuel. 1997, 76(6): 507-515.
    [101] Tomasic V, Gomzi Z, Zrncevic S. Catalytic reduction of NO_x over Cu/ZSM-5. Applied Catalysis B: Environmental. 1998,18(3-4): 233-240.
    [102] Yan J Y, Sachtler W M H, Kung H H. Effect of Cu loading and addition of modifiers on the stability of Cu/ZSM-5 in lean NO_x reduction catalysis. Catalysis Today. 1997, 33(1-3): 279-290.
    [103] Armor J N. Catalytice removal of nitrogen oxides: where are the opportunities? Catalysis Today. 1995, 26(2):99-105.
    [104] Capek L, Novoveska K, Sobalik Z et al. Cu-ZSM-5 zeolite highly active in reduction of NO with decane under water vapor presence: Comparison of decane, propane and propene by in situ FTIR. Applied Catalysis B: Environmental. 2005, 60(3-4): 201-210.
    [105] Gervasini A. Desorption study of NO and O_2 on Cu-ZSM-5. Applied Catalysis B: Environmental. 1997, 14 (3-4): 147-159.
    [106] Parvulescu V I, Grange P, Dlemon B. Catalytic removal of NO. Catalysis Today. 1998, 46(4), 233-316.
    [107] Li L D, Chen J X, Zhang S J et al. Selective catalytic reduction of nitrogen oxides from exhaust of lean burn engine over in-situ synthesized Cu-ZSM-5/cordierite. Environmental Science & Technology. 2005, 39(8): 2841-2847.
    [108] Sato S, Hirabayashi H, Yahiro H et al. Iron ion-exchanged zeolite-The most active catalyst at 473K for selective reduction of nitrogen monoxide by ethane in oxidizing atmosphere. Catalysis Letters. 1992, 12(3-4): 193-200.
    [109] Feng X B, Hall W K. FeZSM-5: A durable SCR catalyst for NO_x removal from combustion streams. Journal of Catalysis. 1997, 166(2): 368-376.
    [110] Perez-Ramirez J, Garcia-Cortes J M, Kapteijn F et al. Characterization and performance of Pt-USY in the SCR of NOx with hydrocarbons under lean-burn conditions. Applied Catalysis B: Environmental. 2001, 29(4): 285-298.
    [111] Xin M, Hwang I C, Kim D H et al. The effect of the preparation conditions of Pt/ZSM-5 upon its activity and selectivity for the reduction of nitric oxide. Applied Catalysis B: Environmental. 1999,21 (3): 183-190.
    [112] Ohtsuka H, Tabata T. Effect of water vapor on the deactivation of Pd-zeolite catalysts for selective catalytic reduction of nitrogen monoxide by methane. Applied Catalysis B: Environmental. 1999,21(2): 133-139.
    [113] Palomares A E, Mrquez F, Valencia S et al. On the researching of a new zeolite structure for the selective catalytic reduction of NO: The possibilities of Cu-exchanged IM5. Journal of Molecular Catalysis A: Chemical. 2000, 162(1-2): 175-189.
    [114] Palomares A E, Prato J G, Corma A, Co-exchanged IM5, a stable zeolite for the selective catalytic reduction of NO in the presence of water and SO_2. Industrial & Engineering Chemistry Research. 2003, 42(8): 1538-1542.
    [115] Hamada H. Selective reduction of NO by hydrocarbons and oxygenated hydrocarbons over metal oxide catalysts. Catalysis Today. 1994, 22(1): 21-40.
    [116] Hamada H, Kintaichi Y, Sasaki M. Transition metal-promoted silica and alumina catalysts for the selective reduction of nitrogen monoxide with propane. Applied Catalysis B: Environmental. 1991, 75(1): 1-8.
    [117] Miyadera T. Alumina-supported silver catalysts for the selective reduction of nitric oxide with propene and oxygen-containing organic compounds. Applied Catalysis B: Environmental. 1993, 2(2-3): 199-205.
    [118] Meunier F C, Breen J P, Zuzaniuk V et al. Mechanistic aspects of the selective reduction of NO by propene over alumina and silver-alumina catalysts. Journal of Catalysis. 1999, 187(2): 493-505.
    [119] Bogdanchikova N, Meunier F C, Avalos-Borja M et al. On the nature of the silver phases of Ag/Al_2O_3 catalysts for reactions involving nitric oxide. Applied Catalysis B: Environmental. 2002, 36(4): 287-297.
    [120] Bethke K A, Kung H H. Supported Ag catalysts for the lean reduction of NO with C_3H_6. Journal of Catalysis. 1997, 172(1): 93-102.
    [121] He H, Yu Y B. Selective catalytic reduction of NO_x over Ag/Al_2O_3 Catalyst: from reaction mechanism to diesel engine test. Catalysis Today. 2005, 100(1-2): 37-47.
    [122] Shimizu K, Maeshima H, Satsuma A et al. Transition metal-aluminate catalysts for NO reduction by C_3H6. Applied Catalysis. B: Environmental. 1998, 18(1-2): 163-170.
    [123] 蒋晓原,周仁贤,毛建新等.CeO_2对CuO/Al_2O_3分散状态及催化性能的影响.分子催化,1999,13(3):176-180.
    [124] 张长斌,贺泓,余云波等.富氧条件下Cu/Al_2O_3催化剂上C_3H_6选择性还原NO的研究.高等学校化学学报.2004,25(1):136-139.
    [125] Burch R, Millington P J. Selective reduction of nitrogen oxide by hydrocarbons under lean-burn conditions using supported platinum group metal catalysts. Catalysis Today. 1995, 26(2): 185-206.
    [126] Roberts K L, Amiridis M D. Kinetic investigation of the selective catalytic reduction of nitric oxide by propylene over Pt/Al_2O_3. Industrial & Engineering Chemistry Research. 1997, 36(9): 3528-3532.
    [127] Zhang G, Yamaguchi T, Kawakami H et al. Selective reduction of nitric oxide over platinum catalysts in the presence of sulfur dioxide and excess oxygen. Applied Catalysis B: Environmental. 1992, 1(3): L15-L20.
    [128] Efthimiadis E A, Lionda G D, Christoforou S C et al. The effect of CH_4, H_2O on the NO reduction with C_3H_6. Catalysis Today. 1998, 40(1): 15-26.
    [129] Sumiya S, Saito M, H. He et al. Reduction of lean NO_x by ethanol over Ag/Al_2O_3 catalysts in the presence of H_2O and SO_2. Catalysis Letters. 1998, 50(1-2): 87-91.
    [130] Abe A, Aoyama N, Sumiya S et al. Effect of SO_2 on NOx reduction by ethanol over Ag/Al_2O_3 catalyst. Catalysis Letters. 1998, 51 (1-2): 5-9.
    [131] Masuda K, Tsujinura K, Shinoda K et al. Silver-promoted catalyst for removal of nitrogen oxides from emission of diesel engines. Applied Catalysis B: Environmental. 1996, 8(1): 33-40.
    [132] Jen H W. Study of nitric oxide reduction over silver/alumina catalysts under lean conditions: Effects of reaction conditions and support. Catalysis Today. 1998, 42(1-2): 37-44.
    [133] Meunier F C, Ukropec R., Stapleton C et al. Effect of the silver loading and some other experimental on the selective reduction of NO with C_3H_6 over Al_2O_3 and ZrO_2-based catalysts. Applied Catalysis B: Environmental. 2001, 30(1-2): 163-172.
    [134] Kaspar J, Fornasiero P, Hickey N. Automotive catalytic converters: current status and some perspectives. Catalysis Today 2003, 77(4): 419-449.
    [135] Bamwenda G R, Ogata A, Obuchi A et al. Selective reduction of nitric oxide with propene over platinum-group based catalysts: Studies of surface species and catalytic activity. Applied Catalysis B: Environmental. 1995, 6 (4): 311-323.
    [136] Iojoiu E, Gelin P, Praliaud H et al. Reduction of NO by propene over supported iridium catalysts under lean-burn conditions: an in situ FTIR study. Applied catalysis A: General. 2004, 263(1): 39-48.
    [137] Burch R, Millington P J, Walker A P. Mechanism of the selective reduction of nitrogen monoxide on platinum-based catalysts in the presence of excess oxygen. Applied Catalysis B: Environmental. 1994, 4(1): 65-94.
    [138] Captain D K, Roberts K L, Amiridis M D. The selective catalytic reduction of nitric oxide by propylene over Pt/SiO_2. Catalysis Today. 1998, 42(1-2): 93-100.
    [139] Burch R, Watling T C. The effect of promoters on Pt/Al_2O_3 catalysts for the reduction of NO by C_3H_6 under lean-burn conditions. Applied Catalysis B: Environmental. 1997, 11 (2): 207-216.
    [140] Konsolakis M, Yentekakis I V. The reduction of NO by Propene over Ba-promoted Pt/γ-Al_2O_3 catalysts. Journal of catalysis. 2001, 198(2): 142-150.
    [141] Krantz K, Ozturk S, Senkan S. Application of combinatorial catalysis to the selective reduction of NO by C_3H_6, Catalysis Today. 2000, 62(4): 281-289.
    [142] 刘志明,郝吉明,朱天乐等.富氧条件下NO_x催化净化的研究进展.环境污染治理技术与设备.2002,3(8):41-47.
    [143] Holma T, Palmqvist A, Skoglundh M et al. Continuous lean NOx reduction with hydrocarbons over dual pore system catalysts. Applied Catalysis B: Environmental. 2004, 48(2): 95-100.
    [144] Martens J A, Cauvel A, Jayat F et al. Molecule sieving catalysts for NO reduction with hydrocarbons in exhaust of lean bum gasoline and diesel engines. Applied Catalysis B: Environmental. 2001, 29(4): 299-306.
    [145] Li J H, Hao J M, Fu L X et al. Activity enhancement of bimetallic Co-In/Al_2O_3 catalyst for the selective reduction of NO by propene. Applied Catalysis B: Environmental. 2004, 48(1): 37-48.
    [146] Haneda M, Kintaichi Y, Hamada H. Enhanced activity of metal oxide oxide-doped Ga_2O_3-Al_2O_3 for NO reduction by propene. Catalysis Today. 1999, 54 (4): 391-400.
    [147] Yokota k, Fukui M, Tanaka T. Catalytic removal of nitric oxide with hydrogen and carbon monoxide in the presence of excess oxygen. Applied Surface Science. 1997, 121-122: 273-277.
    [148] Costa C N, Stathopoulos V N, Belessi V C et al. An investigation of the NO/H_2/O_2 (Lean-deNOx) reaction on a highly active and selective Pt/La_(0.5)Ce_(0.5)MnO_3 catalyst. Journal of Catalysis. 2001, 197(2): 350-364.
    [149] Burch R, Coleman M D. An investigation of the NO/H_2/O_2 reaction on noble-metal catalysts at low temperatures under lean-burn conditions. Applied Catalysis B: Environmental. 1999, 23(2-3): 115-121.
    [150] Machida M, Ikeda S, Kurogi D et al. Low temperature catalytic NO-H_2 reactions over Pt/TiO_2-ZrO_2 in an excess oxygen. Applied Catalysis B: Environmental. 2001, 35(5): 107-116.
    [151] Macleod N, Cropley R, Lambert R M. Efficient reduction of NO_x by H_2 under oxygen-rich conditions over Pd/TiO_2 catalysts: an in situ DRIFTS study. Catalysis Letters. 2003 86(1-3): 51-56.
    [152] Qi G S, Yang R T, Rinaldi F C. Selective catalytic reduction of nitric oxide with hydrogen over Pd-based catalysts. Journal of Catalysis. 2006,237(2): 381-392.
    [153] Burch R, Millington P J. Selective reduction of NO_x by hydrocarbons in excess oxygen by alumina- and silica-supported catalysts. Catalysis Today. 1996,29(1-4): 37-42.
    [154] Nikolopoulos A A, Stergioula E S, Efthimiadis E A et al. Selective catalytic reduction of NO by propene in excess oxygen on Pt- and Rh-supported alumina catalysts. Catalysis Today. 1999, 54(4): 439-450.
    [155] Liu Z P, Jenkins S J, King D A. Step-enhanced selectivity of NO reduction on platinum-group metals. Journal of American Chemical Society. 2003, 125(48), 14660-14661.
    [156] Burch R, Breen J P, Meunier F C. A review of the selective reduction of NO_x with hydrocarbons under lean-burn conditions with non-zeolitec oxide and platinum group metal catalysts. Applied Catalysis B: environmental. 2002, 39 (4): 283-303.
    [157] Denton P, Giroir-Fendler A, Praliaud H et al. Role of the nature of the support (alumina or silica), of the support porosity, and of the Pt dispersion in the selective reduction of NO by C_3H_6 under lean-burn conditions. Journal of Catalysis. 2000, 189 (2): 410-420.
    [158] Macleod N, Cropley R, Lambert R M. Efficient reduction of NO_x by H_2 under oxygen-rich conditions over Pd/TiO_2 catalysts: an in situ DRIFTS study. Catalysis Letters. 2003, 86 (1-3): 69-75.
    [159] Garcia-Cortes J M, Illan-Gomez M J, Solano A L et al. Low temperature selective catalytic reduction of NO_x with C_3H_6 under lean-burn conditions on activated carbon-supported platinum. Applied Catalysis B: Environmental. 2000, 25(1): 39-48.
    [160] Krantz K, Senkan S. Systematic evaluation of monometallic catalytic materials for lean-burn NO_x reduction using combinatorial methods. Catalysis Today. 2004, 98(3): 413-421.
    [161] Perez-Hernandez R, Gomez-Cortes A, Arenas-Alatorre J et al. SCR of NO by CH_4 on Pt/ZrO_2-TiO_2 sol-gel catalysts. Catalysis Today. 2005, 107-108: 149-156.
    [162] Kapar J, Fornasiero P. Nanostructrued materials for advanced automotive de-pollution catalysts. Journal of solid State Chemistry. 2003, 171(1-2): 19-29.
    [163] Thomas C, Gorce O, Fontaine C et al. On the promotional of Pd on the propene-asssisted decomposition of NO on chlorinated Ce_(0.68)Zr_(0.32)O_2 Applied Catalysis B: Environmental. 2006, 63(3-4): 201-214.
    [164] Thomas C, Gorce O, Villain F et al. Influence of the nature of the noble metal on the lean C3H6-assisted decomposition of NO on Ce_(0.68)Zr_(0.32)O_2-supported catalysts. Journal of Molecular Catalysis A: Chemical. 2006, 249(1): 71-79.
    [165] Shimizu K, Satsuma A, Hattori T. Selective catalytic reduction of NO by hydrocarbons on Ga_2O_3/Al_2O_3 Catalysts. Applied Catalysis B: Environmental. 1998, 16(4): 319-326.
    [166] 周黎明,陈光文,王树东等.丙烯选择催化还原NO的研究.化工学报.2003,54(2):199-203.
    [167] Joubert E, Courtoris X, Marecot P et al. NO reduction by hydrocarbons and oxygenated compounds in O_2 excess over a Pt/Al_2O_3 catalyst. A comparative study of the efficiency of different reducers (hydrocarbons and oxygenated compounds). Applied Catalysis B: Environmental. 2006, 64(1-2): 103-110.
    [168] Armor J N. Environmental catalysis. Applied. Catalysis. B: Environmental. 1992, 1(4): 221-256.
    [169] Long R, Yang R T. Pf/MCM-41 catalyst for selective catalytic reduction of nitric oxide with hydrocarbons in the presence of excess oxygen. Catalysis Letters. 1998, 52(1-2): 91-96.
    [170] Rottlander C, Andorf R, Plog C et al. Selective NO reduction by propane and propene over a Pt/ZSM-5 catalyst: a transient study of the reaction mechanism. Applied Catalysis B: Environmental. 1996, 11(1): 49-63.
    [171] Burch R, Watling T C. The effect of sulphur on the reaction of NO by C_3H_6 and C_3H_8 over Pt/Al_2O_3 under lean-burn conditions. Applied Catalysis B: Environmental. 1998, 17(1-2): 131-139.
    [172] Rurch R, Watling T C. The difference between alkanes and alkenes in the reduction of NO by hydrocarbons over Pt catalysts under lean-bum conditions. Catalysis Letters. 1997, 43(1-2): 19-23.
    [173] Yu Y B, He H, Feng Q C et al. Mechanism of the selective catalytic reduction of NO_x by C_2H_5OH over Ag/Al_2O_3. Applied catalysis B: Environmental. 2004, 49(3): 159-171.
    [174] Shimizu K, Satsuma A, Hattori T. Catalytic performance of Ag-Al_2O_3 catalyst for the selective catalytic reduction of NO by higher hydrocarbons. Applied Catalysis B: Environmental. 2000, 25(4): 239-247.
    [175] Yu Y B, He H, Feng Q C. Novel enolic surface species formed during partial oxidation of CH_3CHO, C_2H_5OH and C_3H_6 on Ag/Al_2O_3: An in situ DRIFTS study. J. Phys. Chem. B. 2003, 107(47): 13090-13092.
    [176] 张长斌,石晓燕,贺泓.富氧条件下Ag/Al_2O_3-Cu/Al_2O_3组合催化剂催化乙醇选择性还原NO_x.催化学报.2005,26(8):645-649.
    [177] 范晓丹,梁辉,徐明霞等.微孔Al_2O_3膜电泳沉积的研究.天津大学学报.2000,33(5):663-667.
    [178] Ma J, Cheng W. Deposition and packing study of sub-micron PZT ceramics using electrophoretic deposition. Materials Letters. 2002, 56(5): 721-727.
    [179] Ferrari B, Moreno R. The conductivity of aqueous Al_2O_3 slips for electrophoretic deposition. Materials Letters. 1996, 28(4-6): 353-355.
    [180] Yu J C, Yu J G. Zhang L Z et al. Enhancing effects of water content and ultrasonic irradiation on the photocatalytic activity of nano-sized TiO_2 powders. Journal of Photochemistry and Photobiology A: Chemistry.2002, 148(1-3): 263-271.
    
    [181] Pinna F. Supported metal catalysts preparation. Catalysis Today. 1998,41(1-3): 129-137.
    [182] Groppi G. Airoldi G. Cristiani C. Characteristics of metallic structured catalysts with high thermal conductivity. Catalysis Today. 2000, 60(1-2): 57-62.
    [183] Groppi G. Tronconic E. Design of novel monolith catalyst supports for gas/solid reaction with heat exchange. Chemical Engineering Science. 2000, 55(12): 2161-2171.
    [184] Matatov-Meytal Y, Sheintuch M. Catalytic fibers and cloths. Applied Catalysis A: General. 2002,231(1-2): 1-16.
    [185] Cybulski A, Moulun J A. Monliths in heterogeneous catalysis. Catalysis Review Science engine 1994,36: 180-270.
    [186] Hadi A, Yaacob I I. Synthesis of PdO/CeO_2 mixed oxides catalyst for automotive exhaust emissions control. Catalysis Today. 2004, 96(3): 165-170.
    [187] Wu X D, Xu L H, Weng D. The thermal stability and catalytic performance of Ce-Zr promoted Rh-Pd/γ-Al_2O_3 automotive catalysts. Applied Surface Science. 2004, 221(1-4): 375-374.
    [188] Smirniotis P G, Sreekanth P M, Pena D A et al. Manganese oxide catalysts supported on TiO_2, Al_2O_3, and SiO_2: A comparison for low-temperature SCR of NO with NH_3. Industrial & Engineering Chemistry Research. 2006,45(19): 6436-6443.
    [189] Macleod N, Cropley R, Keel J M et al. Exploiting the synergy of titania and alumina in lean NO_x reduction: in situ ammonia generation during the Pd/TiO_2/Al_2O_3-catalysted H_2/CO/NO/O_2 reaction. Journal of Catalysis. 2004, 221(1): 20-31.
    [190] Macleod N, Lambert R M. Lean NOx reduction with CO+H_2 mixture over Pt/Al_2O_3 and Pd/Al_2O_3 catalysts. Applied Catalysis B: Environmental. 2002, 35(4): 269-279.
    [191] Macleod N, Lambert R M. An in situ DRIFS study of efficient lean NO_x reduction with H_2+CO over Pd/Al_2O_3: the key role of transient NCO formation in the subsequent generation of ammonia. Applied Catalysis B: Environmental. 2003,46(3): 483-495.
    [192] Gorce O, Villain F, Thomas C et al. On the role organic nitrogen-containing species as intermediates in the hydrocarbon- assisted SCR of NO_x. Applied Catalysis B: Environmental. 2004, 54(2): 69-84.
    [193] Haneda M, Kintaichi Y, Inaba M et al. Infrared study of catalytic reduction of nitrogen monoxide by propene over Ag/TiO_2-ZrO_2. Catalysis Today, 1998,42(1-2): 127-135.
    [194] Lobree L J, Aylor A W, Reimer J A et al. Role of cyanide species in the reduction of NO by CH_4 over Co-ZSM-5. Journal of Catalysis. 1997, 169(1): 188-193.
    [195] Ferreira A P, Capela A, Costa P D et al. CH_4-SCR of NO over Co and Pd ferrierite catalysts: Effect of preparation on catalytic performance. Catalysis Today. 2007, 119(1-4): 156-165.
    [196] Liu Z M, Hao J M, Fu L X et al. Activity enhancement of bimetallic Co-In/Al_2O_3 catalyst for the selective reduction of NO by propene. Applied Catalysis B: Environmental. 2004, 48(1): 37-48.
    [197] Konsolakis M, Vrontaki M, Avgouropoulos G et al. Novel doubly-promoted catalysts for the lean NO_x reduction by H_2+CO: Pd(K)/Al_2O_3-(TiO_2). Applied Catalysis B: Environmental. 2006, 68(1-2): 59-67.
    [198] Rodriguez J A, Jirsak T, Liu G et al. Chemistry of NO_2 on oxide surfaces: Formation of NO_3 on TiO_2(110) and NO_2(?)O vacancy interactions. Journal of American Chemical Society. 2001, 123(39): 9597-9605.
    [199] Praserthdam P, Chaisuk C, Panit A et al. Some aspects about the nature of surface species on Pt-based and MF1-based catalysts for the selective catalytic reduction of NO by propene under lean-burn condition. Applied Catalysis B: Environmental. 2002, 38(3): 227-241.
    [200] Mamede A S, Leclercq G, Payen E et al. In situ raman characterisation of surface modifications during NO transformation over automotive Pd-based exhaust catalysts. Journal Molecular Structure. 2003, 651-653: 353-364.
    [201] Djega-Mariadassou G. From three-way to deNO_x catalysis: a general model. Catalysis Today. 2004, 90(1-2): 27-34.
    [202] Fernandez-Garcia M, Iglesias-Juez A, Martinez-Arias A. Role of the state of the metal component on the light-off performance of Pd-based three-way catalysts. Journal of Catalysis. 2004, 221(2): 594-600.
    [203] Jeon J Y1, Kim H Y, Woo S I. Selective catalytic reduction of NO_x in lean-burn engine exhaust over a Pt/V/MCM-41 catalyst. Applied Catalysis B: Environmental. 2003, 44(4): 311-323.
    [204] 程昊,希燃发动机尾气NO_x存储-还原催化剂研究:博士学位论文.大连:中国科学院大连化学物理研究所.2004.
    [205] 孙锦宜,林话平.环保催化材料与应用.北京:化学工业出版社.2002.
    [206] 田建民,白雪,李健等.载体预处理对CuO-CeO_2/堇青石催化剂性能的影响.内蒙古工业大学学报.2006,25(3):210-214.
    [207] Groppi G, Tronconi E. Theoretical analysis of mass and heat transfer in monolith catalysts with triangular channels. Chemical Engineering Science. 1994, 52(20): 3521-3526.