催化燃烧用钴基催化剂的研制、表征与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着石化资源的不断减少,目前世界上天然气的消费比重增加,寻找清洁能源和高效、低排放的燃烧路线成为各国科研与工程技术人员的重要课题。与普通燃烧相比,催化燃烧具有较高的燃烧效率与能量利用率,因此,关于天然气催化燃烧的研究受到世界各国越来越广泛的关注。本论文以Co-Si体系为研究对象,系统的讨论了催化剂的制备方法及制备参数、等离子体增强处理、助剂修饰等对钴基催化剂在甲烷全氧化中的催化性能影响规律,通过低温液氮吸脱附等温线(BET)、X射线粉末衍射(XRD)、X射线光电子能谱(XPS)、紫外可见及傅立叶红外(UV-vis、FT-IR)、透射电镜(TEM)、热重分析(TGA)、程序升温还原(TPR)以及氢氧滴定(HOT)等多种表征手段探讨各种因素对样品的化学物理特性的影响,同时对构效关系及氧化还原反应活性位进行较深入的研究。
     对于浸渍法制备的催化剂而言,含硅载体以其适宜的载体-活性组分相互作用有益于甲烷C-H键的初始活化过程和化学吸附氧物种的形成,有助于获得低温高活性,其T_(50%)较氧化铝载体担载样品约低180℃。大比表面积的氧化硅载体有利于活性钴物种更好的分散和高价钴基氧化物种的形成,对应的钴基催化剂具有良好的低温性能。在钴含量为10 wt%的样品上,随着焙烧温度由300℃提高到700℃,钴物种出现迁移团聚甚至烧结,在XRD中测定的Co_3O_4晶粒尺寸由7.2 nm逐步增加至20.3 nm;另一方面,催化剂的燃烧活化能随样品上Co_3O_4晶粒的平均尺寸增加而呈现线形增加趋势,而单位时间内单位活性物种上的甲烷转换频数随着粒径增加而逐渐降低,这一现象证实了该反应属于典型的结构敏感反应。TPR和XRD结果证实,浸渍法制备的钴基催化剂按Co_3O_4→CoO→Co两步进行还原:催化剂在250℃还原后与载体发生弱相互作用的Co_3O_4被还原为CoO,300℃还原后完全为CoO,再提高还原温度后生成的金属钴可高度分散在载体表面。焙烧温度的增加增强了载体与活性组分的相互作用,不利于氧化还原循环的进行;另外,由于实际反应为临氧气氛,不同的还原温度对于催化剂的反应性能及活化能没有明显影响。
     研究发现,由于部分金属粒子参与了硅胶网络的形成,溶胶凝胶法制备的钴基催化剂样品中含有两种钴物种:与氧化硅载体发生键合形成Co-O-Si键的钴物种以及可还原的常规尖晶石相Co_3O_4。该钴硅催化剂体系中钴含量的增加使得溢出凝胶而成为Co_3O_4活性组分的钴比例增加到30.8%,催化燃烧反应所需的活性位显著增加,特别是氧化钴物种中OB_3键(对应于八配位的Co~(3+))的比例增加,使得样品催化活性逐渐提升;但过多的钴引入凝胶体系更多地增加了几乎不具有催化活性的Co_2SiO_4而使得反应活性组分Co_3O_4比例下降,另外Co_3O_4绝对量的增加也易造成晶粒团聚长大而导致样品的活性降低。同样,由FT-IR和XRD表征结果可见,适度的提高焙烧温度或选择合适的加水量可减小了Si-O-Co-O-Si键的形成几率,从而提高催化剂中可还原的Co_3O_4活性组分的比例,并使活性组分仍保持良好的分散状态,这样的结果使得样品催化活性逐渐提升至最优值。本实验考察范围内优选钴含量22.5%-26%,焙烧温度600℃,H_2O:TEOS值为15。
     对于溶胶凝胶催化剂而言,由于高能物种对被处理样品表面的轰击作用,特别是电子和活化气体分子的轰击作用可使被处理材料在短时间内释放大量电子、自由基、分子等,在较低温度下使体系脱水并有部分前驱体的分解,等离子体增强制备的钴基催化剂比表面积由参比样的304.6 m~2/g增加到320.1 m~2/g。等离子体场内主要活性物种(电子)对Si-O-Co-O-Si及其他钴硅化合物的进攻使得已形成的-Si-O-Co-键断裂,形成新的可还原的Co_3O_4物种,从而使得Co_3O_4的表面含量和程序升温耗氢量增加。等离子体处理催化剂上显示了优良的催化燃烧活性,起活温度(T_(10%))下降约50℃,且在活性考察的几个温度中,甲烷转化率到达参比样的2倍以上。优选等离子体处理工艺为:电压80-100 V,时间2 h。等离子体引入与焙烧过程的前后次序对其催化性能几乎没有影响。XPS和HOT表征结果表明,等离子体处理使得钴物种向表面富集,其钴的表面原子比由参比样的2.2提高到8.5,同时,显著提高了钴物种的分散度和活性化学吸附氧量,增加了活性物种的表面浓度和活性表面积,单位比表面积上的可还原的表面钴浓度也由参比样的6.38×10~(-3)Co/nm~2显著增加到20.75×10~(-3)Co/nm~2。
     为进一步提高催化剂比表面积,采用水热晶化法成功合成了新型中孔分子筛SBA-15,比表面积、孔容和平均孔径分别为:586.6m~2/g,0.802 cc/g和4.60nm,微观形貌大多数呈1微米左右的长条绳状,具有较好的六角相构型。以该分子筛作为催化剂载体后发现,大比表面的中孔分子筛可有效的抑制担载的活性组分的聚集,担载钴后的样品耗氢量随钴含量的增加而显著增加,而活性组分Co_3O_4晶粒尺寸则从8.3 nm缓慢增大至15.4 nm。氧化锆助剂由于其结构作用和电子助剂双重效应使得其催化燃烧性能提高到了参比样品的两倍左右,锆含量在2%-20%的范围内均有良好的促进作用,优选锆助剂添加量为5%-10%。而由XPS、HOT和XRD结果可见,贵金属助剂钯的添加可使氧化钯本身具有稳定相态并高度分散在催化剂表面,同时,促进钴物种的表面富集和表面晶格氧向化学吸附氧物种的转化,改善氧化钴的分散性能,其活性物种的表面浓度由2.80 Co/nm~2显著提高到3.58 Co/nm~2;由于物理表面稀释和覆盖作用减小了钴与硅的相互作用,通过电子传递等相互作用显著促进了氧化钴物种的还原,提高样品的氧化还原能力,从而极大地提高催化剂的低温活性,显著改善样品的催化燃烧性能。适量贵金属钯的加入可使样品在低温下迅速起活,并在350℃之前将甲烷转化率提高到90%,在获得低温高活性的同时具备优良的稳定性。
Since world petroleum reserves are on the decline, a great deal of emphasis has been placed on developing alternatives for energy production. Large efforts have been undertaken to find effective processes and technology for the optimum utilization of the abundant natural gas (whose main constituent is methane) for energy production. Compared with the conventional flame combustion, a higher combustion efficiency and a utilization capacity were obtained in the catalytic combustion. Therefore, catalytic combustion has drawn increasing attentions extensively in the past few years. In our work, several series of cobalt-based catalysts were prepared for methane catalytic combustion, the effects of preparation method and conditions, plasma assisted treatment, promoter modification on those properties and catalytic performances were investigated in detail. These samples were characterized using X-ray diffraction, X-photoelectron spectroscopy, UV-vis and FT-IR spectral analysis, thermal gravity analysis, N_2 Adsorption- desorption (BET), transmission electron microscope, temperature programmed reduction and Hydrogen-oxygen titration technologies. The relation among structure and performance and the active sites for the redox reaction were analyzed and discussed in depth.
     For the catalysts prepared by the conventional impregnation, the suitable interaction between Si-containing support and active component was beneficial for the activation of C-H band in CH_4 molecule and the existence of active chemical adsorbed oxygen species, the higher activity at lower reaction temperature. T_(50%), value on Co-Si catalyst was about 180℃lower than that of Co-Al. SiO_2 support with large surface area promoted the dispersion of the active component and the generation of cobalt oxide with higher valence state. The good catalytic performances were obtained on those catalysts supported by SiO_2. With the increasing calcination temperature from 300℃to 700℃, Co_3O_4 particles augmented and sintered on the samples surface which contained 10 wt. % cobalt, the crystallite size of Co_3O_4 was aggrandized from 7.2 nm to 20.3 nm by inchmeal. On the other hand, the activation energy for the combustion reaction was increased linearly with the augment of average crystallite size of Co_3O_4, the TOF value on prepared catalyst was decreased with it. Thus, the catalytic combustion was a typical structure-sensitive reaction. It could be concluded from the results of XRD and TPR measurements that, reduction process of Co-containing species went along through two steps: Co_3O_4→CoO→Co. After the reduction at 300℃for 30 min, Co_3O_4 was reduced to form CoO which would be further reduced and well dispersed as metallic Co under the higher reduction temperature. Otherwise, the increasing of calcination temperature enhanced the interaction between the active cobalt species and support, This was against the good redox cycle. Because of the existence of oxygen, the reduction temperature had a slight influence on the methane conversion and activation energy.
     These observations supported the fact that Si atom could band with one or several Co-O band to form different network during the gelation process. As a result, there were two kinds of cobalt species in the Co-Si catalysts prepared by sol-gel method in our work. One was very difficult to be reduced which entered into the framework of SiO_2 gel and formed the -Si-O-Co- band. The other was the conventional reducible cobalt oxide made from the residual part of Co atoms which was spilled over the gel network. With the increasing of cobalt content in the catalysts prepared, proportion of reducible Co_3O_4 within the whole Co-containing species enhanced to 30.8%. Active sites for the catalytic combustion, especially the proportion of OB_3 band in cobalt oxide, were augmented remarkably. As a result, the catalytic activity was promoted gradually. However, too much cobalt added to the gel mixture would increase the amount of Co_2SiO_4 which has no catalytic activity, the augment or sinter of crystal cobalt oxide was obtained. Then, the conversion of methane was decreased. Furthermore, indicated from the results of FT-IR and XRD characterization, the appropriate calcination temperature and H_2O: TEOS ratio could reduce the formation properties of Si-O-Co-O-Si bands and favor the good dispersion of Co_3O_4. The optimum cobalt content, calcination temperature and H_2O: TEOS value in our work were 22.5 %-26%, 600℃and 15.
     As to the catalyst prepared by sol-gel method, the results of thermal gravity analysis proved that decomposition of cobalt nitrate and the remaining organic compound removal was partially in progress during the plasma treatment, though the temperature was much lower than that of calcination. Owing to the high active species bombardment on the treated surface during the plasma treatment, the breakage of -Si-O-Co- bonds and the formation of Co_3O_4 was observed obviously. It could be concluded that the discharge treatment of samples prepared by sol-gel method induced a better generation of active cobalt species. The XPS characterizations suggested that plasma treatment was favorable for the enrichment of surface cobalt and active chemical adsorbed oxygen species, a value of surface cobalt was increased from 2.2% to 8.5% in mole. Meanwhile, a smaller diameter of crystallite particles (11.2 nm) and a better dispersion of Co_3O_4 on catalyst surface were obtained on Co-Plas-Solgel-2 compared with those of the conventional sample. The specific surface area of the glow plasma assised sample was increased from 305 m~2/g to 320 m~2/g. The ignition temperature (T_(10%) of plasma assisted catalyst was about 50℃lower than that of Co-Sol-gel-1, and its CH_4 conversion was two times higher than that of the conventional one during the whole range of catalytic combustion activity test(340-520℃). The plasma assisted sample exhibited significant enhancement in catalytic performances because of a better dispersion and more active sites, in addition, the sequence of plasma treatment and conventional calcinations had very little effect on its catalytic performance.
     The mesoporous SBA-15 was synthesized with hydrothermal crystallization method successfully, specific surface area, total pore volume and average pore diameter was 586.6 m~2/g, 0.802 cc/g and 4.60 nm, respectively. 1μm rope-like block was observed in the investigation of the morphology by TEM, and a high ordered hexagonal structure was proved by low angle X-ray diffraction. As a catalyst support, mesoporous material with large specific surface area was effective on the restrain of the aggrandizement of supported active component. Hydrogen consumed in TPR experiment was enhanced obviously with the increase of cobalt content, and the crystallite size of Co_3O_4 was augmented from 8.3 nm to 15.4 nm step by step. Due to the structural and electronic effect of zirconia promoter, the reaction activity was neatly twice higher than that of conventional sample. The optimum zirconia content was 5%-10%. The characterization results indicated that the addition of palladium promoted the reduction and surface enrichment of cobalt oxide species obviously. Furthermore, higher dispersion and active surface area and more active sites were obtained on palladium promoted samples. Surface cobalt density was increased from 2.80 Co/nm~2 to 3.58 Co/nm~2 after the modification with Pd promoter. The existence of PdO promoted the translation from the surface lattice oxygen of Co_3O_4 into an active chemical adsorbed oxygen species. As a result, T_(90%) values of the catalysts containing more than 0.7 wt% Pd were lower than 350℃; their activities were 75% higher than that of the conventional sample. Among them, 2Pd-40Co/SBA-15 showed a good stability.
引文
1. Choudhary V. R., Rane V. H., Acidity/basicity of rare-earth oxides and their catalytic activity in oxidative coupling of methane to C_2-hydrocarbons, Journal of Catalysis, 130(2): 411-422,1991
    2. Morooka Y., Ozaki A., Regularities in catalytic properties of metal oxides in propylene oxidation, Journal of Catalysis, 5(1): 116-124, 1966
    3. Paola A., Edouard G., Michel P., et al., Catalytic combustion of methane on aluminate-supported copper oxide, Catalysis Today, 47(1-4): 83-93, 1999
    4. Goralski J. C. T., Schmidt L. D., Modeling heterogeneous and homogeneous reactions in the high-temperature catalytic combustion of methane, Chemical Engineering Science, 54(24):5791-5807, 1999
    5. Hicks R. F., Qi H., Young M. L., et al., Effect of catalyst structure on methane oxidation over palladium on alumina, Journal of Catalysis, 122(2): 295-306, 1990
    6. Oh S. H., Mitchell P. J., Siewert R. M., Kinetics of the Complete Oxidation of Methane over Supported Palladium Catalysts, Journal of Catalysis, 146(2): 537-544, 1994
    7. Burch R., Loader P. K. Urbano F. J., Methane combustion over palladium catalysts: The effect of carbon dioxide and water on activity, Applied Catalysis A, 123:173-184, 1995
    8. Carstens J. N., Su S. C., Bell A.T., Factors Affecting the Catalytic Activity of Pd/ZrO_2 for the Combustion of Methane, Journal of Catalysis, 176(1): 136-142, 1998
    9. Farrauto R. J., Lampert J. K., Hobson M. C., Waterman E. M., Thermal decomposition and reformation of PdO catalysts; Support effects, Applied Catalysis B, 6(3): 263-270, 1995
    10. Burch R., Low NO_x options in catalytic combustion and emission control, Catalysis Today,35(1-2): 27-36, 1997
    11. Hoflund G. B., Li, ZH, Surface characterization study of a Pd/Co3O4 methane oxidation catalyst, Applied Surface Science, 253 (5): 2830-2834, 2006
    12. Hicks R. F., Qi, H. Young M. L., et al, Structure sensitivity of methane oxidation over platinum and palladium, Journal of Catalysis, 122(2): 280-294,1990
    13. Briot P., Primet M., Catalytic oxidation of methane over palladium supported on alumina : Effect of aging under reactants, Applied Catalysis, 68(1): 301-314,1991
    14. Fujimoto K. I., Riberio F. H., Avalos-Borja M., et al., Structure and Reactivity of PdO_x/ZrO_2 Catalysts for Methane Oxidation at Low Temperatures, Journal of Catalysis, 179(2): 431-442, 1998
    15. Baldwin T. R., Burch R., Catalytic combustion of methane over supported palladium catalysts : I. Alumina supported catalysts, Applied Catalysis, 66(1): 337-358,1990
    16. Tompos A., Margitfalvi J. L., Hegedus M., et al., Characterization of trimetallic Pt-Pd-Au /CeO_2 catalysts combinatorial designed for methane total oxidation, Combinatoral Chemistry & High Throughput Screening, 10(1): 71-82,2007
    17. Mizushima Y., Hori M., Alumina aerogel for support of a methane combustion catalyst, Applied Catalysis A, 88(2): 137-148,1992
    18. Pecchi G, Reyes P., Concha I., Fierro J. L. G, Methane Combustion on Pd/SiO_2 Sol-Gel Catalysts, Journal of Catalysis, 179(1): 309-314,1998
    19. Pecchi G, Reyes P., Zamora R., et al., Effect of the promoter and support on the catalytic activity of Pd-CeO_2-supported catalysts for CH4 combustion Journal of Chemical Technology and Biotechnology, 80(3): 268-272, 2005
    20. Lopez T., Asomoza M., Bosch P., et al., Spectroscopic characterization and catalytic properties of sol-gel Pd/SiO_2 catalysts, Journal of Catalysis, 138(2): 463-473 ,1992
    21. Methivier C, Beguin B., Brun M., et al., Pd/SiC Catalysts: Characterization and Catalytic Activity for the Methane Total Oxidation, Journal of Catalysis, 173(2): 374-382, 1998
    22. Methivier C, Massardier J., Bertolini J. C, Pd/Si_3N_4 catalysts: preparation, characterization and catalytic activity for the methane oxidation, Applied Catalysis A, 182(2): 337-344,1999
    23. Sekizawa K., Widjaja H., Maeda S., et al., Low temperature oxidation of methane over Pd catalyst supported on metal oxides, Catalysis Today, 59(1-2): 69-74, 2000
    24. Muller C. A., Maciejewski M., Koeppel R. A., Baiker A., Combustion of Methane over Palladium/Zirconia Derived from a Glassy Pd-Zr Alloy: Effect of Pd Particle Size on Catalytic Behavior, Journal of Catalysis, 166(1): 36-43,1997
    25. Eguchi K., Arai H., Low temperature oxidation of methane over Pd-based catalysts-effect of support oxide on the combustion activity, Applied Catalysis A, 222(1-2): 359-367,2001
    26. Wang C. B., Ho C. M., Lin H. K., et al., Low temperature complete combustion of methane over titania-modified alumina-supported palladium, Fuel, 81 (14): 1883-1887, 2002
    27. Wang C. B., Lee H. G., Yeh T. F., et al., Thermal characterization of titania-modified alumina-supported palladium and catalytic properties for methane combustion, Thermo-chimica Acta, 401 (2): 209-216, 2003
    28. Yazawa Y., Yoshida H., Takagi N., et al., Acid Strength of Support Materials as a Factor Controlling Oxidation State of Palladium Catalyst for Propane Combustion, Journal of Catalysis, 187(1): 15-23, 1999
    29. Farrauto R. J., Lampert J. K., Hobson M. C., et al., Thermal decomposition and reformation of PdO catalysts: Support effects, Applied Catalysis B, 6(3): 263-270, 1995
    30.何湘鄂,杨乐夫,史春开等,Pd/ZrO_2-Al_2O_3催化剂的甲烷催化燃烧性能,厦门大学学报(自然科学版),42(4):471-474,2003
    31.何湘鄂,杨乐夫,史春开等,ZrO_2引入对Pd/Al_2O_3催化剂结构和性能的影响,应用化学,20(10):924-927,2003
    32.胡昱翔,蔡钒,方荣谦等,载体模板效应对氧化钯的热化学行为及其甲烷燃烧稳定性的影响,化学学报,63(6):473-478,2005
    33. Niwa M., Nakatsuji T., Jpn. Kokai Tokkyo Koho 95241470, 1995 [P]
    34. Kang T. G., Kim J. H., Kang S. G., et al., Promotion of methane combustion activity of Pd catalyst by titania loading, Catalysis Today, 59(1-2): 87-93, 2000
    35. Okumura K., Matsumoto S., Nishiaki N., Niwa M., Support effect of zeolite on the methane combustion activity of palladium, Applied Catalysis B, 40(2): 151-159, 2003
    36. Yuranov I., Kiwi-Minsker L., Renken A., Structured combustion catalysts based on sintered metal fibre filters, Applied Catalysis B, 43(3): 217-227, 2003
    37. Narui K., Yata H., Furuta K., et al., Effects of addition of Pt to PdO/Al_2O_3 catalyst on catalytic activity for methane combustion and TEM observations of supported particles, Applied Catalysis A, 179:165-173, 1999
    38. Ozawa Y., Tochihara Y., Watanabe A., Nagai M., Omi S., Deactivation of Pt'PdO/Al_2O_3 in catalytic combustion of methane, Applied Catalysis A, 259: 1-7, 2004
    39. Chong K. R., Min W. R., In S. R., et al., Catalytic combustion of methane over supported bimetallic Pd catalysts: Effects of Ru or Rh addition, Catalysis Today, 47(1-4 ): 141-147,1999
    40. Said Z. M., Ghorbel A., Preparation and characterization of bimetallic PdMo/Y-zeolite: catalytic properties in methane combustion, Solid State Sciences, 6(9): 973-980, 2004
    41.卢冠忠,郭耘,郭杨龙,稀土在化石燃料催化燃烧中的作用及其研究,中国基础科学,4:19-23,2003
    42. Chou T. Y., Leu C. H., Yeh C. T., Effects of the addition of lanthana on the thermal stability of alumina-supported palladium, Catalysis Today, 26(1): 53-58, 1995
    43. Thevenin P. O., Alcalde A., Pettersson L. J., Jaras S. G., Fierro J. L. G., Catalytic combustion of methane over cerium-doped palladium catalysts, Journal of Catalysis, 215(1): 78-86, 2003
    44. Fraga M. A., Soares de Souza E., Villain F. et al., Addition of La and Sn to alumina-supported Pd catalysts for methane combustion, Applied Catalysis A, 259(1): 57-63, 2004
    45. Sara C., Carla L., Giuliano D., Alessandro T., The role of rare earth oxides as promoters and stabilizers in combustion catalysts, Journal of Alloys and Compounds, 374(1-2): 387-392,2004
    46. Euzen P., Le G., Jean H., Rebours B., Martin G., Deactivation of palladium catalyst in catalytic combustion of methane, Catalysis Today, 47(1-4): 19-27, 1999
    47. Nomura K., Noro K., Nakamura Y., et al., Combustion of a trace amount of CH_4 in the presence of water vapor over ZrO_2;supported Pd catalysts, Catalysis Letters, 58(2-3):127-130, 1999
    48. Schmal M., Aranda D.A.G., Noronha F. B., et al., Oxidation and reduction effects of propane-oxygen on Pd-chlorine/alumina catalysts, Catalysis Letters, 64(2-4): 163-169, 2000
    49. Gandhi H.S., Shelef M., Effects of sulphur on noble metal automotive catalysts, Applied Catalysis, 77(2): 175-186, 1991
    50. Nam S. W., Gavalos G. R., Reduction of sulfur dioxide and surface sulfate on γ-alumina, Applied Catalysis, 74(1): 53-64, 1991
    51. Yu T. C., Shaw H., The effect of sulfur poisoning on methane oxidation over palladium supported on γ-alumina catalysts, Applied Catalysis B, 18(1-2): 105-114, 1998
    52. Ahlsttrom-Silversand A. F., Odenbrand C. U. I., Combustion of methane over a Pd-Al_2O_3/SiO_2 catalyst, catalyst activity and stability, Applied Catalysis A, 153 (1-2): 157-175, 1997
    53. Hurtado P., Ordonez S., Sastre H., Diez F. V., Combustion of methane over palladium catalyst in the presence of inorganic compounds: inhibition and deactivation phenomena, Applied Catalysis B, 47(2): 85-93, 2004
    54. Vissokov G.P., Pirgov P. S., Experimental studies on the plasma-chemical synthesis of a catalyst for natural gas reforming, Applied Catalysis A, 168(2): 229-235, 1998
    55. Liu C. J., Vissokov G. P., Jang B. W.-L., Catalyst preparation using plasma technologies, Catalysis Today, 72(3-4): 173-184, 2002
    56. Chen M. H., Chu W., Dai X. Y., et al., New palladium catalysts prepared by a glow discharge plasma for the selective hydrogenation of acetylene, Catalysis Today, 89 (1-2): 201-204,2004
    57.韩森,于开录,何诽,刘昌俊,辉光放电等离子体增强制备甲院催化燃烧的高分散Pd/Al_2O_3催化剂,化工学报,54(5):702-703,2003
    58. Liu C. J., Yu K. L., Zhang Y. E, et al., Characterization of plasma treated Pd/HZSM-5 catalyst for methane combustion, Applied Catalysis B, 47(2):95-100, 2004
    59. Park P. W., Ledford J. S., The influence of surface structure on the catalytic activity of alumina supported copper oxide catalysts. Oxidation of carbon monoxide and methane,Applied Catalysis B, 15(3-4): 221-231, 1998
    60. Iamarino M., Chirone R., Lisi L., et al., Cu/γ-Al_2O_3 catalyst for the combustion of methane in a fluidized bed reactor, Catalysis Today, 75(1-4): 317-324, 2002
    61. Artizzu P., Garbowski E., Primet M., Brulle Y., Saint-Just J., Catalytic combustion of methane on aluminate-supported copper oxide, Catalysis Today, 47: 83-93, 1999
    62. Garbowski E., Guenin M., Marion M.C., et al., Catalytic properties and surface states of cobalt-containing oxidation catalysts, Applied Catalysis, 64: 209-224, 1990
    63. Zwinkels M. M., Jaras S. G, Menon P. G., Catal. Rev. Sci. Eng.35 (1993) 319.
    64. Milt V. G., Lombardo E. A., Ulla M. A., Stability of cobalt supported on ZrO_2 catalysts for methane combustion, Applied Catalysis B, 37(1): 63-73, 2002
    65. Xiao T.C., Ji S.F., Wang H.T., et al., Methane combustion over supported cobalt catalysts, Journal of Molecular Catalysis A, 175(1-2): 111-123, 2001
    66. Milt V. G., Ulla M. A., Lombardo E. A., Zirconia-Supported Cobalt as a Catalyst for Methane Combustion, Journal of Catalysis, 200(2): 41-249, 2001
    67. Liotta L. F., Di Carlo G., Pantaleo G., et al., Catalytic performance of Co_3O_4/CeO_2 and Co_3O_4/CeO_2-ZrO_2 composite oxides for methane combustion: Influence of catalyst pretreatment temperature and oxygen concentration in the reaction mixture, Applied Catlysis B, 70 (1-4): 314-322, 2007
    68. Liotta L. F., Di Carlo G., Pantaleo G., et al., Honeycomb supported Co_3O_4/CeO_2 catalyst for CO/CH_4 emissions abatement: Effect of low Pd-Pt content on the catalytic activity, Catalysis Communications, 8 (3): 299-304, 2007
    69. Baldi M., Finocchio E., Milellea F., et al., Catalytic combustion of C_3 hydrocarbons and oxygenates over Mn_3O_4, Applied Catalysis B, 16(1): 43 -51, 1998
    70. Baldi M., Escibano V. S., Amores J. M. G., et al., Characterization of manganese and iron oxides as combustion catalysts for propane and propene, Applied Catalysis B, 17(3):L175-L182, 1998
    71. Arnone S., Bagnasco G., Busca G., et al., Catalytic combustion of methane over transition metal oxides, Studies in Surface Science and Catallysis, 119: 65-70, 1998
    72.张鑫,陈耀强,史忠华等,过渡金属氧化物催化剂上甲烷催化燃烧的研究,化学研究与应用,14(3):352-354,2002
    73.罗勇悦,陈耀强,赵彬等,实用型整体式钴基甲烷催化燃烧催化剂的研制,化学研究与应用,16(2):266-268,2004
    74.李丽娜,陈耀强,龚茂初等,Fe_2O_3/YSZ-γ-Al_2O_3催化剂在甲烷催化燃烧中的催化性能研究,高等学校化学学报,24(12):2235-2238,2003
    75. Busca G., Daturi M., Finocchio E., et al., Transition metal mixed oxides as combustion catalysts: preparation, characterization and activity mechanisms, Catalysis Today, 33(1-3):239-249, 1997
    76. Choudhary V. R., Mamman A. S., Pataskar S. G, et al., Prepr. Am. Chem. Soc. Fuel Chem.Div. 46: 83, 2001
    77. Choudhary V. R., Uphade B. S., Pataskar S. C., et al., Angew. Chem. Int. Ed. Engl. 35: 2393,1996
    78. Choudhary V. R., Uphade B. S., Pataskar S. G., Low temperature complete combustion of dilute methane over Mn-doped ZrO_2 catalysts: factors influencing the reactivity of lattice oxygen and methane combustion activity of the catalyst, Applied Catalysis A, 227(1-2):29-41, 2002
    79.肖利华,杨玉霞,邱风炎等,钴-锆复合氧化物催化剂的水热合及甲烷低温催化燃烧性能,分子催化(英文),18(2):121-124,2004
    80.肖利华,杨玉霞,邱风炎等,高活性锆掺杂钴催化剂的制备及其催化甲烷燃烧性能研究,分子催化,18(3):167-171,2004
    81. Buhler R., Gunter J. R., Baerlocher C., Preparation and Characterization of a New Temary Chromium(Ⅲ)-Molybdenum(Ⅵ) Oxide Cr_(2-2x)Mo_xO_3, Journal of Solid State Chemistry,140(2): 350-353, 1998
    82. Zhang Y., Andersson S., Muhammed M., Nanophase catalytic oxides: Ⅰ. Synthesis of doped cerium oxides as oxygen storage promoters, Applied Catalysis B, 6(4): 325-337, 1995
    83. Palmqvist A. E. C., Johansson E. M., Jaras S. G., et al., Total oxidation of methane over doped nanophase cerium oxides, Catalysis Letters, 56(1): 69-75, 1998
    84. Kundakovic L., Stephanopoulos M. F., Cu- and Ag-Modified Cerium Oxide Catalysts for Methane Oxidation, Journal of Catalysis, 179(1): 203-221, 1998
    85. Terribile D., Trovarelli A., Leitenburg de C., et al., Catalytic combustion of hydrocarbons with Mn and Cu-doped ceda-zirconia solid solutions, Catalysis Today, 47 (1-4): 133-140,1999
    86. Bozo C., Guilhaume N., Garbowski E.,et al., Combustion of methane on CeO_2-ZrO_2 based catalysts, Catalysis Today, 59(1-2): 33-45, 2000
    87.薛蒙伟,张征林,范以宁等,Co-Ce-O超细微粒催化剂的结构与催化性能,物理化学学报,物理化学学报,16(11):1028-1034,2000
    88.杜小春,陈耀强,陈清泉等,Ce-Zr-Mn-O固溶体作为甲烷燃烧过渡金属催化剂载体的研究,功能材料,36(3):454-457,2005
    89. Pedrosa A. M. G., Souza M. J. B., Melo D. M. A., et al., Systems involving cobalt and cerium oxides: characterization and catalytic behavior in the C-6-C-7 n-alkanes combustion, Solid State Sciences, 5(5): 725-728, 2003
    90. Shan W. J., Luo M. F., Ying P. L., et al., Reduction property and catalytic activity of Ce_1-xNi_xO_2 mixed oxide catalysts for CH_4 oxidation, Applied Catalysis A, 246(1): 1-9, 2003
    91. You Z. X., Balint I., Aika K. I., Catalytic combustion of methane over microemulsion-derived MnOx-Cs_2O-Al_2O_3 nanocomposites, Applied Catalysis B, 53(4): 233-244, 2004
    92. Liotta L. F., Di Carlo G., Pantaleo G., et al., Co_3O_4/CeO_2 composite oxides for methane emissions abatement: Relationship between Co_3O_4-CeO_2 interaction and catalytic activity, Applied Catalysis B, 66 (3-4): 217-227, 2006
    93. Yisup N., Cao Y., Feng W. L., et al., Catalytic oxidation of methane over novel Ce-Ni-O mixed oxide catalysts prepared by oxalate gel-coprecipitation, Catalysis Letters, 99(3-4):207-213, 2005
    94. Wilkes M. E, Hayden E, Bhattacharya A. K., Catalytic studies on ceria lanthana solid solutions I. Oxidation of methane, Journal of Catalysis, 219(2): 286-294, 2003
    95. Merino N. A., Barbero B. P., Cellier C., et al., Effect of the calcium on the textural, structural and catalytic properties of La_(1-x)Ca_xCo_(1-y)FeyO_3 perovskites, Catalysis Letters, 113(3-4): 130-140, 2007
    96. Oliva C., Forni L., EPR and XRD as probes for activity and durability of LaMnO3 perovskite-like catalysts, Catalysis Communications, 1(1-4): 5-8, 2000
    97. Song K. S., Cui C. H. X., Kim S. D., et al., Catalytic combustion of CH_4 and CO on La_(1-x)M_xMnO_3 perovskites, Catalysis Today, 47(1-4): 155-160, 1999
    98. Zhong Z. Y., Chen K. D., Ji Y., et al., Methane combustion over B-site partially substituted perovskite-type LaFeO_3 prepared by sol-gel method, Applied Catalysis A, 156(1): 29-41,1997
    99. Leanza R., Rossetti I., Fabbrini L., Oliva C., Forni L., Perovskite catalysts for the catalytic flameless combustion of methane: Preparation by flame-hydrolysis and characterisation by TPD-TPR-MS and EPR, Applied Catalysis B, 28(1): 55-64, 2000
    100. O'Connell M., Norman A. K., Huttermann C. E, Morris M. A., Catalytic oxidation over lanthanurn-transition metal perovskite materials, Catalysis Today, 47(1-4): 123-132, 1999
    101. Delmastro A., Mazza D., Ronchetti S., et al., Synthesis and characterization of non- stoi-ehiometrie LaFeO_3 perovskite, Materials Science and Engineering B, 79(2): 140-145,2001
    102. Spinicci R., Tofanari A., Delmastro A., et al., Catalytic properties of stoichiometric and non-stoichiometric LaFeO_3 perovskite for total oxidation of methane, Materials Chemistry and Physics, 76(1): 20-25, 2002
    103. Spinicci R., Delmastro A., Ronchetti S., et al. Catalytic behaviour of stoichiometric and non-stoichiometric LaMnO_3 perovskite towards methane combustion, Materials Chemistry and Physics, 78(2): 393-399, 2003
    104. Ciambelli P., Palma V., Tikhov S. F., et al., Catalytic activity of powder and monolith perovskites in methane combustion, Catalysis Today, 47(1-4): 199-207, 1999
    105. Zhang H. M., Teraoka Y., Yamazoe N., Preparation of supported La_(1-x)Sr_xMnO_3 catalysts by the citrate process, Applied Catalysis, 41: 137-146, 1988
    106. Marti P. E., Maciejewski M., Baiker A., Study of Surface Science and Catalysis, 91: 617,1995
    107. Marti P.E., Maciejewski M., Balker A., Methane combustion over La_(0.8)Sr_(0.2)MnO_(3+x) supported on MAl_2O_4 (M = Mg, Ni and Co) spinels, Applied Catalysis B, 4: 225-235, 1994
    108. Zwinkels M. E M., Haussner O., Menon E G., et al., Preparation and characterization of LaCrO_3 and Cr_2O_3 methane combustion catalysts supported on LaAl_(11)O_(18)- and Al_2O_3- coated monoliths, Catalysis Today, 47(1-4): 73-82, 1999
    109. Cimino S., Lisi L., Phone R., et al. Methane combustion on perovskites-based structured catalysts, Catalysis Today, 59(1-2): 19-31, 2000
    110. Li S. Q., Liu, H. T., et al., Mn-substituted Ca-La-hexaaluminate nanoparticles for catalytic combustion of methane, Catalysis communication, 8 (3): 237-240, 2007
    111. Cimino S., Pirone R., Lisi L., Zirconia supported LaMnO_3 monoliths for the catalytic combustion of methane, Applied Catalysis B, 35(4): 243-254, 2002
    112. Cimino S., Colonna S., De Rossi S., et al. Methane Combustion and CO Oxidation on Zirconia-Supported La, Mn Oxides and LaMnO_3 Perovskite, Journal of Catalysis, 205(2):309-317, 2002
    113. Labhsetwar N. K., Watanabe A., Mitsuhashi T., et al. Thermally stable ruthenium-based catalyst for methane combustion, Journal of Molecular Catalysis A, 223(1-2): 217-223, 2004
    114. Marchetti L., Forni L., Catalytic combustion of methane over perovskites, Applied Catalysis B, 15(3-4): 179-187, 1998
    115. Ferri D., Forni L., Methane combustion on some perovskite-like mixed oxides, Applied Catalysis B, 16(2): 119-126, 1998
    116. Burch R., Harris P. J. F., Pipe C., Preparation and characterisation of supported La_(0.8)Sr_(0.2)MnO_(3+x),Applied Catalysis A, 210(1-2): 63-73, 2001
    117. Oliva C., Forni L., Vishniakov A.V., Spin glass formation in La_(0.8)Sr_(0.1)CoO_3 catalyst for flameless combustion of methane Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 56(2): 301 -307, 2000
    118. Alifanti M., Kirchnerova J., Delmon B., Effect of substitution by cerium on the activity of LaMnO_3 perovskite in methane combustion, Applied Catalysis A, 245(2): 231-244, 2003
    119. Auer R., Alifanti M., Delmon B., et al. Catalytic combustion of methane in the presence of organic and inorganic compounds over La_(0.8)Ce_(0.1)CoO_3 catalyst, Applied Catalysis B, 39(4):311-318, 2002
    120. Choudhary V. R., Uphade B. S., Pataskar S. G., Low temperature complete combustion of methane over Ag-doped LaFeO_3 and LaFe_(0.5)Co_(0.5)O_3 perovskite oxide catalysts, Fuel, 78(8):919-921, 1999
    121. Zhong Z. Y., Chen K. D., Ji Y., et al. Methane combustion over B-site partially substituted perovskite-type LaFeO_3 prepared by sol-gel method, Applied Catalysis A, 156(1): 29-41,1997
    122. Dai, XP, Wu, Q, et al., Hydrogen production from a combination of the water-gas shift and redox cycle process of methane partial oxidation via lattice oxygen over LaFeO_3 perovskite catalyst, Journal of Physics and Chemistry B, 110 (51): 25856-25862, 2006
    123. Alifanti M., Kirchnerova J., Delmon B., et al. Methane and propane combustion over lanthanum transition-metal perovskites: role of oxygen mobility, Applied Catalysis A, 262(2):167-176, 2004
    124. Saracco G., Scibilia G., Iannibello A., et al. Methane combustion on Mg-doped LaCrO_3 perovskite catalysts, Applied Catalysis B, 8(2): 229-244, 1996
    125. Saracco G., Geobaldo F., Baldi G., Methane combustion on Mg-doped LaMnO_3 perovskite catalysts, Applied Catalysis B, 20(4): 277-288, 1999
    126. Rosso I., Garrone E., Geobaldo F., et al. Sulphur poisoning of LaMn_(1-x)Mg_xO_3 catalysts for natural gas combustion, Applied Catalysis B, 30(1-2): 61-73, 2001
    127. Ciambelli P., Cimino S., De Rossi S., et al. AFeO_3 (A=La, Nd, Sm) and LaFe_(1-x)Mg_xO_3 perovskites as methane combustion and CO oxidation catalysts: structural, redox and catalytic properties, Applied Catalysis B, 29(4): 239-250, 2001
    128. Ciambelli P., Cimino S., Lasorella G., et al. CO oxidation and methane combustion on LaAl_(1-x)Fe_xO_3 perovskite solid solutions, Applied Catalysis B, 37(3): 231-241, 2002
    129. Cimino S., Lisi L., De Rossi S., et al. Methane combustion and CO oxidation on LaAl_(1-x)Mn_xO_3 perovskite-type oxide solid solutions, Applied Catalysis B, 43(4): 397-406,2003
    130. Machida M., Kawasaki H., Eguchi K., et al., Chemical Letters, 1461, 1988
    131.王军威,徐金光,田志坚等,Ba、Mn对Al_2O_3热稳定性和甲烷催化燃烧活性的影响,物理化学学报,18(11):1018-1022,2002
    132. Jang B. W. L., Nelson R. M., Spivey J. J., et. al. Catalytic oxidation of methane over hexaaluminates and hexaaluminate-supported Pd catalysts, Catalysis Today, 47(1-4): 103-113,1999
    133. Berg M.; Jaras S., High temperature stable magnesium oxide catalyst for catalytic combustion of methane: A comparison with manganesesubstituted barium hexaaluminate, Catalysis Today, 26(3-4): 223-229, 1995
    134. Artizzu-Duart P., BrulleY., Gaillard F., et al. Catalytic combustion of methane over copper- and manganese-substituted barium hexaaluminates, Catalysis Today, 54(1): 181-190, 1999
    135. Artizzu-Duart P., Millet J. M., Guilhaume N., et al. Catalytic combustion of methane on substituted barium hexaaluminates, Catalysis Today, 59(1-2): 163-177, 2000
    136. Kikuchi R., Takeda K., Sekizawa K., et al, Thick-film coating of hexaaluminate catalyst on ceramic substrates and its catalytic activity for high-temperature methane combustion, Applied Catalysis A, 218(1-2): 101-111,2001
    137. Yeh T. F., Lee H. G., Chu K. S., et al., Characterization and catalytic combustion of methane over hexaaluminates, Materials Science and Engineering A, 384(1-2): 324-330, 2004
    138. Machida M., Sato A., Kijima T., et al. Catalytic properties and surface modification of hexaaluminate microcrystals for combustion catalyst, Catalysis Today, 26(3-4): 239-245,1995
    139. Zarur A. J., Ying J. Y., Reverse microemulsion synthesis of nanostructured complex oxides for catalytic combustion, Nature, 403: 65-67, 2000
    140. Eguch K., Aral H., Recent advances in high temperature catalytic combustion, Catalysis Today, 29: 379-386, 1996
    141.徐金光,田志坚,王军威等,CeO_2/BaMnAl_(11)O_(19-a)催化剂制备及甲烷催化燃烧研究,化学学报,62(4):373-376,2004
    142. Sekizawa K., Eguchi K., Widjaja H., et al., Property of Pd-supported catalysts for catalytic combustion, Catalysis Today, 28(3): 245-250, 1996
    143. Ocal M., Oukaci R., Marcelin G., et al., Steady-state isotopic transient kinetic analysis on Pd-supported hexaaluminates used for methane combustion in the presence and absence of NO, Catalysis Today, 59(1-2): 205-217, 2000
    144.翟彦青,孟明,陈久龄等,La、Ba离子对高温燃烧催化剂六铝酸盐结构和性质的影响,应用化学,22(3):320-325,2005
    145.杨乐夫,袁强,史春开等,高温催化燃烧技术及其核催化剂的研制,厦门大学学报(自然科学版),40(3):486-494,2001
    146. Sohn J. M., Kim M. R., Woo S. I., The catalytic activity and surface characterization of Ln_2B_2O_7 (Ln=Sm, Eu, Gd and Tb; B=Ti or Zr) with pyrochlore structure as novel CH4 combustion catalyst, Catalysis Today, 83(1-4): 289-297,2003
    
    147. Rosso I., Garrone E., Geobaldo F, et al. Sulphur poisoning of LaMn_(1-x)Mg_xO_3·yMgO catalysts for methane combustion, Applied Catalysis B, 34(1): 29-41, 2001
    
    148. Rosso I., Saracco G, Specchia V., et al. Sulphur poisoning of LaCr_(0.5-x)Mn_xMg_(0.5)O·yMgO catalysts for methane combustion, Applied Catalysis B, 40(3): 195-205, 2003
    
    149. Fomenko E. V., Kondratenko E. V., Salanov A. N., et. al. Novel microdesign of oxidation catalysts. Part 1. Glass crystal microspheres as new catalysts for the oxidative conversion of methane, Catalysis Today, 42(3): 267-272,1998
    
    150. Anshits A. G, Kondratenko E. V., Fomenko E. V., et. al. Novel glass crystal catalysts for the processes of methane oxidation, Catalysis Today, 64(1-2): 59-67, 2001
    
    151. Baiker A., Muller C. A., Koeppel R. A.,et al. Methane combustion over catalysts prepared by oxidation of ternary Pd_(15)X_(10)Zr_(75) (X = Co, Cr, Cu, Mn and Ni) amorphous alloys, Applied Catalysis A, 145(1-2): 335-349,1996
    
    152. Jiratova K., Cuba P., Kovanda F., et al. Preparation and characterisation of activated Ni (Mn)/Mg/Al hydrotalcites for combustion catalysis, Catalysis Today, 76(1): 43-53, 2002
    
    153. Finocchio E., Busca G, Lorenzelli V., et al. The Activation of Hydrocarbon C-H Bonds over Transition Metal Oxide Catalysts: A FTIR Study of Hydrocarbon Catalytic Combustion over MgCr_2O_4, Journal of Catalysis, 151(1): 204-215,1995
    
    154. Marinho E. P., Souza A. G, de Melo D. S., et al.Lanthanum chromites partially substituted by calcium, strontium and barium synthesized by urea combustion, Journal of Thermal Analysis and Calorimetry, 87 (3): 801-804,2007
    
    155.Muller C. A., Maciejewski M., Koeppel R. A., et al. Combustion of Methane over Palladium/Zirconia Derived from a Glassy Pd-Zr Alloy: Effect of Pd Particle Size on Catalytic Behavior, Journal of Catalysis, 166(1): 36-43,1997
    
    156. Miao S. J., Deng Y. Q., Au-Pt/Co_3O_4 catalyst for methane combustion, Applied Catalysis B, 31(3): L1-L4, 2001
    
    157. Gonzalez-Burillo M., Barbosa A. L., Herguido J., et al. The influence of the permeation regime on the activity of catalytic membranes for methane combustion, Journal of Catalysis, 218(2): 457-459, 2003
    
    158. Lojewska J., Kolodziej A., Zak J., et al., Pd/Pt promoted Co_3o_4 catalysts for VOCs combustion preparation of active catalyst on metallic carrier, Catalysis Today, 105 (3-4):655-661, 2005
    159. Wang L. F., Vien V. D., et al., Preparation of platinum catalysts supported on anodized aluminum for VOC catalytic combustion: The effect of sintering, Journal of Chemical Engineering of Japan, 39 (8): 889-895, 2006
    160. Cadete S., Aires F. J., Ramirez S., et al. Application of Pd/α-Si_3N_4 catalysts to radiant panels using methane catalytic combustion to obtain infrared emission, Applied Catalysis A, 238(2):289-301, 2003
    161. Spinicci R., Tofanari A., A study of the catalytic combustion of methane in non-steady conditions, Applied Catalysis A, 227(1-2): 159-169, 2002
    162. Kirchnerova J., Alifanti M., Delmon B., Evidence of phase cooperation in the LaCoO_3-CeO_2-Co_3O_4 catalytic system in relation to activity in methane combustion, Applied Catalysis A, 231(1-2): 65-80, 2002
    1.辛勤,固体催化剂研究方法,科学出版社,2004
    2.吴越.催化化学,科学出版社,1998
    3.黄开辉,万惠林.催化原理,科学出版社,1983
    4.储伟,催化剂工程,四川大学出版社,2006
    5.J.M.托马斯,R.M.兰伯特.催化剂的表征,化学工业出版社,1987
    6.刘维桥,孙桂大,固体催化剂实用研究方法,中国石化出版社,2000
    7.闵恩泽,工业催化剂的设计与开发,中国石化出版社,1997
    8.王桂茹.催化剂与催化作用,2000
    9.陈诵英,孙予罕,丁云杰等.吸附与催化,河南科学技术出版社,2001
    10.刘希尧译,Delgass W.N.著,波谱学在多相催化中的应用,化学工业出版社,1989
    11.黄利宏,储伟,洪景萍等,碳纳米管对CO加氢制含氧化合物用Rh-Ce-Mn/SiO_2的影响催化学报,27(7):596~600,2006
    12. Chen M. H., Chu W., Dai X. Y., Zhang X. W., New palladium catalysts prepared by a glow discharge plasma for the selective hydrogenation of acetylene , Catal. Today, 89 (1-2):201-204, 2004
    13. Xu J. Q., Chu W., Luo S. Z. et al., Synthesis and characterization of mesoporous V-MCM-41 molecular sieves with good hydrothermal and thermal stability, Jounal of Molecular Catalysis A, 256(1-2): 48-56, 2006
    14.缪建英,含铈固态溶液及负载催化剂的甲烷催化燃烧反应性能研究,博士毕业论文,厦门大学,1999
    15.张鑫,整体式催化剂上甲烷催化燃烧的研究,博士毕业论文,四川大学,2002
    16.薛用芳,固体催化剂的研究方法 第二章 分析电子显微镜(上),石油化工29(3):227-235,2000
    17.薛用芳,固体催化剂的研究方法 第二章 分析电子显微镜(下),石油化工29(4):303-314,2000
    18.刘金香,固体催化剂的研究方法 第三章 热分析在催化研究中的应用(上),石油化工29(5):378-391,2000
    19.刘金香,固体催化剂的研究方法 第三章 热分析在催化研究中的应用(下),石油化工29(6):461-469,2000
    20.辛勤,梁长海,固体催化剂的研究方法 第八章 红外光谱法(上),石油化工30(1):72-85,2001
    21.辛勤,梁长海,固体催化剂的研究方法 第八章 红外光谱法(中),石油化工30(2): 157-167,2001
    22.辛勤,梁长海,固体催化剂的研究方法 第八章 红外光谱法(下),石油化工30(3):246-253,2001
    23.黄惠忠,固体催化剂的研究方法 第九章 表面分析方法(上),石油化工30(4):325-339,2001
    24.黄惠忠,固体催化剂的研究方法 第九章 表面分析方法(中),石油化工30(5):414-423,2001
    25.黄惠忠,固体催化剂的研究方法 第九章 表面分析方法(下),石油化工30(6):491-499,2001
    1. Choudhary T. V., Banerjee S., Choudhary V. R., Catalysts for combustion of methane and lower alkanes, Applied Catalysis A: General, 234(1-2): 1-23, 2002
    2. You Z. X., Balint L., Aika K. I., Catalytic combustion of methane over microemulsion-derived MnOx-Cs_2O-Al_2O_3 nanocomposites, Applied Catalysis B: Environmental, 53(4):233-244, 2004
    3. Ozawa Y., Tochihara Y., Watanabe A., et al., Deactivation of pt·pdO/Al_2O_3 in catalytic combustion of methane, Applied Catalysis A: General, 259(1): 1-7, 2004
    4.卢冠忠,郭耘,郭杨龙,稀土在石化燃料催化燃烧中的作用及其研究,中国基础科学,4:19-23,2003
    5. Petryk J., Kotakowska E., Cobalt oxide catalysts for ammonia oxidation activated with cerium and lanthanum, Applied Catalysis B: Environmental, 24:121-128, 2000
    6. Garrido P. A. M., Souza M. J. B., Melo D. M. A., et al., Systems involving cobalt and cerium oxides: characterization and catalytic behavior in the C_6-C_7 n-alkanes combustion, Solid State Sciences, 5: 725-728, 2003
    7. Milt V. G., Ulla M. A., Lombardo E. A., Zirconia-Supported Cobalt as a Catalyst for Methane Combustion, Journal of Catalysis, 200: 241-249, 2001
    8. Alifanti M., Blangenois N., Florea M., et al., Supported Co-based perovskites as catalysts for total oxidation of methane, Applied Catalysis A: General, 280: 255-265, 2005
    9. Kirchnerova J., Alifanti M., Delmon B., Evidence of phase cooperation in the LaCoO_3-CeO_2-Co_3O_4 catalytic system in relation to activity in methane combustion, Applied Catalysis A:General, 231 (1-2): 65-80, 2002
    10. Ferreira-Aparicio P., Rodriguez-Ramos I., Guerrero-Ruiz A., Methane interaction with silica and alumina supported metal catalysts, Applied Catalysis A: General, 148: 343-356, 1997
    11.陈铜,李文钊,张晋芬等,钴基催化剂上乙烷氧化脱氢的催化作用,化学学报,62(18):1760-1764,2004
    12. Geobaldo E, Onida B., Rivolo P., et al., Nature and reactivity of Co species in a cobalt-containing beta zeolite: an FTIR study, Catalysis Today, 70:107-119, 2001
    13. Yang S. X., Feng Y. J., Wan J. E, et al., Effect of CeO_2 addition on the structure and activity of RuO_2/g-Al_2O_3 catalyst, Applied Surface Science, 246: 222-228, 2005
    14. Larachi E, Pierre J., Adnot A., et al., Ce 3d XPS study of composite Ce_xMn_(1-x)O_(2-y) wet oxidation catalysts, Applied Surface Science, 195: 236-241, 2002
    15. Voβ M., Borgmann D., Wedler G., Characterization of Alumina, Silica, and Titania Supported Cobalt Catalysts, Journal of Catalysis, 212:10-21, 2002
    16. Dutta P., Elbashir N. O., Manivannan A., et al., Characterization of Fischer-Tropsch cobalt-based catalytic systems (Co/SiO_2 and Co/Al_2O_3) by X-ray diffraction and magnetic Measurements, Catalysis Letters, 98: 203-210, 2004
    17.黄传敬,王冬杰,费金华等,载体对负载钴催化剂CH_4/CO_2重整反应的影响,应用化学,17(2):121-125,2000
    18.李剑锋,侯学锋,代小平等,不同载体和前驱体对钴基催化剂浆相费托合成性能的影响,石油大学学报(自然科学版),28(5):94-98,2004
    19. Kirchnerova J., Klvana D., Design criteria for high-temperature combustion catalysts,Catalysis Letters, 67:175-181, 2000
    20. Parvulescu V., Ruwet M., Grange P., et al., Preparation, characterisation and catalytic behaviour of cobalt-niobia catalysts, Journal of Molecular Catalysis: A, 135:75-88, 1998
    21.银董红,李文怀,钟炳等,中孔分子筛负载钴催化剂的制备及在费托合成中的催化性能,催化学报,21(3):221-224,2000
    22.代小平,余长春,沈师孔,助剂CeO_2对Co/Al_2O_3催化剂上FT合成反应性能的影响,催化学报,22(2):104-108,2001
    23.杨文书,银董红,常杰等,助剂对Co/HMS催化剂结构和F-T合成性能的影响,化学学报,61(5):681-687,2003
    24.袁强,氧化铝为载体的负载型钯催化剂对甲烷催化燃烧反应性能的研究,硕士毕业论文,厦门大学,2001
    25.廖仕杰,新型催化剂上催化燃烧动力学研究及反应器数学模拟,硕士毕业论文,华东理工大学,2001
    26.单明,甲烷催化燃烧用催化剂的研究,硕士毕业论文,华东理工大学,2003
    1.代小平,余长春,沈师孔,钴负载量和焙烧温度对F-T合成用Co/Al_2O_3 催化剂活性的影响,催化学报,21(2):161-164,2000
    2.孟明,林培琰,伏义路,氧化态CoO/Al_2O_3催化剂的结构与反应性能研究Ⅰ活性及体相、表相结构表征,分子催化,14(2):87-92,2000
    3.孟明,林培琰,伏义路等,氧化态CoO/Al_2O_3催化剂的结构与反应性能研究Ⅱ钴物种微观结构的XAFS表征,分子催化,14(3):161-165,2000
    4.陈铜,李文钊,Martin G.A.等,可动氧与载体对钴基催化剂的乙烷氧化脱氢性能的影响,催化学报,21(3):204-208,2000
    5.杨华明,李云龙,唐爱东等,固相合成CO_3O_4纳米晶及晶化动力学研究,材料热处理学报,26(4):1-5,2005
    6. Mekhemer G. A. H., Abd-Allah H. M. M., Mansour. S. A. A., Surface characterization of silica-supported cobalt oxide catalysts. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 160:251-259, 1999
    7. Jabl6nski J. M., Okal J., Potoczna-Petru D., et al., High temperature reduction with hydrogen, phase composition, and activity of cobalt/silica catalysts, Journal of Catalysis, 220: 146-160,2003
    8. Karthik M., Tripathi A. K., Gupta N. M., et al., Characterization of Co,Al-MCM-41 and its activity in the t-butylation of phenol using isobutanol, Applied Catalysis A: General, 268: 139-149,2004
    9.李亚男,郭晓红,周广栋等,Co-MCM41和Co-MCM48分子筛的合成与表征及其对临CO_2乙烷脱氢反应的催化性能,催化学报,26(7):591-596,2005
    10.邵建军,张平,唐幸福等,制备方法及焙烧温度对CO_3O_4/CeO_2催化剂上CO低温氧化反应的影响,催化学报,28(2):163-169,2007
    11. Sexton B. A., Hughes A. E., Turney T. W., An XPS and TPR study of the reduction of promoted cobalt-kieselguhr Fischer-Tropsch catalysts, Journal of Catalysis, 97(2): 390-406,1986
    12. Lin H. Y., Chen. Y. W., The mechanism of reduction of cobalt by hydrogen, Materials Chemistry and Physics, 85:171-175, 2000
    13. Masaoki O., Yoshito S., In-situ X-ray photoelectron spectroscopic study of the reversible phase transition between CoO and Co_3O_4 in oxygen of 10~(-3) Pa, Applied Surface Science,55(11): 37-41, 1992
    14.黄仲涛,工业催化剂手册,化学工业出版社,2004
    15.邹旭华,齐世学,贺红军等,钴氧化物负载的纳米金催化剂的制备及其性能研究,分子催化,17(4):264-269,2003
    16.韩维屏,催化化学导论,科学出版社,2003
    17.龚永强,催化剂载体-硅胶在催化反应中的应用,工业催化,2:3-13,1994
    18.索掌怀,寇元,王弘立,还原条件对CO_2加氢用Fe/TiO_2催化剂结构的影响,催化学报,22(4):348-352,2001
    19.孙中海,鲍骏,伏义路等,还原温度对超细K_2CO_2Mo催化剂合成低碳醇性能的影响,催化学报,24(11):826-830,2003
    20.熊海,石峰,邓友全,负载钴催化剂的合成及其催化环己烷和甲苯选择氧化的研究,催化学报,25(11):887-891,2004
    21.吴玉琪,吕功煊,李树本,CoO_x改性TiO_2光催化剂的制备、优化及其光催化分解水析氢性能研究,无机化学学报,21(3):309-314,2005
    22.胡瑞生,阿山,吕宏缨,沈岳年,焙烧温度对稀土钴系复合氧化物催化剂结构与性能的影响,分子催化,169:127-130,2002
    1. Sakka S., Sol-Gel Technology as Reflected in Journal of Sol-Gel Science and Technology, Journal of Sol-Gel Science and Technology, 26: 29-33, 2003
    2.黄仲涛,工业催化剂手册,化学工业出版社,2004
    3.姚楠,熊国兴,杨维慎等,硅铝催化材料合成的新进展,化学进展,12(4):376-384,2000
    4.张义华,王祥生,郭新闻,钛硅催化材料的研究进展-钛硅混合氧化物的制备与催化性能,化学进展,13(1):19-24,2001
    5.高原,马永祥,力虎林,用模板法制备TiO_2纳米线阵列膜及光催化性能的研究,高等学校化学学报,24(6):1089-1092,2003
    6.陈晓君,张敏,杨娅等,纳米溶胶凝胶膜修饰电极及电化学催化性能,分析化学,30(8):972-974,2002
    7.江继伟,汪雷,杨青等,溶胶凝胶法制备硼酸镁纳米棒,无机材料学报,21(4):833-837,2006
    8.雷翠月,陈霄榕,张敏卿等,溶胶凝胶法制氧化铝负载铜基超细粒子催化剂的研究,分子催化,12(5):375-380,1998
    9.王军威,徐金光,田志坚等,Ba、Mn对Al_2O_3热稳定性和甲烷催化燃烧活性的影响,物理化学学报,18(11):1018-1022,2002
    10.熊海,石峰,邓友全,负载钴催化剂的合成及其催化环己烷和甲苯选择氧化的研究,催化学报,25(11):887-891,2004
    11.陈一民,许静,谢凯等,Cu/SiO_2纳米复合气凝胶的制备与表征,材料工程,8:43-46,2005
    12.赵惠忠,葛山,汪厚植等,Cu/SiO_2纳米气凝胶的组成及催化氧化CO性能研究,高等学 校化学学报,27(5):914-919,2006
    13.廖辉俊,正硅酸乙酯的Sol-Gel法应用研究,新技术新工艺(材料与表面处理),4:45-47,2004
    14.徐耀,吴东,孙予罕等,小角x射线散射法研究氧化硅溶胶的制备环境依赖性,物理学报,54(6):2807-2814,2005
    15.顾宇辉,古宏晨,徐宏等,正硅酸乙酯水解过程的半经验量子化学研究,无机化学学报,19(12):2807-2814,2003
    16.张宁,熊裕华,溶胶凝胶法制备纳米二氧化硅,南昌大学学报(理科版),27(3):267-269,2003
    17. Jiu J. T., Ge Y., Li X. N., Nie L., Preparation of Co_3O_4 nanoparticles by a polymer combustion route, Materials Letters, 54: 260-263, 2002
    18. Diaz R., Lazo M. F., Spectroscopic Study of CuO/CoO Catalysts Supported by Si-Al-Y Zeolite Matrices Prepared by Two Sol-Gel Methods, Journal of Sol-Gel Science and Technology, 17: 137-144, 2000
    19. Innocenzi P., Infrared spectroscopy of sol-gel derived silica-based films: spectra-micro structure overview, Journal of Non-Crystalline Solids, 316: 309-319, 2003
    20.王娟,张长瑞,冯坚等,纳米多孔SiO_2薄膜的制备与红外光谱研究,光谱学与光谱分析,25(7):1045-1048,2005
    21. Puskas I., Fleisch T. H., Full P. R., et al., Novel aspects of the physical chemistry of Co/SiO_2 Fischer-Tropsch catalyst preparations The chemistry of cobalt silicate formation during catalyst preparation or hydrogenation, Applied Catalysis A: General, 311: 146-154, 2006
    22. Mekhemer G. A. H., Abd-Allah H. M. M., Mansour S. A. A.. Surface characterization of silica-supported cobalt oxide catalysts. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 160: 251-259, 1999
    23.赵永祥,武志刚,张临卿等,溶胶-凝胶法制备NiO-SiO_2催化剂研究,分子催化,15(5):369-373,2001
    24. Suvanto S., Hirva P., Pakkanen T. A., Interaction of Co(CO)x with surface sites of SiO_2: theoretical study, Surface Science, 465: 277-285, 2000
    25.黄进发,三价氧化钴的制备与特性鉴定,台湾国立清华大学硕士论文,2001
    26.王新宏,卢冠忠,刘晓晖等,在溶胶凝胶法制备的MoO_3/SiO_2催化剂上丙烯的环氧化 反应,催化学报,23(6):498-502,2002
    27.黄肖容,吕扬效,黄仲涛,焙烧温度对氧化铝膜孔性能的影响,无机材料学报,14(5):751-756,1999
    28.黄文来,梁开明,顾守仁,凝胶速度及煅烧对硅干凝胶表面分形性的影响,无机材料学报,14(2):302-306,1999
    29. Sales L. S., Robles-Dutenhefner P. A., Nunes D. L., et al. Characterization and catalytic activity studies of sol-gel Co-SiO_2 nanocomposites. Materials Characterization, 50: 95-99, 2003
    30.何志巍,甄聪棉,兰伟等,溶胶凝胶法制备纳米多孔SiO_2薄膜,物理学报,52(12):3130-3134,2003
    31.芦贻春,李再耕,pn值对硅溶胶凝胶化过程的影响,耐火材料,29(6):326-328,1995
    32.陈同来,陈铮,催化方式和水硅比对正硅酸乙酯的溶胶凝胶过程的影响,华东船舶工业学院学报(自然科学版),17(3):62-65,2003
    33.贾光耀,邓育新,硅溶胶凝胶化过程的研究,硅酸盐学报,6:91-93,2004
    34.赵秦生,李中军,刘长让,溶胶凝胶法制备多孔SiO_2超细粉体,中南工业大学学报,29(2):131-134,1998
    35.赵丽,余家国,程蓓等,单分散二氧化硅球形颗粒的制备与形成机理,化学学报,61(4):562-566,2003
    36.殷明志,姚熹,李振荣等,酸催化正硅酸乙脂溶胶-凝胶二氧化硅薄膜的制备,西安交通大学学报,36(8):847-880,2002
    37.王英,马亚鲁,湿化学法制备超细二氧化硅材料的研究进展,中国陶瓷,39(5):12-14,2003
    1. Liu C. J., Vissokov G. P., Jang B. W. -L., Catalyst preparation using plasma technologies, Catalysis Today, 72(3-4): 173-184, 2002
    2. Kizling M. B., Jaras S. G., A review of the use of plasma techniques in catalyst preparation and catalytic reactions, Applied Catalysis A: General, 147: 1-21, 1996
    3. Vissokov G. P., Plasma-chemical preparation of nanostructured catalysts for lowtemperature steam conversion of carbon monoxide: Catalytic activity, Catalysis Today, 89(1-2): 223-231, 2004
    4. Vissokov G. P., On the plasma-chemical synthesis and/or regeneration of ultradispersed catalysts for ammonia production, Catalysis Today, 72(3-4): 197-203, 2002
    5. Vissokov G. P., Panayotova M. I., Plasma-chemical synthesis and regeneration of catalysts for reforming natural gas, Catalysis Today, 72(3-4): 213-221, 2002
    6. Shim H., Phillips J., Fonseca I. M., Carabinerio S., Plasma generation of supported metal catalysts, Applied Catalyisi A: General, 237(1-2): 41-51, 2002
    7. Gordon C. L., Lobban L. L., Mallinson R. G., Ethylene production using a Pd and Ag-Pd-Y-zeolite catalyst in a DC plasma reactor, Catalysis Today, 84(1-2): 51-57, 2003
    8. Furukawa K., Tian S. R., Yamauchi H., et al., Characterization of H-Y zeolite modified by a radio-frequency CF_4 plasma, Chemical Physics Letters, 318(1-3): 22-26, 2000
    9. Wang J. G., Liu C. J., Zhang Y. P., et al., Partial oxidation of methane to syngas over glow discharge plasma treated Ni-Fe/Al_2O_3 catalyst, Catalysis Today, 89(1-2): 183-191, 2004
    10. Liu C. J., Yu K. L., Zhang Y. P., et al., Eliasson B., Characterization of plasma treated Pd/HZSM-5 catalyst for methane combustion, Applied Catalysis B, 47(2): 95-100, 2004
    11. Liu C. J., Yu K. L., Zhang Y. P., et al., Remarkable improvement in the activity and stability of Pd/HZSM-5 catalyst for methane combustion, Catalysis Communications, 4(7): 303-307, 2003
    12. Legrand J. C., Diamy A. M., Riahi G., et al., Application of a dihydrogen afterglow to the preparation of zeolite-supported metallic nanoparticles, Catalysis Today, 89(1-2): 177-182, 2004
    13. Li Z. H., Tian S. X., Wang H. T., Tian H. B., Plasma treatment of Ni catalyst via a corona discharge, Journal of molecular catalysis A, 211(1-2): 149-153, 2004
    14.王保伟,许根慧,刘昌俊,等离子体技术在天然气化工中的应用,化工学报,52(8):659-665
    15. Mascia L., Zhang Z., Dense outer layers formed by plasma treatments of silica coatings produced by the sol-gel method, Journal of material science, 32: 667-674, 1997
    16.陈一民,谢凯,盘毅等,含钴硅酸乙酯的Sol-Gel法制备Co/SiO_2纳米复合气凝胶, 硅酸盐学报,29(2):132-136,2001
    17. Chen M. H., Chu W., Dai X. Y., Zhang X. W., New palladium catalysts prepared by a glow discharge plasma for the selective hydrogenation of acetylene, Catal. Today, 89(1-2): 201-204, 2004
    18.陈慕华,储伟,张雄伟,射频等离子体制备乙炔选择加氢催化剂及其性能研究,催化学报,24(10):775-778,2003
    19. Yang S. X., Feng Y. J., Wan J. F., et al., Effect of CeO_2 addition on the structure and activity of RuO_2/g-Al_2O_3 catalyst, Applied Surface Science, 246: 222-228, 2005
    20. Pecchi G., Reyes P., Lopez T., et al. Pd-CeO_2 and Pd-La_2O_3/alumina-supported catalysts: their effect on the catalytic combustion of methane, Journal of Non-Crystalline Solids, 345(46): 624-627, 2004
    21.胡征,等离子体化学基础(1),化工时刊,10:35-40,1999
    22.胡征,等离子体化学基础(2),化工时刊,11:39-43,1999
    23.胡征,等离子体化学基础(3),化工时刊,12:41-45,1999
    24.胡征,等离子体化学基础(4),化工时刊,13:43-47,1999
    25.胡征,等离子体化学基础(5),化工时刊,14:45-49,1999
    1. Beck S. J., Vartuli J. C., Roth W. J., et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates, Journal of American Chemistry Society, 114: 10834~10843, 1992
    2. Kresge C. T., Leonowicz M. E., Roth W. J. et al. Nature, 359: 710~712, 1992
    3. Fendler J. H., Self-Assembled Nanostructured Materials, Chemistry of Materials, 8(8): 1616- 1624, 1996
    4. Anwander R., Surface Organometallic Chemistry at Periodic Mesoporous Silica, Chemistry of Materials, 13(12): 4419-4438, 2001
    5.赵丽,余家国,赵修建等,介孔纳米结构材料的研究与发展,稀有金属材料与工程,33(1):5-10,2004
    6. Schuth F., Non-siliceous Mesostructured and Mesoporous Materials, Chemical Materials, 13(10): 3184-3195, 2001
    7.陈龙,陈文,马志勇等,过渡金属体系有序介孔材料研究进展,材料导报,18(1):10-12,2004
    8. Williams T., Beltramini J., Lu G. Q., Effect of the preparation technique on the catalytic properties of mesoporous V-HMS for the oxidation of toluene, Microporous and Mesoporous Materials, 88(1-3): 91-100, 2006
    9. Lim S., Ciuparu D., Pak C., et al., Synthesis and characterization of highly ordered Co-MCM-41 for production of aligned single walled carbon nanotubes(SWNT), Journal of Physical Chemistry B, 107(40): 11048-11056, 2003
    10.徐丽,冯钰铸,达世禄等,有序介孔材料在分离科学中的应用,分析化学,32(3):374-380,2004
    11.苗小郁,李健生,王连军等,介孔材料在环境科学中的应用进展,化工进展,24(9):998-1001,2005
    12. Tissue B. M., Synthesis and Luminescence of Lanthanide Ions in Nanoscale Insulating Hosts, Chemistry of Materials, 10(10): 2837-2845, 1998
    13.汤清虎,赵培真,张庆红等,Co-MCM-41的表征及其催化苯乙烯环氧化性能,催化学报,26(11):1031-1036,2005
    14.李亚男,郭晓红,周广栋等,Co-MCM41和Co-MCM48分子筛的合成与表征及其对临CO_2乙烷脱氢反应的催化性能,催化学报,26(7):591-596,2005
    15. Parvulescu V., Tablet C., Anastasescu C., Su B. L., Activity and stability of bimetallic Co(V, Nb, La)-modified MCM-41 catalysts, Catalysis Today, 93-5: 307-313, 2004
    16. Vetrivel S., Pandurangan A., Co and Mn impregnated MCM-41: their applications to vapour phase oxidation of isopropylbenzene, Journal of Molecular Catalysis A, 227(1-2): 269-278, 2005
    17.杨文书,房鼎业,相宏伟等,Co/HMS和Co/SiO_2催化剂的表征及在费-托合成反应中的催化性能,催化学报,26(4):329-334,2005
    18.银董红,李文怀,钟炳等,中孔分子筛负载钴催化剂的制备及在费托合成中的催化性能,催化学报,21(3):221-224,2000
    19.李苑,介孔分子筛的合成及其在F-T钴基催化剂中的应用,暨南大学硕士学位论文,2003
    20. Khodakov A. Y., Bechara R., Griboval-Constant A., Fischer-Tropsch synthesis over silica supported cobalt catalysts: mesoporous structure versus cobalt surface density, Applied Catalysis A: General, 254: 273-288, 2003
    21.杨文书,银董红,常杰等,助剂对Co/HMS催化剂结构和F-T合成性能的影响,化学学报,61(5):681-687,2003
    22.王涛,丁云杰,熊建民等,Zr助剂对Co/AC催化剂催化费托合成反应性能的影响,催化学报,26(3):178-182,2005
    23. Stakheev A. Y., Lee C. W., Park S. J., et al., Selective catalytic reduction of NO with propane over Co-ZSM-5 containing alkaline earth cations, Applied catalysis B: Environmental, 9: 65-76, 1996
    24. Huo Q., Margolese D. L., Ciesla U., et al., Generalized Synthesis of Periodic Surfacant/Inorganic Composite Materials, Nature, 368: 317-321, 1994
    25. Kruk M., Jaroniec M., Ko C. H., et al., Characterization of the Porous Structure of SBA-15, Chemistry of Materials, 12: 1961-1968, 2000
    26.徐如人,庞文琴,分子筛与多孔材料化学,科学出版社,2004
    27. Ravikovitch P. I., Neimark A. V., Experimental Confirmation of Different Mechanisms of Evaporation from Ink-Bottle Type Pores: Equilibrium, Pore Blocking, and Cavitation, Langmuir, 18: 9830-9837, 2002
    28. Vishnyakov A., Neimark A. V., Monte Carlo Simulation Test of Pore Blocking Effects, Langmuir, 19: 3240-3247, 2003
    29. Zhao D. Y., Feng J. L., Huo. Q. S., et al., Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores, Science, 279: 548-552, 1998
    30.周丽绘,张利中,刘洪来,晶化温度对介孔材料SBA-15结构与形貌的影响,过程工程学报,6(3):499-502,2006
    31.孙锦玉,赵东元,“面包围”状高有序度大孔径介孔分子筛SBA-15的合成,高等学校化学学报,21(1):21-23,2000
    32. Stevens W. J. J., Lebeau K., M. Mertens, et al., Investigation of the Morphology of the Mesoporous SBA-16 and SBA-15 Materials, Journal of Physics Chemistry B, 110: 9183-9187, 2006
    33. Kong Y., Zhu H. Y., Yang G., Guo X. F., Hou W. H., Yan Q. J., Gu M., Hu C., Investigation of the structure of MCM41 samples with a high copper content, Advanced Functional Materials, 14(8): 816-820, 2004
    34. Khodakov A. Y., Zholobenko V. L., Bechara R., Dominique Durand Impact of aqueous impregnation on the long-range ordering and mesoporous structure of cobalt containing MCM-41 and SBA-15 materials, Microporous and Mesoporous Materials, 79: 29-39, 2005
    35. Geobaldo F., Onida B., Rivolo P., et al., Nature and reactivity of Co species in a cobalt-containing beta zeolite: an FTIR study, Catalysis Today, 70: 107-119, 2001
    36. Bagnasco G., Turco M., Resini C., Montanari T., Bevilacqua M., Busca G., On the role of extemal Co sites in NO oxidation and reduction by methane over Co-H-MFI catalysts, Journal of Catalysis, 225: 536-540, 2004
    37.闫继娜,施剑林,华子乐等,CoO-NiO/SBA-15的合成与表征,化学学报,62(18):1841-1844,2004
    38.魏一伦,曹毅,朱建华等,MgO/SBA-15固体碱介孔材料的研制,无机化学学报,19(3):233-239,2003
    39. Ji S. F., Xiao T. C., Wang H. T., et al., Catalytic combustion of methane over cobalt-magnesium oxide solid solution catalysts, Catalysis Letters, 75(1-2): 65-71, 2001
    40. Derylo-MarczewskaA., Gac W., Popivnyak N., et al., The influence of preparation method on the structure and redox properties of mesoporous Mn-MCM-41 materials, Catalysis Today, 114(2-3): 293-306, 2006
    41. Puskas I., Fleisch T. H., Full P. R., et al., Novel aspects of the physical chemistry of Co/SiO_2 Fischer-Tropsch catalyst. preparations The chemistry of cobalt silicate formation during catalyst preparation or hydrogenation, Applied Catalysis A: General, 311: 146-154, 2006
    42. Christoskova S. G., Stoyanova M., Georgieva M., Low-temperature iron-modified cobalt oxide system Part 2. Catalytic oxidation of phenol in aqueous phase, Applied Catalysis A: General, 208: 243-249, 2001
    43. Lucas A. D., Valverde J. L., Dorado F, et al., Influence of the ion exchanged metal (Cu, Co, Ni and Mn) on the selective catalytic reduction of NO_x over mordenite and ZSM-5, Journal of Molecular Catalysis A: Chemical, 225: 47-58, 2005
    44. Vetrivel S., Pandurangan A., Co and Mn impregnated MCM-41: their applications to vapour phase oxidation of isopropylbenzene, Journal of Molecular Catalysis A, 227: 269-278, 2005
    45. Xiao L. H., Yang Y. X., Qiu F. Y., et al., Preparation of High-performance Zirconia-doped Cobalt Catalysts for Methane Combustion from Co-containing Carbonate, Journal of Molecular Catalysis (in China), 18(3): 167-171, 2004
    46.高海燕,相宏伟,李永旺等,助剂在钴基催化剂F-T合成重质烃反应中的应用,煤炭转化,25 (2):38-42,2002
    47. Janadaranao M., Direct Catalytic Conversion of Synthesis Gas to Lower Olefins, Industrial Engineering Chemical Research, 29: 1735-1753, 1990
    48.李丽娜,以Fe_2O_3为活性组分的甲烷燃烧催化剂的研究,硕士毕业论文,四川大学,2004
    49.周长军,二氧化锡基氧化物体系的催化燃烧性能研究,硕士毕业论文,北京大学,2001
    1. Bore M. T., Mokhonoana M. P., Ward T. L., et al., Synthesis and reactivity of gold nanoparticles supported on transition metal doped mesoporous silica, Microporous and Mesoporous Materials, 95: 118-125, 2006
    2. Mokhonoana M. P., Coville N. J., Datye A., Gold catalysts supported on Fe- and Co- MCM-41, Recent advances in the science and technology of zeolites and related materials (studies in surface science and catalysis), 154: 827-833, Part A-C, 2004
    3. Xu X. Y., Li J. J., Hao Z. P., et al., Characterization and catalytic performance of Co/SBA-15 supported gold catalysts for CO oxidation; Materials Research Bulletin, 41: 406-413, 2006
    4. Mierzwa B., EXAFS studies of bimetallic palladium-cobalt nanoclusters using Molecular Dynamics simulations, Journal of Alloys and Compounds, 401: 127-134, 2005
    5.黄传敬,王冬杰,齐共新等,甲烷二氧化碳转化钴催化剂及贵金属助剂的研究Ⅰ.Pt-Co/Al_2O_3催化剂的制备与性能,石油化工,29 (5):323-326,2000
    6.邹旭华,齐世学,贺红军等,钴氧化物负载的纳米金催化剂的制备及其性能研究,分子催化,17(4):264-269,2003
    7.禹剑,施剑林,王连洲等,Pd/PdO在MCM-41介孔材料孔表面的溶液移植,化学学报,58(2):157-161,2000
    8. Schmal M., Baldanza M. A. S., Vannice M. A., Pd-x Mo/Al_2O_3 Catalysts for NO Reduction by CO, Journal of Catalysis, 185: 138-151, 1999
    9. L' Argentière P. C., Figoli N. S., Pd-W and Pd-Co Bimetallic Catalysts' Sulfur Resistance for Selective Hydrogenation, Industrial and Engineering Chemistry Research, 36: 2543-2546, 1997
    10. Okumura K., Niwa M., Metal-support interaction which controls the oxidation state, structure and catalysis of Pd, Catalysis Surveys from Japan, 5(2): 121-126, 2002
    11. Cabeza G. F., Légaré P., Castellani N. J., Adsorption of CO on Co(0001) and Pt—Co(0001) surfaces: an experimental and theoretical study, Surface Science, 465: 286-300, 2000
    12. Eguchi K., Arai H., Low temperature oxidation of methane over Pd-based catalysts: effect of support oxide on the combustion activity, Applied Catalysis A, 222: 359-367, 2001
    13. Tyuliev G., Angelov S., The nature of excess oxygen in Co_3O_(4+ε), Applied Surface Science, 32 (4): 381-391, 1988
    14. Guczi L., Borkó. L., Schay Z., et al., CO hydrogenation and methane activation over Pd-Co/SiO2 catalysts prepared by sol/gel method, Catalysis Today, 65: 51-57, 2001
    15. Joanna L., Andrzej K., Jerzy Z., et al., Pd/Pt promoted Co_3O_4 catalysts for VOCs combustion Preparation of active catalyst on metallic carrier, Catalysis Today, 105: 655-661, 2005
    16. Belousov V. M., Stoch J., Batcherikova I. V., et al., Low-temperature hydrogen reduction of pure Co_3O_4 and doped with palladium, Applied Surface Science, 35(4): 481-494, 1989
    17. Sárkány A., Zsoldos Z., Stefler G., et al., Promoter effect of Pd in hydrogenation of 1, 3-Butadiene over Co-Pd catalysts, Journal of Catalysis, 157: 179-189, 1995
    18. Noronha F. B., Schmal M., Moraweck B., et al., Characterization of Niobia-Supported Palladium-Cobalt Catalysts, Journal of Physical Chemistry B, 104: 5478-5485, 2000
    19. Coasne B., Galameau A., Renzo F. D., and R. J. M. Pellenq, Gas Adsorption in Mesoporous Micelle-Templated Silicas: MCM-41, MCM-48, and SBA-15, Langrnuir, 22: 11097-11105, 2006
    20. Liotta L. F., Carlo G. Di, Pantaleo G., et al., Honeycomb supported catalyst for CO/CH_4 emissions abatement: Effect of low Pd-Pt content on the catalytic activity, Catalysis Communications, 8: 299-304, 2007
    21. Hoflund G. B., Li Z. H., Surface characterization study of a Pd/Co_3O_4 methane oxidation catalyst, Applied Surface Science, 253, 2830-2834, 2006
    22.张雄伟,储伟,王晓东等,氧化铝担载的铱基催化剂的制备及其甲醇裂解反应性能,催化学报,27(10):863~867,2006
    23. Janssen A. H., Yang C. M., Wang Y., et al., Localization of Small Metal (Oxide) Particles in SBA-15 Using Bright-Field Electron Tomography, Journal of Physics Chemistry B, 107, 10552-10556, 2003
    24. Wang L. F., Guo Y., Vien V. D., et al. Sintering effect of platinum catalysts on VOCs' catalytic combustion, Journal of Chemical Engineering of Japan, 39 (11): 1165-1171, 2006
    25. Hoflund G. B., Li Z. H., Surface characterization study of a Pd/Co_3O_4 methane oxidation catalyst, Applied Surface Science, 253: 2830-2834, 2006
    26. Zhu J., Kónya Z., Puntes V. F., et al., Encapsulation of Metal (Au, Ag, Pt) Nanoparticles into the Mesoporous SBA-15 Structure, Langmuir, 19: 4396-4401, 2003
    27.王立楠,张雄伟,储伟等,新型CeO_2修饰的SiO_2负载Cu-Ir双金属催化剂,高等学校化学学报,26 (8):1507-1511,2005
    28. Mulller C. A., Maciejewski M., Koeppel R. A., et al., Role of Lattice Oxygen in the Combustion of Methane over PdO/ZrO2: Combined Pulse TG/DTA and MS Study with ~(18)O-Labeled Catalyst, J. Phys. Chem., 100, 20006-20014, 1996