H3K4二甲基化修饰结合蛋白的鉴定及其功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在真核细胞中,DNA与组蛋白包装形成染色质。在现有的多种组蛋白修饰中,组蛋白赖氨酸的甲基化实际上参与了所有的以染色质为基础的生物进程,包括转录调控和DNA损伤修复。每一个赖氨酸残基能够被一甲基,二甲基或三甲基化修饰。而这些组蛋白甲基化修饰的生物效应不仅仅由特异位点的甲基化修饰决定,还受甲基化修饰的阶段影响。目前认为组蛋白甲基化修饰能供提供位点来招募(或排斥)一些被称为“阅读因子”或“效应因子”的特异的染色质相关蛋白。这些效应蛋白因此对解释甲基化密码,以及组蛋白甲基化修饰介导的生物学效应是非常关键的。因此,在本文中,我们鉴定了两个H3K4二甲基化修饰的效应因子:NRDc和PAF1复合体。
     nardilysin(NRDc),是一个M16家族的金属肽酶。在本研究中,我们鉴定到了NRDc能作为一个新的H3K4二甲基化修饰的结合蛋白。生化实验表明NRDc与转录共抑制因子NCoR复合体相关。通过microarray我们鉴定到了受NRDc抑制的下游靶基因。发现NRDc能直接与这些靶基因结合,并且与靶基因的直接结合以及对NCoR复合体的招募都是依赖于H3K4me2的结合活性。因此,我们的研究鉴定了一个新的H3K4me2结合蛋白并揭示了NRDc在转录调控的作用。
     PAF1复合体是一个RNA pol Ⅱ的转录延伸因子,并能在转录过程中能够介导多种组蛋白的修饰。在本研究中,我们发现了PAF1复合体一个新的功能——与组蛋白H3和H3K4me2特异结合,并鉴定了介导这一结合功能的关键亚基——PAF1。通过构建PAF1的缺失体蛋白进行pulldown分析,发现了PAF1介导组蛋白特异结合功能的功能区域位于C端。因此,我们的研究表明PAF1复合体能通过PAF1亚基介导H3和H3K4me2特异结合。
In eukaryotic cells, DNA is packaged with histones in the form of chromatin. Among various histone modifications identified, histone lysine methylation functions in virtually all chromatin based biological processes including transcriptional regulation and DNA damage repair. Each lysine residue can be mono-, di-, or tri-methylated. As a result, the biological effects of histone methylation are not only determined by the specific sites of methylation but also influenced by the methylation states. Mechanistically, histone methylation is believed to function at least in part as docking sites to recruit (or repel) specific chromatin-associated proteins called "reader" or "effector" proteins. The effector proteins are therefore critical for interpreting the methylation codes and thus mediate the biological effect of histone methylation. In this study, we identified two di-methylated H3K4effectors:NRDc and PAF1complex.
     nardilysin (NRDc), is a member of M16family metalloendopeptidases. In this study, we identified NRDc as a novel dimethyl-H3K4(H3K4me2) binding protein. Biochemical purification demonstrates that NRDc associates with the corepressor NCoR complex. We identified target genes repressed by NRDc through microarray. We showed that NRDc is physically associated with and recruits the NCoR complex to the target genes tested and this association requires its H3K4me2binding activity. Thus, our study has identified a novel H3K4me2binding protein and revealed a role of NRDc in transcriptional regulation.
     PAF1complex is a RNA pol Ⅱ associtated elongation factor and mediates several histone modifications in gene transcription. In this study, we identified PAF1complex as H3and H3K4me2specific binding proteins. We also found the PAF1subunit of the PAF1complex is likely responsible for H3and H3K4me2. We mapped the function domain responsible for H3and H3K4me2specific binding to the Oterminus of PAF1. Our study provides evidence that PAF1complex specificly binds H3and H3K4me2through PAF1subunit.
引文
1. Arents, G, et al., The nucleosomal core histone octamer at 3.1 A resolution:a tripartite protein assembly and a left-handed superhelix. Proc Natl Acad Sci U S A,1991.88(22):p. 10148-52.
    2. Arents, G and E.N. Moudrianakis, The histone fold: a ubiquitous architectural motif utilized in DNA compaction and protein dimerization. Proc Natl Acad Sci U S A,1995. 92(24):p.11170-4.
    3. Khorasanizadeh, S., The nucleosome: from genomic organization to genomic regulation. Cell,2004.116(2):p.259-72.
    4. Kornberg, R.D. and Y. Lorch, Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell,1999.98(3):p.285-94.
    5. Luger, K., et al., Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature,1997.389(6648):p.251-60.
    6. Wolffe, A.P. and J.J. Hayes, Chromatin disruption and modification. Nucleic Acids Res, 1999.27(3):p.711-20.
    7. Turner, B.M., Cellular memory and the histone code. Cell,2002.111(3):p.285-91.
    8. Allfrey, V.G., R. Faulkner, and A.E. Mirsky, Acetylation and Methylation of Histones and Their Possible Role in the Regulation of Rna Synthesis. Proc Natl Acad Sci U S A,1964.51: p.786-94.
    9. Zhang, Y. and D. Reinberg, Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev,2001.15(18): p.2343-60.
    10. Cheung, P., C.D. Allis, and P. Sassone-Corsi, Signaling to chromatin through histone modifications. Cell,2000.103(2):p.263-71.
    11. Grunstein, M., Histone acetylation in chromatin structure and transcription. Nature,1997. 389(6649):p.349-52.
    12. Jenuwein, T. and CD. Allis, Translating the histone code. Science,2001.293(5532):p. 1074-80.
    13. Schreiber, S.L. and B.E. Bernstein, Signaling network model of chromatin. Cell,2002. 111(6):p.771-8.
    14. Berger, S.L., The complex language of chromatin regulation during transcription. Nature, 2007.447(7143):p.407-12.
    15. Bhaumik, S.R., E. Smith, and A. Shilatifard, Covalent modifications of histones during development and diseasepathogenesis. Nat Struct Mol Biol,2007.14(11):p.1008-16.
    16. Wang, G.G., C.D. Allis, and P. Chi, Chromatin remodeling and cancer, Part I:Covalent histone modifications. Trends Mol Med,2007.13(9):p.363-72.
    17. Lo, W.S., et al., Snf1-a histone kinase that works in concert with the histone acetyltransfera.se Gcn5 to regulate transcription. Science,2001.293(5532):p.1142-6.
    18. Rea, S., et al., Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature,2000.406(6796):p.593-9.
    19. Strahl, B.D. and C.D. Allis, The language of covalent histone modifications. Nature,2000. 403(6765):p.41-5.
    20. Dhalluin, C., et al., Structure and ligand of a histone acetyltransferase bromodomain. Nature,1999.399(6735):p.491-6.
    21. Winston, F. and C.D. Allis, The bromodomain:a chromatin-targeting module? Nat Struct Biol,1999.6(7):p.601-4.
    22. Owen, D.J., et al., The structural basis for the recognition of acetylated histone H4 by the bromodomain of histone acetyltransf erase gcn5p. Embo J,2000.19(22):p.6141-9.
    23. Hassan, A.H., et al., Function and selectivity of bromodomains in anchoring chromatin-modifying complexes to promoter nucleosomes. Cell,2002.111(3):p.369-79.
    24. Levine, M. and R. Tjian, Transcription regulation and animal diversity. Nature,2003. 424(6945):p.147-51.
    25. Margueron, R., P. Trojer, and D. Reinberg, The key to development: interpreting the histone code? Curr Opin Genet Dev,2005.15(2):p.163-76.
    26. Roeder, R.G., Transcriptional regulation and the role of diverse coactivators in animal cells. FEBS Lett,2005.579(4):p.909-15.
    27. Murray, K., The Occurrence of Epsilon-N-Methyl Lysine in Histones. Biochemistry,1964. 3:p.10-5.
    28. Bannister, A.J. and T. Kouzarides, Reversing histone methylation. Nature,2005. 436(7054):p.1103-6.
    29. Klose, R.J. and Y. Zhang, Regulation of histone methylation by demethylimination and demethylation. Nat Rev Mol Cell Biol,2007.8(4):p.307-18.
    30. Bannister, A.J., et al., Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature,2001.410(6824):p.120-4.
    31. Huang, Y., et al., Recognition of histone H3 lysine-4 methylation by the double tudor domain of JMJD2A. Science,2006.312(5774):p.748-51.
    32. Kim, J., et al., Tudor, MBT and chromo domains gauge the degree of lysine methylation. EMBO Rep,2006.7(4):p.397-403.
    33. Lachner, M., et al., Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature,2001.410(6824):p.116-20.
    34. Shi, X., et al., ING2 PHD domain links histone H3 lysine 4 methylation to active gene repression. Nature,2006.442(7098):p.96-9.
    35. Taverna, S.D., et al., Yngl PHD finger binding to H3 trimethylated at K4 promotes NuA3 HAT activity at K14 of H3 and transcription at a subset of targeted ORFs. Mol Cell,2006. 24(5):p.785-96.
    36. Wysocka, J., et al., A PHD finger of NURF couples histone H3 lysine 4 trimethylation with chromatin remodelling. Nature,2006.442(7098):p.86-90.
    37. Xiao, B., et al., Structure and catalytic mechanism of the human histone methyltransferase SET7/9. Nature,2003.421(6923):p.652-6.
    38. Shi, X., et al., Proteome-wide analysis in Saccharomyces cerevisiae identifies several PHD fingers as novel direct and selective binding modules of histone H3 methylated at either lysine 4 or lysine 36. J Biol Chem,2007.282(4):p.2450-5.
    39. Orford, K., et al., Differential H3K4 methylation identifies developmentally poised hematopoietic genes. Dev Cell,2008.14(5):p.798-809.
    40. Bernstein, B.E., et al., Genomic maps and comparative analysis of histone modifications in human and mouse. Cell,2005.120(2):p.169-81.
    41. Chan, D.W., et al., Unbiased proteomic screen for binding proteins to modified lysines on histone H3. Proteomics,2009.9(9):p.2343-54.
    42. Jenuwein, T., et al., SET domain proteins modulate chromatin domains in eu-and heterochromatin. Cell Mol Life Sci,1998.54(1):p.80-93.
    43. Nakayama, J., et al., Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science,2001.292(5514):p.110-3.
    44. Kullander, K. and R. Klein, Mechanisms and functions of Eph and ephrin signalling. Nat Rev Mol Cell Biol,2002.3(7):p.475-86.
    45. Peters, A.H., et al., Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell,2001.107(3):p.323-37.
    46. Peters, A.H., et al., Partitioning and plasticity of repressive histone methylation states in mammalian chromatin. Mol Cell,2003.12(6):p.1577-89.
    47. Lachner, M., R.J. O'Sullivan, and T. Jenuwein, An epigenetic road map for histone lysine methylation. J Cell Sci,2003.116(Pt 11):p.2117-24.
    48. Sims, R.J.,3rd, K. Nishioka, and D. Reinberg, Histone lysine methylation:a signature for chromatin function. Trends Genet,2003.19(11):p.629-39.
    49. Miller, T., et al., COMPASS:a complex of proteins associated with a trithorax-related SET domain protein. Proc Natl Acad Sci U S A,2001.98(23):p.12902-7.
    50. Shilatifard, A., Chromatin modifications by methylation and ubiquitination: implications in the regulation of gene expression. Annu Rev Biochem,2006.75:p.243-69.
    51. Krogan, N.J., et al., COMPASS, a histone H3 (Lysine 4) methyltransferase required for telomeric silencing of gene expression. J Biol Chem,2002.277(13):p.10753-5.
    52. Wood, A., et al., Ctk complex-mediated regulation of histone methylation by COMPASS. Mol Cell Biol,2007.27(2):p.709-20.
    53. Schneider, J., et al., Molecular regulation of histone H3 trimethylation by COMPASS and the regulation of gene expression. Mol Cell,2005.19(6):p.849-56.
    54. Roguev, A., et al., The Saccharomyces cerevisiae Set1 complex includes an Ash2 homologue and methylates histone 3 lysine 4. Embo J,2001.20(24):p.7137-48.
    55. Nagy, P.L., et al., A trithorax-group complex purified from Saccharomyces cerevisiae is required for methylation of histone H3. Proc Natl Acad Sci U S A,2002.99(1):p.90-4.
    56. Tenney, K. and A. Shilatifard, A COMPASS in the voyage of defining the role of trithorax/MLL-containing complexes: linking leukemogensis to covalent modifications of chromatin. J Cell Biochem,2005.95(3):p.429-36.
    57. Hughes, C.M., et al., Menin associates with a trithorax family histone methyltransferase complex and with the hoxc8 locus. Mol Cell,2004.13(4):p.587-97.
    58. Ng, H.H., et al., Lysine methylation within the globular domain of histone H3 by Dot1 is important for telomeric silencing and Sir protein association. Genes Dev,2002.16(12):p. 1518-27.
    59. Ng, H.H., et al., Ubiquitination of histone H2B by Rad6 is required for efficient Dot1-mediated methylation of histone H3 lysine 79. J Biol Chem,2002.277(38):p. 34655-7.
    60. Byvoet, P., et al., The distribution and turnover of labeled methyl groups in histone fractions of cultured mammalian cells. Arch Biochem Biophys,1972.148(2):p.558-67.
    61. Duerre, J.A. and C.T. Lee, In vivo methylation and turnover of rat brain histones. J Neurochem,1974.23(3):p.541-7.
    62. Borun, T.W., D. Pearson, and W.K. Paik, Studies of histone methylation during the HeLa S-3 cell cycle. J Biol Chem,1972.247(13):p.4288-98.
    63. Annunziato, A.T., M.B. Eason, and C.A. Perry, Relationship between methylation and acetylation of arginine-rich histones in cycling and arrested HeLa cells. Biochemistry,1995. 34(9):p.2916-24.
    64. Nielsen, S.J., et al., Rb targets histone H3 methylation andHP1 to promoters. Nature,2001. 412(6846):p.561-5.
    65. Strahl, B.D., et al., Methylation of histone H4 at arginine 3 occurs in vivo and is mediated by the nuclear receptor coactivator PRMT1. Curr Biol,2001.11(12):p.996-1000.
    66. Bauer, U.M., et al., Methylation at arginine 17 of histone H3 is linked to gene activation. EMBO Rep,2002.3(1):p.39-44.
    67. Bannister, A.J., R. Schneider, and T. Kouzarides, Histone methylation:dynamic or static? Cell,2002.109(7):p.801-6.
    68. Kim, S., L. Benoiton, and W.K. Paik, Epsilon-Alkyllysinase. Purification and Properties of the Enzyme. J Biol Chem,1964.239:p.3790-6.
    69. Tong, J.K., et al., Chromatin deacetylation by an ATP-dependent nucleosome remodelling complex. Nature,1998.395(6705):p.917-21.
    70. Humphrey, G.W., et al., Stable histone deacetylase complexes distinguished by the presence of SANT domain proteins CoREST/kiaa0071 and Mta-L1. J Biol Chem,2001.276(9):p. 6817-24.
    71. You, A., et al., CoREST is an integral component of the CoREST-human histone deacetylase complex. Proc Natl Acad Sci U S A,2001.98(4):p.1454-8.
    72. Hakimi, M.A., et al., A candidate X-linked mental retardation gene is a component of a new family of histone deacetylase-containing complexes. J Biol Chem,2003.278(9):p.7234-9.
    73. Shi, Y., et al., Coordinated histone modifications mediated by a CtBP co-repressor complex. Nature,2003.422(6933):p.735-8.
    74. Shi, Y, et al., Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell,2004.119(7):p.941-53.
    75. Cloos, P. A., et al., Erasing the methyl mark: histone demethylases at the center of cellular differentiation and disease. Genes Dev,2008.22(9):p.1115-40.
    76. Falnes, P.O., R.F. Johansen, and E. Seeberg, AlkB-mediated oxidative demethylation reverses DNA damage in Escherichia coli. Nature,2002.419(6903):p.178-82.
    77. Trewick, S.C., et al., Oxidative demethylation by Escherichia coli AlkB directly reverts DNA base damage. Nature,2002.419(6903):p.174-8.
    78. Trewick, S.C., P.J. McLaughlin, and R.C. Allshire, Methylation: lost in hydroxylation? EMBO Rep,2005.6(4):p.315-20.
    79. Jacobs, S.A. and S. Khorasanizadeh, Structure of HP1 chromodomain bound to a fysine 9-methylated histone H3 tail Science,2002.295(5562):p.2080-3.
    80. Nielsen, P.R., et al., Structure of the HP1 chromodomain bound to histone H3 methylated at lysine 9. Nature,2002.416(6876):p.103-7.
    81. Fischle, W., et al., Molecular basis for the discrimination of repressive methyl-lysine marks in histone H3 by Polycomb and HP1 chromodomains. Genes Dev,2003.17(15):p.1870-81.
    82. Maurer-Stroh, S., et al., The Tudor domain 'Royal Family': Tudor, plant Agenet, Chromo, PWWP and MBT domains. Trends Biochem Sci,2003.28(2):p.69-74.
    83. Min, J., Y. Zhang, and R.M. Xu, Structural basis for specific binding of Polycomb chromodomain to histone H3 methylated at Lys 27. Genes Dev,2003.17(15):p.1823-8.
    84. Flanagan, J.F., et al., Double chromodomains cooperate to recognize the methylated histone H3 tail Nature,2005.438(7071):p.1181-5.
    85. Wysocka, J., et al., WDR5 associates with histone H3 methylated at K4 and is essential for H3 K4 methylation and vertebrate development Cell,2005.121(6):p.859-72.
    86. Ragvin, A., et al., Nucleosome binding by the bromodomain and PHD finger of the transcriptional cofactorp300. J Mol Biol,2004.337(4):p.773-88.
    87. Pena, P.V., et al., Molecular mechanism of histone H3K4me3 recognition by plant homeodomain ofING2. Nature,2006.442(7098):p.100-3.
    88. Palacios, A., et al., Molecular basis of histone H3K4me3 recognition by ING4. J Biol Chem, 2008.283(23):p.15956-64.
    89. Li, H., et al., Molecular basis for she-specific read-out of histone H3K4me3 by the BPTF PHD finger of NURF. Nature,2006.442(7098):p.91-5.
    90. Liu, Y., et al., A plant homeodomain in RAG-2 that binds Hypermethylated fysine 4 of histone H3 is necessary for efficient antigen-receptor-gene rearrangement Immunity,2007. 27(4):p.561-71.
    91. Matthews, A.G., et al., RAG2 PHD finger couples histone H3 fysine 4 trimethylation with V(D)J recombination. Nature,2007.450(7172):p.1106-10.
    92. Ramon-Maiques, S., et al., The plant homeodomain finger of RAG2 recognizes histone H3 methylated at both lysine-4 and arginine-2. Proc Natl Acad Sci U S A,2007.104(48):p. 18993-8.
    93. Lan, F., et al., Recognition of unmethylated histone H3 lysine 4 links BHC80 to LSD]-mediatedgene repression. Nature,2007.448(7154):p.718-22.
    94. Ooi, S.K., et al., DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature,2007.448(7154):p.714-7.
    95. Fiedler, M., et al., Decoding of methylated histone H3 tail by the Pygo-BCL9 Wnt signaling complex. Mol Cell,2008.30(4):p.507-18.
    96. Wismar, J., et al., The Drosophila melanogaster tumor suppressor gene lethal(3)malignant brain tumor encodes a proline-rich protein with a novel zinc finger. Mech Dev,1995.53(1): p.141-54.
    97. Bornemann, D., E. Miller, and J. Simon, Expression and properties of wild-type and mutant forms of the Drosophila sex comb on midleg (SCM) repressor protein. Genetics, 1998.150(2):p.675-86.
    98. Trojer, P., et al., L3MBTL1, a histone-methylation-dependent chromatin lock. Cell,2007. 129(5):p.915-28.
    99. Usui, H., et al., Cloning of a novel marine gene Sfmbt, Scm-related gene containing four mbt domains, structurally belonging to the Polycomb group of genes. Gene,2000.248(1-2): p.127-35.
    100. Klymenko, T., et al., A Polycomb group protein complex with sequence-specific DNA-binding and selective methyl-lysine-binding activities. Genes Dev,2006.20(9):p. 1110-22.
    101. Kalakonda, N., et al., Histone H4 lysine 20 monomethylation promotes transcriptional repression by L3MBTL1. Oncogene,2008.27(31):p.4293-304.
    102. Boswell, R.E. and A.P. Mahowald, tudor, a gene required for assembly of the germ plasm in Drosophila melanogaster. Cell,1985.43(1):p.97-104.
    103. Charier, G., et al., The Tudor tandem of S3BP1: a new structural motif involved in DNA and RG-rich peptide binding. Structure,2004.12(9):p.1551-62.
    104. Botuyan, M.V., et al., Structural basis for the methylation state-specific recognition of histone H4-K20 by S3BP1 and Crb2 in DNA repair. Cell,2006.127(7):p.1361-73.
    105. Lee, J., et al., Distinct binding modes specify the recognition of methylated histones H3K4 and H4K20 by JMJD2A-tudor. Nat Struct Mol Biol,2008.15(1):p.109-11.
    106. Fong, H.K., et al., Repetitive segmental structure of the transducin beta subunit: homology with the CDC4 gene and identification of related mRNAs. Proc Natl Acad Sci U S A,1986. 83(7):p.2162-6.
    107. Smith, T.F., et al., The WD repeat:a common architecture for diverse functions. Trends Biochem Sci,1999.24(5):p.181-5.
    108. Williams, F.E., U. Varanasi, and R.J. Trumbly, The CYC8 and TUP1 proteins involved in glucose repression in Saccharomyces cerevisiae are associated in a protein complex. Mol Cell Biol,1991.11(6):p.3307-16.
    109. Hoey, T., et al., Molecular cloning and functional analysis of Drosophila TAF110 reveal properties expected of coactivators. Cell,1993.72(2):p.247-60.
    110. de Hostos, E.L., et al., Coronin, an actin binding protein of Dictyostelium discoideum localized to cell surface projections, has sequence similarities to G. protein beta subunits. Embo J,1991.10(13):p.4097-104.
    111. Vaisman, N., et al., The role of Saccharomyces cerevisiae Cdc40p in DNA replication and mitotic spindle formation and/or maintenance. Mol Gen Genet,1995.247(2):p.123-36.
    112. Pryer, N.K., et al., Cytosolic Sec13p complex is required for vesicle formation from the endoplasmic reticulum in vitro. J Cell Biol,1993.120(4):p.865-75.
    113. Feldman, R.M., et al., A complex of Cdc4p, Skplp, and Cdc53p/cullin catalyzes ubiquitination of the phosphorylated CDK inhibitor Sic1p. Cell,1997.91(2):p.221-30.
    114. Han, Z., et al., Structural basis for the specific recognition of methylated histone H3 lysine 4 by the WD-40protein WDRS. Mol Cell,2006.22(1):p.137-44.
    115. Ruthenburg, A.J., et al., Histone H3 recognition and presentation by the WDRS module of the MLL1 complex. Nat Struct Mol Biol,2006.13(8):p.704-12.
    116. Schuetz, A., et al., Structural basis for molecular recognition and presentation of histone H3 by WDRS. Embo J,2006.25(18):p.4245-52.
    117. Dou, Y., et al., Regulation of MLL1 H3K4 methyltransferase activity by its core components. Nat Struct Mol Biol,2006.13(8):p.713-9.
    118. Sims, R.J.,3rd, et al., Human but not yeast CHD1 binds directly and selectively to histone H3 methylated at lysine 4 via its tandem chromodomains. J Biol Chem,2005.280(51):p. 41789-92.
    119. Sims, R.J.,3rd, et al., Recognition of trimethylated histone H3 lysine 4 facilitates the recruitment of transcription postinitiation factors and pre-mRNA splicing. Mol Cell,2007. 28(4):p.665-76.
    120. Gelmetti, V., et al., Aberrant recruitment of the nuclear receptor corepressor-histone deacetylase complex by the acute myeloid leukemia fusion partner ETO. Mol Cell Biol, 1998.18(12):p.7185-91.
    121. Jepsen, K., et al., Combinatorial roles of the nuclear receptor corepressor in transcription and development Cell,2000.102(6):p.753-63.
    122. Cheng GX, et al., Distinct leukemia phenotypes in transgenic mice and different corepressor interactions generated by promyelocytic leukemia variant fusion genes PLZF-RARa and NPM-RARa. Proc. NatL Acad. Sci. USA,1999.96:p.6318-6323.
    123. Barroso, I., et al., Dominant negative mutations in human PPARgamma associated with severe insulin resistance, diabetes mellitus and hypertension. Nature,1999.402(6764):p. 880-3.
    124. Melnick, A.M., et al., The ETO protein disrupted in t(8;21)-associated acute myeloid leukemia is a corepressor for the promyelocytic leukemia zinc finger protein. Mol Cell Biol, 2000.20(6):p.2075-86.
    125. Picard, F., et al., Sirtl promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature,2004.429(6993):p.771-6.
    126. Hong, S.H., et al., SMRT corepressor interacts with PLZF and with the PML-retinoic acid receptor a (RARa) and PLZF-RARa oncoproteins associated with acute promyelocytic leukemia.. Proc. Natl. Acad. Sci. USA 1997.94:p.9028-9033.
    127. Jepsen, K., et al., SMRT-mediated repression of an H3K27 demethylase in progression from neural stem cell to neuron. Nature,2007.450(7168):p.415-9.
    128. Li, J., et al., Both corepressor proteins SMRT and N-CoR exist in large protein complexes containing HDAC3. Embo J,2000.19(16):p.4342-50.
    129. Guenther, M.G., et al., A core SMRT corepressor complex containing HDAC3 and TBL1, a WD40-repeat protein linked to deafness. Genes Dev,2000.14(9):p.1048-57.
    130. Chen, J.D. and R.M. Evans, A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature,1995.377(6548):p.454-7.
    131. Horlein, A.J., et al., Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature,1995.377(6548):p.397-404.
    132. Ordentlich, P., et al., Unique forms of human and mouse nuclear receptor corepressor SMRT. Proc Natl Acad Sci U S A,1999.96(6):p.2639-44.
    133. Park, E.J., et al., SMRTe, a silencing mediator for retinoid and thyroid hormone receptors-extended isoform that is more related to the nuclear receptor corepressor. Proc Natl Acad Sci U S A,1999.96(7):p.3519-24.
    134. Zhang, J., et al., Proteasomal regulation of nuclear receptor corepressor-mediated repression. Genes Dev,1998.12(12):p.1775-80.
    135. Chesneau, V., et al., Isolation and characterization of a dibasic selective metalloendopeptidase from rat testes that cleaves at the amino terminus of arginine residues. J Biol Chem,1994.269(3):p.2056-61.
    136. Pierotti, A.R., et al., N-arginine dibasic convertase, a metalloendopeptidase as a prototype of a class of processing enzymes. Proc Natl Acad Sci U S A,1994.91(13):p.6078-82.
    137. Ma Z, et al., Expression of the acidic stretch of nardilysin as a functional binding domain. Biochemistry.,2001.40(31):p.9447-52.
    138. Hospital, V., et al., Human and rat testis express two mRNA species encoding variants of NRD convertase, a metalloendopeptidase of the insulinase family. Biochem J,1997.327 (Pt 3):p.773-9.
    139. Pierotti AR, et al., N-arginine dibasic convertase, a metalloendopeptidase as a prototype of a class of processing enzymes. Proc Natl Acad Sci U S A.,1994.91(13):p.6078-82.
    140. Csuhai, E., G. Chen, and L.B. Hersh, Regulation of N-arginine dibasic convertase activity by amines: putative role of a novel acidic domain as an amine binding site. Biochemistry, 1998.37(11):p.3787-94.
    141. Nishi, E., et al., N-arginine dibasic convertase is a specific receptor for heparin-binding EGF-like growth factor that mediates cell migration. Embo J,2001.20(13):p.3342-50.
    142. Nishi, E., et al., Nardilysin enhances ectodomain shedding of heparin-binding epidermal growth factor-like growth factor through activation of tumor necrosis factor-alpha-converting enzyme. J Biol Chem,2006.281(41):p.31164-72.
    143. Ohno, M., et al., Nardilysin regulates axonal maturation and myelination in the central and peripheral nervous system. Nat Neurosci,2009.12(12):p.1506-13.
    144. Kessler, J.H., et al., Antigen processing by nardilysin and thimet oligopeptidase generates cytotoxic T cell epitopes. Nat Immunol,2011.12(1):p.45-53.
    145. Chesneau, V., et al., NRD convertase:a putative processing endoprotease associated with the axoneme and the manchette in late spermatids. J Cell Sci,1996.109 (Pt 11):p. 2737-45.
    146. Hospital, V., et al., N-arginine dibasic convertase (nardilysin) isoforms are soluble dibasic-specific metalloendopeptidases that localize in the cytoplasm and at the cell surface. Biochem J,2000.349(Pt 2):p.587-97.
    147. Ma, Z., et al., Nuclear shuttling of the peptidase nardilysin. Arch Biochem Biophys,2004. 422(2):p.153-60.
    148. Ma, Z., et al., Expression of the acidic stretch of nardilysin as a functional binding domain. Biochemistry,2001.40(31):p.9447-52.
    149. Friberg, A., et al., Structure of an atypical Tudor domain in the Drosophila Polycomblike protein. Protein Sci,2010.19(10):p.1906-16.
    150. He, F., et al., Structural insight into the zinc finger CW domain as a histone modification reader. Structure,2010.18(9):p.1127-39.
    151. Ishizuka, T. and M.A. Lazar, The N-CoR/histone deacetylase 3 complex is required for repression by thyroid hormone receptor. Mol Cell Biol,2003.23(15):p.5122-31.
    152. Nair, S.S., et al., PELP1 is a reader of histone H3 methylation that facilitates oestrogen receptor-alpha target gene activation by regulating lysine demethylase 1 specificity. EMBO Rep.11(6):p.438-44.
    153. Kouzarides, T., Chro matin modifications and their function. Cell,2007.128(4):p.693-705.
    154. Wade, P.A., et al., A novel collection of accessory factors associated with yeast RNA polymerase Ⅱ. Protein Expr Purif,1996.8(1):p.85-90.
    155. Carpten, J.D., et al., HRPT2, encoding parafibromin, is mutated in hyperparathyroidism-jaw tumor syndrome. Nat Genet,2002.32(4):p.676-80.
    156. Rozenblatt-Rosen, O., et al., The parafibromin tumor suppressor protein is part of a human Pafl complex. Mol Cell Biol,2005.25(2):p.612-20.
    157. Yart, A., et al., The HRPT2 tumor suppressor gene product parafibromin associates with human PAF1 and RNA polymerase Ⅱ. Mol Cell Biol,2005.25(12):p.5052-60.
    158. Zhu, B., et al., The human PAF complex coordinates transcription with events downstream of RNA synthesis. Genes Dev,2005.19(14):p.1668-73.
    159. Kim, J., M. Guermah, and R.G Roeder, The human PAF1 complex acts in chromatin transcription elongation both independently and cooperatively with SⅡ/TFIIS. Cell.140(4): p.491-503.
    160. Adelman, K., et al., Drosophila Pafl modulates chromatin structure at actively transcribed genes. Mol Cell Biol,2006.26(1):p.250-60.
    161. Nordick, K., et al., Direct interactions between the Pafl complex and a cleavage and polyadenylation factor are revealed by dissociation of Pafl from RNA polymerase Ⅱ. Eukaryot Cell,2008.7(7):p.1158-67.
    162. Kim, J., M. Guermah, and R.G. Roeder, The human PAF1 complex acts in chromatin transcription elongation both independently and cooperatively with SⅡ/TFⅡS. Cell,2010. 140(4):p.491-503.
    163. Shi, X., et al., Paflp, an RNA polymerase II-associated factor in Saccharomyces cerevisiae, may have both positive and negative roles in transcription. Mol Cell Biol,1996.16(2):p. 669-76.
    164. Shi, X., et al., Cdc73p and Paflp are found in a novel RNA polymerase Ⅱ-containing complex distinct from the Srbp-containing holoenzyme. Mol Cell Biol,1997.17(3):p. 1160-9.
    165. Chang, M., et al., A complex containing RNA polymerase Ⅱ, Paflp, Cdc73p, Hprip, and Ccr4p plays a role in protein kinase C signaling. Mol Cell Biol,1999.19(2):p.1056-67.
    166. Porter, S.E., et al., The yeast pafl-rNA polymerase Ⅱ complex is required for full expression of a subset of cell cycle-regulated genes. Eukaryot Cell,2002.1(5):p.830-42.
    167. Krogan, N.J., et al., RNA polymerase Ⅱ elongation factors of Saccharomyces cerevisiae:a targeted proteomics approach. Mol Cell Biol,2002.22(20):p.6979-92.
    168. Mueller, C.L. and J.A. Jaehning, Ctr9, Rtf1, and Leo 1 are components of the Paf1/RNA polymerase Ⅱ complex. Mol Cell Biol,2002.22(7):p.1971-80.
    169. Squazzo, S.L., et al., The Pafl complex physically and functionally associates with transcription elongation factors in vivo. Embo J,2002.21(7):p.1764-74.
    170. Costa, P.J. and K.M. Arndt, Synthetic lethal interactions suggest a role for the Saccharomyces cerevisiae Rtf1 protein in transcription elongation. Genetics,2000.156(2): p.535-47.
    171. Arndt, K.M. and C.M. Kane, Running with RNA polymerase: eukaryotic transcript elongation. Trends Genet,2003.19(10):p.543-50.
    172. Chen, Y., et al., DSIF, the Paf1 complex, and Tat-SF1 have nonredundant, cooperative roles in RNA polymerase Ⅱ elongation. Genes Dev,2009.23(23):p.2765-77.
    173. Rozenblatt-Rosen, O., et al., The tumor suppressor Cdc73 functionally associates with CPSF and CstF 3'mRNA processing factors. Proc Natl Acad Sci U S A,2009.106(3):p. 755-60.
    174. Pokholok, D.K., N.M. Hannett, and R.A. Young, Exchange of RNA polymerase Ⅱ initiation and elongation factors during gene expression in vivo. Mol Cell,2002.9(4):p. 799-809.
    175. Sikorski, T.W. and S. Buratowski, The basal initiation machinery: beyond the general transcription factors. Curr Opin Cell Biol,2009.21(3):p.344-51.
    176. Richard, P. and J.L. Manley, Transcription termination by nuclear RNA polymerases. Genes Dev,2009.23(11):p.1247-69.
    177. Krishnamurthy, S. and M. Hampsey, Eukaryotic transcription initiation. Curr Biol,2009. 19(4):p.R153-6.
    178. Rosonina, E., S. Kaneko, and J.L. Manley, Terminating the transcript:breaking up is hard to do. Genes Dev,2006.20(9):p.1050-6.
    179. Shilatifard, A., Transcriptional elongation control by RNA polymerase Ⅱ: a new frontier. Biochim Biophys Acta,2004.1677(1-3):p.79-86.
    180. Proudfoot, N., New perspectives on connecting messenger RNA 3' end formation to transcription. Curr Opin Cell Biol,2004.16(3):p.272-8.
    181. Akhtar, M.S., et al., TFIIH kinase places bivalent marks on the carboxy-terminal domain of RNA polymerase Ⅱ. Mol Cell,2009.34(3):p.387-93.
    182. Qiu, H., C. Hu, and A.G. Hinnebusch, Phosphorylation of the Pol Ⅱ CTD by KIN28 enhances BUR1/BVR2 recruitment and Ser2 CTD phosphorylation near promoters. Mol Cell,2009.33(6):p.752-62.
    183. Wood, A. and A. Shilatifard, Burl/Bur2 and the Ctk complex in yeast: the split personality of mammalian P-TEFb. Cell Cycle,2006.5(10):p.1066-8.
    184. Qiu, H., et al., The Spt4p subunit of yeast DSIF stimulates association of the Pafl complex with elongating RNA polymerase Ⅱ. Mol Cell Biol,2006.26(8):p.3135-48.
    185. Kaplan, C.D., M.J. Holland, and F. Winston, Interaction between transcription elongation factors andmRNA 3'-endformation at the Saccharomyces cerevisiae GAL10-GAL7 locus. J Biol Chem,2005.280(2):p.913-22.
    186. Mueller, C.L., et al., The Paf1 complex has functions independent of actively transcribing RNA polymerase Ⅱ. Mol Cell,2004.14(4):p.447-56.
    187. Kim, M., et al., Transitions in RNA polymerase Ⅱ elongation complexes at the 3'ends of genes. Embo J,2004.23(2):p.354-64.
    188. O'Sullivan, J.M., et al., Gene loops juxtapose promoters and terminators in yeast Nat Genet,2004.36(9):p.1014-8.
    189. Ansari, A. and M. Hampsey, A role for the CPF 3'-end processing machinery in RNAP Ⅱ-dependent gene looping. Genes Dev,2005.19(24):p.2969-78.
    190. Singh, B.N. and M. Hampsey, A transcription-independent role for TFIIB in gene looping. Mol Cell,2007.27(5):p.806-16.
    191. Laine, J.P., et al., A physiological role for gene loops in yeast Genes Dev,2009.23(22):p. 2604-9.
    192. Tan-Wong, S.M., H.D. Wijayatilake, and N.J. Proudfoot, Gene loops function to maintain transcriptional memory through interaction with the nuclear pore complex. Genes Dev, 2009.23(22):p.2610-24.
    193. Jaehning, J.A., The Pafl complex:platform or player in RNA polymerase Ⅱ transcription? Biochim Biophys Acta,2010.1799(5-6):p.379-88.
    194. Jones, J.C., et al., C-terminal repeat domain kinase I phosphorylates Ser2 and Ser5 of RNA polymerase Ⅱ C-terminal domain repeats. J Biol Chem,2004.279(24):p.24957-64.
    195. Ahn, S.H., M. Kim, and S. Buratowski, Phosphorylation of serine 2 within the RNA polymerase Ⅱ C-terminal domain couples transcription and 3'end processing. Mol Cell, 2004.13(1):p.67-76.
    196. Laribee, R.N., et al., BUR kinase selectively regulates H3 K4 trimethylation and H2B ubiquitylation through recruitment of the PAF elongation complex. Curr Biol,2005.15(16): p.1487-93.
    197. Chu, Y., et al., Regulation of histone modification and cryptic transcription by the Burl and Pafl complexes. Embo J,2007.26(22):p.4646-56.
    198. Liu, Y., et al., Phosphorylation of the transcription elongation factor Spt5 by yeast Burl kinase stimulates recruitment of the PAF complex. M ol Cell Biol,2009.29(17):p.4852-63.
    199. Zhou, K., et al., Control of transcriptional elongation and cotranscriptional histone modification by the yeast BUR kinase substrate Spt5. Proc Natl Acad Sci U S A,2009. 106(17):p.6956-61.
    200. Li, B., M. Carey, and J.L. Workman, The role of chromatin during transcription. Cell, 2007.128(4):p.707-19.
    201. Shilatifard, A., Molecular implementation and physiological roles for histone H3 lysine 4 (H3K4) methylation. Curr Opin Cell Biol,2008.20(3):p.341-8.
    202. Fuchs, S.M., R.N. Laribee, and B.D. Strah1, Protein modifications in transcription elongation. Biochim Biophys Acta,2009.1789(1):p.26-36.
    203. Wang, Z., D.E. Schones, and K. Zhao, Characterization of human epigenomes. Curr Opin Genet Dev,2009.19(2):p.127-34.
    204. Wood, A., et al., The Pafl complex is essential for histone monoubiquitination by the Rad6-Brel complex, which signals for histone methylation by COMPASS and Dotlp.3 Biol Chem,2003.278(37):p.34739-42.
    205. Xiao, T., et al., Histone H2B ubiquitylation is associated with elongating RNA pofymerase Ⅱ. Mol Cell Biol,2005.25(2):p.637-51.
    206. Zhu, B., et al., Monoubiquitination of human histone H2B:the factors involved and their roles in HOX gene regulation. Mol Cell,2005.20(4):p.601-11.
    207. Kim, J., et al., RAD6-Mediated transcription-coupled H2B ubiquitylation directly stimulates H3K4 methylation in human cells. Cell,2009.137(3):p.459-71.
    208. Ng, H.H., et al., Targeted recruitment of Sel1 histone methylase by elongating Pol II provides a localized mark and memory of recent transcriptional activity. Mol Cell,2003. 11(3):p.709-19.
    209. Krogan, N.J., et al., The Pafl complex is required for histone H3 methylation by COMPASS and Dotlp:linking transcriptional elongation to histone methylation. Mol Cell, 2003.11(3):p.721-9.
    210. Wood, A., et al., Brel, an E3 ubiquitin ligase required for recruitment and substrate selection ofRad6 at a promoter. Mol Cell,2003.11(1):p.267-74.
    211. Komarnitsky, P., E.J. Cho, and S. Buratowski, Different phosphorylated forms of RNA polymerase Ⅱ and associated mRNA processing factors during transcription. Genes Dev, 2000.14(19):p.2452-60.
    212. Cho, E.J., et al., Opposing effects of Ctk1 kinase and Fcpl phosphatase at Ser 2 of the RNA polymerase Ⅱ C-terminal domain. Genes Dev,2001.15(24):p.3319-29.
    213. Li, B., et al., The Set2 histone methyltransferase functions through the phosphorylated carboxyl-terminal domain of RNA polymerase Ⅱ. J Biol Chem,2003.278(11):p.8897-903.
    214. Xiao, T., et al., Phosphorylation of RNA polymerase Ⅱ CTD regulates H3 methylation in yeast Genes Dev,2003.17(5):p.654-63.
    215. Krogan, N.J., et al., Methylation of histone H3 by Set2 in Saccharomyces cerevisiae is linked to transcriptional elongation by RNA potymerase Ⅱ. Mol Cell Biol,2003.23(12):p. 4207-18.