NF-κB和PI3K/Akt信号通路在H_2O_2预处理适应性细胞保护中的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     随着人口老龄化程度的提高,神经系统退行性疾病成为威胁人类健康的重要敌人。如何防治这一类疾病也成为当前医学研究的重点之一。氧化应激引起的神经元凋亡和坏死是导致神经系统退行性疾病的重要原因。目前对这类疾病的治疗限于使用抗氧化剂减轻氧化应激所致的细胞损伤和凋亡,属于被动治疗的范畴。如何通过外源性刺激调动机体内在的保护机制来主动的对抗氧化损伤,将是防治这一类疾病新的方向。
     适应性细胞保护是指预先给予弱损害因素,可阻止或减轻随后强损害因素引起的细胞损伤,即通过某些“亚伤害性”应激预处理调动机体内在的保护代偿机制,使机体适应或减轻后续的更严重损害。适应性细胞保护作为机体维持稳态的天然机制,特点在于不改变攻击因子性质的情况下,通过外源性的适宜刺激(预处理)调动机体自身的保护机制,加强细胞对损伤的防护能力。所以适应性细胞保护作用的存在为我们主动防治神经系统退行性疾病提供了可能性。
     本实验室利用肾上腺嗜铬细胞瘤(PC12)细胞建立了H_2O_2预处理诱导的适应性细胞保护模型。前期研究表明H_2O_2预处理通过降低细胞内活性氧水平、抑制线粒体膜电位降低、增强bcl-2和Survivin蛋白的表达发挥细胞保护作用。并且诱导性一氧化氮合酶(iNOS)、环氧化物酶(COX-2)的表达增高和JAK-STAT信号通路的激活也参与H_2O_2预处理诱导的抗凋亡作用。结果提示H_2O_2预处理诱导的适应性细胞保护作用机制复杂,可能涉及到多条信号通路的激活。
     NF-κB和PI3K/Akt作为与氧化应激后细胞命运(存活或死亡)密切相关的信号通路,受到越来越多的关注。
     1、NF-κB信号通路与氧化应激
     NF-κB是被报道的第一个对由ROS或H_2O_2诱导的氧化应激产生反应的真核转录因子。大量的研究证实NF-κB可以介导细胞存活或死亡两条通路。在氧化损伤情况下构成性的NF-κB活性为神经细胞存活所必须,而使用NF-κB的抑制剂可降低不同应激情况下神经元的存活。但是相反的证据表明阻止NF-κB的核转位可以减轻氧化应激情况下的神经细胞死亡。
     2、PI3K/Akt信号通路与氧化应激
     当细胞面临氧化损伤时,PI3K/Akt通路的活化对细胞存活非常重要。PI3K/Akt通路的活化在中枢和外周神经元均发挥抗氧化作用。活化的Akt可以保护神经细胞免受氧化性毒物诱导的细胞凋亡。但是不同研究指出,某些诱导细胞凋亡的刺激可导致Akt的表达下调,提示PI3K/Akt通路不参与某些应激情况下的细胞存活。
     所以面对氧化损伤,NF-κB和PI3K/Akt信号通路对细胞功能影响复杂。NF-κB和PI3K/Akt信号通路是否在H_2O_2预处理诱导的适应性细胞保护中发挥作用?本课题将对这一问题开展研究。
     第一部分NF-κB信号通路在H_2O_2预处理适应性细胞保护中的作用研究
     目的
     揭示NF-κB信号通路是否参与H_2O_2预处理诱导的细胞保护作用。
     方法
     1.细胞损伤程度的判断:MTT法测定PC12细胞的存活率,比色法测定乳酸脱氢酶的活性。
     2.细胞凋亡的判断:Hoechst33258染色检测细胞形态学改变,流式细胞术检测DNA含量的变化。
     3.细胞免疫化学染色显示NF-κB的核转位。
     4.电泳迁移实验(EMSA)测定NF-κB的DNA结合活性。
     5.比色法测定caspase-3的活性。
     6. Western blot分析相关蛋白质表达水平的变化。
     7.用SPSS 14.0 for Windows统计软件进行数据分析。数据用均数±标准差(±S)表示,用单因素方差分析(One-way ANOVA)进行均数间的多重比较,检验水准α=0.05。
     结果
     1. H_2O_2预处理诱导NF-κB的表达Western blotting结果显示,氧化应激和H_2O_2预处理可以诱导PC12细胞NF-кB的表达。并且NF-κB抑制剂TPCK减少H_2O_2预处理对NF-κB的表达上调。
     2. H_2O_2预处理引起NF-κB的核转位细胞免疫化学染色结果显示,H_2O_2预处理PC12细胞能明显地促进NF-κB发生核转移。
     3. H_2O_2预处理增强了NF-κB的DNA结合活性EMSA电泳结果显示H_2O_2预处理使核蛋白DNA复合体的数量明显增多,提示H_2O_2预处理增加NF-κB的DNA结合活性。
     4. NF-κB介导H_2O_2预处理适应性细胞保护作用
     ①NF-κB抑制剂TPCK拮抗H_2O_2预处理减轻细胞损伤的作用:MTT检测结果显示,H_2O_2预处理可以使PC12细胞对抗随后高浓度H_2O_2引起的细胞存活率下降,而在预处理前使用TPCK,细胞的成活率明显降低。细胞上清LDH测定结果显示,TPCK对抗了H_2O_2预处理对LDH释放的抑制作用,使PC12细胞释放LDH明显增多。
     ②TPCK拮抗了H_2O_2预处理减轻细胞凋亡的作用:Hoechst 33258染色结果显示,预处理明显减少凋亡细胞的数量。但在预处理前使用TPCK则可使凋亡细胞的数量增加。流式细胞仪检测结果表明,H_2O_2预处理PC12细胞可使损伤浓度H_2O_2引起的细胞凋亡率显著下降,而预处理前使用TPCK明显增加细胞的凋亡率。
     5. NF-κB以caspase依赖的方式影响凋亡H_2O_2预处理明显降低损伤浓度的H_2O_2引起caspases-3活性升高,预处理前使用TPCK明显增加了caspase-3的活性。
     6. H_2O_2预处理通过NF-κB途径诱导了HSP70和HSP90的表达H_2O_2预处理上调300μM H_2O_2损伤时HSP 70和HSP 90的表达,TPCK抑制了H_2O_2预处理诱导的HSP 70和HSP 90表达上调。
     结论
     1、H_2O_2预处理可以上调PC12细胞NF-κB的表达,并增强其核转移和转录活性。
     2、NF-κB的表达和激活参与了H_2O_2预处理诱导的适应性细胞保护作用(抗细胞损伤和细胞凋亡)。其抗细胞凋亡作用涉及caspase依赖的信号通路。
     3、HSP90和HSP70作为NF-κB激活转录后的效应蛋白,可能是NF-κB介导H_2O_2预处理的细胞保护作用机制之一。
     第二部分PI3K/Akt信号通路在H_2O_2预处理适应性细胞保护中的作用研究
     目的
     揭示PI3K/Akt信号通路是否参与H_2O_2预处理诱导的细胞保护作用。
     方法
     1.细胞损伤程度的判断:MTT法测定细胞的存活率,比色法测定乳酸脱氢酶的活性。
     2.细胞凋亡的判断:Hoechst33258染色检测细胞形态学改变,流式细胞术检测DNA含量的变化。
     3.比色法测定caspase-3的活性。
     4. Western blot分析相关蛋白质表达水平的变化。
     5.用SPSS 14.0 for Windows统计软件进行数据分析。数据用均数±标准差(±S)表示,用单因素方差分析(One-way ANOVA)进行均数间的多重比较,检验水准α=0.05。
     结果
     1. H_2O_2预处理以PI3K依赖的方式诱导p-akt的表达Western blot结果显示, H_2O_2预处理可以诱导PC12细胞p-akt的表达。PI3K抑制剂ly294002拮抗了H_2O_2预处理引起的p-akt表达。
     2. PI3K/Akt通路介导H_2O_2预处理适应性细胞保护作用
     ①PI3K抑制剂ly294002拮抗H_2O_2预处理减轻细胞损伤的作用:MTT检测结果显示,H_2O_2预处理可以使PC12细胞对抗随后高浓度H_2O_2引起的细胞存活率下降,而在预处理前使用ly294002,细胞的成活率明显降低。细胞上清LDH测定结果显示,ly294002使PC12细胞释放LDH明显增多,对抗了H_2O_2预处理抑制的LDH释放增加。
     ②Ly294002拮抗H_2O_2预处理减轻细胞凋亡的作用:Hoechst 33258染色结果显示,预处理明显减少凋亡细胞的数量。但在预处理前使用ly294002则可使凋亡细胞的数量增加。流式细胞仪检测结果表明,H_2O_2预处理PC12细胞可使损伤浓度H_2O_2引起的细胞凋亡率显著下降,而预处理前使用TPCK明显增加细胞的凋亡率。
     3. Ly294002以caspase依赖的方式影响凋亡H_2O_2预处理明显降低损伤浓度的H_2O_2引起caspases-3活性升高,预处理前使用ly294002明显增加了caspase-3的活性。
     4. H_2O_2预处理通过PI3K/Akt途径上调了HSP70和HSP90的表达H_2O_2预处理上调300μM H_2O_2损伤时HSP 70和HSP 90的表达,ly294002抑制了H_2O_2预处理诱导的HSP 70和HSP 90表达上调。
     5. H_2O_2预处理通过PI3K/Akt途径激活NF-κB信号通路研究表明,PI3K的阻断剂ly294002可以抑制H_2O_2对NF-κB的激活,说明在H_2O_2预处理引起的适应性细胞保护作用中,PI3K/Akt信号通路位于NF-κB信号通路的上游。
     结论
     1、H_2O_2预处理通过PI3K依赖途径引起Akt的的活化。
     2、PI3K/Akt信号通路的激活参与了H_2O_2预处理诱导的适应性细胞保护作用(抗细胞损伤和细胞凋亡)。其抗细胞凋亡作用涉及caspase依赖的信号通路。
     3、HSP90和HSP70作为PI3K/Akt信号通路激活后的效应蛋白,可能是PI3K/Akt介导H_2O_2预处理的细胞保护作用机制之一。
     4、在H_2O_2预处理引起的适应性细胞保护作用中,PI3K/Akt信号通路位于NF-κB信号通路的上游。
     总结
     本研究表明:在PC12细胞PI3K/Akt和NF-κB信号通路均介导了H_2O_2预处理诱导的适应性细胞保护作用。H_2O_2预处理通过PI3K依赖的方式激活akt,活化后的akt可以引起NF-κB通路的激活,通过抑制caspase-3活性来对抗凋亡,同时促进某些应激基因的快速表达,合成对细胞具有保护作用的蛋白质HSP90和HSP70,来使细胞耐受后续的严重损伤。
Background
     With the progress of aging, neurodegenerative diseases became a menace to human’s health. Therefore the pivot of medical research turned to how to prevent this kind of disease. Necrosis and apoptosis of neuron induced by oxidative stress is the main reason of neurodegenerative diseases. At present, prevention and treatment to this kind of diseases was limited to reducing the injury and apoptosis resulting from oxidative damages by using anti-oxidant, which belong to a passive process. How to resist oxidative injury actively will be a new direction for prevention of neurodegenerative diseases through enhancing ability of endogenous defensive system stimulated by extrinsic substance.
     Adaptive cytoprotection means treated cells with mild insults before strong insults can relieve cell injury induced by strong damages, and the mechanism of which is due to the sublethal stress (mild insults) triger endogenous defense system which make organism adapt to subsequent strong insults. Serve as a common mechanism on maintaining steady state, adaptive cytoprotection have a characteristic of enhancing ability of endogenous defensive system through extrinsic stimuli without changing quality of insults. Therefore adaptive cytoprotection provides possibility for prevention of neurodegenerative diseases actively.
     Cytoprotection model of H_2O_2 precondition had been established in PC12 cells in our laboratory, and previous study indicated that H_2O_2 precondition induced cytoprotection via reducing intracellular reactive oxygen species (ROS) level, preventing the reduction of mitochondrial membrane potential (MMP), and enhancing expression of Bcl-2 and Survivin. Moreover increasing expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) and activation of JAK-STAT signal pathway participated in anti-apoptotic induced by H_2O_2 precondition. The results suggest that the mechanism of H_2O_2 precondition-induced cytoprotection is complicated, which may involve in activation of multi-pathway.
     NF-κB and PI3K/Akt signal pathway gathered more attentions because of its closed relation with cell fate (survival and death) under oxidative stress circumstance.
     1. NF-κB signal pathway and oxidative stress
     NF-κB was the first eukaryotic transcription factor reported to response to oxidative stress such as ROS and H_2O_2. A number of study demonstrated that NF-κB mediates cell survival and death. When Confronted with oxidative injury constitutive NF-kB activity was necessary for neuron survival, and inhibition of NF-κB reduce neuron survival under different oxidative stress. On contrary, some evidences indicated blocking of NF-κB transition into nuclei can reduce neuron death induced by oxidative stress.
     2. PI3K/Akt signal pathway and oxidative stress
     Activation of PI3K/Akt pathway is very important for cell survival to oxidative stress. Moreover activation of PI3K/Akt pathway played an anti-oxidant role in central and peripheral neuron and can protect neuron against apoptosis induced by oxidative toxicant. But different study showed that some apoptosis–induced stimuli down-regulate expression of Akt, which suggest PI3K/Akt pathway may not participate in cell survival under some stress.
     Therefore the effect of NF-κB and PI3K/Akt signal pathway on cell fate is complicated when confronted with oxidative injury. Whether NF-κB and PI3K/Akt signal pathway play a role in H_2O_2 precondition-induced cytoprotection is still not clarified. This study will investigate this question.
     Part one Role of NF-κB signal pathway in H_2O_2 preconditioning-induced adaptive cytoprotection
     Objective
     To discover whether NF-κB signal pathway participate in H_2O_2 precondition induced- cytoprotection.
     Methods
     1. Estimation of damages on cells: MTT was used to detect the viability of PC12 cell, and the cytotoxicity was quantitatively assessed by measuring the amount of lactate dehydrogenase (LDH) released from damaged cells into the cell culture medium.
     2. Assessment of cell apoptosis: morphological changes were determined by using Hoechst 33258 staining, and flow cytometry (FCM) analysis was used to measure the rate of apoptosis.
     3. Immunocytochemical staining was adopted to detect the nuclear translocation of NF-κB.
     4. Electrophoretic mobility shift assay (EMSA) was used to estimate the ability of NF-κB binding to DNA.
     5. Activity of caspase-3 was measured by colorimetry.
     6. Western blot analysis was used to measure the expression of protein.
     7. All data are expressed as mean + SD. The differences between groups were evaluated by one-way analyses of variance (ANOVA) using SPSS 14.0. Unless indicated, all experiments were performed at least three times with similar results. Differences were considered significant at P<0.05.
     Results
     1. H_2O_2 precondition causes expression of NF-κB
     Analysis of western blot indicated oxidative stress and H_2O_2 precondition induced expression of NF-κB in PC 12 cells. Moreover inhibitor of NF-κB, N-tosyl-L-phenylalanine chloromethyl ketone (TPCK) reduced the expression of NF-κB induced by H_2O_2 precondition.
     2. H_2O_2 precondition results in nuclear translocation of NF-κB
     Immunocytochemical staining showed that H_2O_2 precondition significantly promote nuclear translocation of NF-κB.
     3. H_2O_2 precondition enhances NF-κB DNA binding activity
     Analysis of EMSA showed that H_2O_2 precondition enhance the amount of nuclear protein and DNA complex, which indicated that H_2O_2 precondition caused increasing in NF-κB DNA binding activity in PC12 cells.
     4. NF-κB mediates adaptive cytoprotection induced by H_2O_2 precondition
     ①TPCK antagonize relieving in cell damages induced by H_2O_2 precondition: measurement of MTT showed that H_2O_2 precondition resist reducing in viability induced by high dose H_2O_2 in PC 12 cells, and TPCK administered before H_2O_2 precondition significantly decreased the viability of cell. Assessment of LDH in cell culture medium showed that H_2O_2 precondition decrease release of LDH induced by high dose H_2O_2 in PC 12 cells, and TPCK administered before H_2O_2 precondition significantly increased the release of LDH in PC 12 cell.
     ②TPCK antagonize relieving in cell apoptosis induced by H_2O_2 precondition: Hoechst 33258 staining showed that H_2O_2 precondition reduce numbers of apoptic cell, but TPCK administered before H_2O_2 precondition significantly increase numbers of apoptic cell. Analysis of FCM indicated that H_2O_2 precondition reduce increasing in rate of apoptosis induced by high dose, TPCK administered before H_2O_2 precondition significantly increased rate of apoptosis in PC 12 cell.
     5. NF-κB affects apoptosis in caspase-dependant manner H_2O_2 precondition significantly decreased the activity of caspase-3 induced by high dose H_2O_2.TPCK administered before H_2O_2 precondition obviously increased the activity of caspase-3.
     6. H_2O_2 precondition induces expression of heat shock protein (HSP) 70 and 90 via NF-κB pathway
     H_2O_2 precondition up-regulated the expression of HSP 70 and HSP 90 induced by 300μM H_2O_2, and TPCK administered before H_2O_2 precondition inhibited the expression of HSP 70 and HSP 90.
     Conclusion
     1. Oxidative stress and H_2O_2 precondition induced overexpression of NF-κB, and H_2O_2 precondition enhance nuclear translocation and transcriptional activity of NF-κB.
     2. Expression and activation of NF-κB participate in adaptive cytoprotection induced by H_2O_2 precondition. The mechanisms of anti-apoptosis of H_2O_2 precondition involved in caspase-dependant pathway.
     3. HSP 70 and 90 served as effective protein after NF-κB triger transcription, and may be one of mechanism in H_2O_2 precondition induced-cytoprotection.
     Part two Role of PI3K/Akt signal pathway in H_2O_2 preconditioning-induced adaptive cytoprotection
     Objective
     To discover whether PI3K/Akt signal pathway participate in H_2O_2 precondition induced-cytoprotection.
     Methods
     1. Estimation of damages on cells: MTT was used to detect the viability of PC12 cell, and the cytotoxicity was quantitatively assessed by measuring the amount of lactate dehydrogenase (LDH) released from damaged cells into the cell culture medium.
     2. Assessment of cell apoptosis: morphological changes were determined by using Hoechst 33258 staining, and flow cytometry (FCM) analysis was used to measure the rate of apoptosis.
     3. Activity of caspase-3 was measured by colorimetry.
     4. Western blot analysis was used to measure the expression of protein.
     5. All data are expressed as mean + SD. The differences between groups were evaluated by one-way analyses of variance (ANOVA) using SPSS 14.0. Unless indicated, all experiments were performed at least three times with similar results. Differences were considered significant at P<0.05.
     Results
     1. H_2O_2 precondition induces expression of p-akt in a PI3K-dependant manner Analysis of western blot indicated H_2O_2 precondition induced expression of p-akt in PC 12 cells. Inhibitor of PI3K, ly294002 reduced the expression of p-akt induced by H_2O_2 precondition.
     2. PI3K/Akt pathway mediates adaptive cytoprotection induced by H_2O_2 precondition
     ①Ly294002 antagonize relieving in cell damages induced by H_2O_2 precondition: measurement of MTT showed that H_2O_2 precondition resist decreasing in viability induced by high dose H_2O_2 in PC 12 cells, and ly294002 administered before H_2O_2 precondition significantly reduced the viability of cell. Assessment of LDH in cell culture medium showed that H_2O_2 precondition decrease release of LDH induced by high dose H_2O_2 in PC 12 cells, and ly294002 administered before H_2O_2 precondition significantly increased the release of LDH in PC 12 cell.
     ②Ly294002 antagonize relieving in cell apoptosis induced by H_2O_2 precondition: Hoechst 33258 staining showed that H_2O_2 precondition reduce numbers of apoptic cell, but ly294002 administered before H_2O_2 precondition significantly increase numbers of apoptotic cell. Analysis of FCM indicated that H_2O_2 precondition reduce increasing in rate of apoptosis induced by high dose, ly294002 administered before H_2O_2 precondition significantly increased rate of apoptosis in PC 12 cell.
     3. PI3K/Akt pathway affects apoptosis in a caspase-dependant manner H_2O_2 precondition significantly decreased the activity of caspase-3 induced by high dose H_2O_2. Ly294002 administered before H_2O_2 precondition obviously increased the activity of caspase-3.
     4. H_2O_2 precondition induces expression of heat shock protein (HSP) 70 and 90 via PI3K/Akt pathway H_2O_2 precondition up-regulated the expression of HSP 70 and HSP 90 induced by 300μM H_2O_2, ly294002 administered before H_2O_2 precondition inhibited the expression of HSP 70 and HSP 90.
     5. H_2O_2 precondition activates NF-кB pathway via PI3K/Akt pathway It is showed that ly294002, inhibtor of PI3K block the activation of NF-кB induced by H_2O_2, which indicated that PI3K/Akt pathway lies in upstream of NF-кB in H_2O_2 precondition-induced adaptive cytoprotection.
    
     Conclusion 1. H_2O_2 precondition induced activation of Akt via PI3K-dependant pathway.
     2. Activation of PI3K/Akt pathway participated in adaptive cytoprotection induced by H_2O_2 precondition. The mechanisms of anti-apoptosis of H_2O_2 precondition involved in caspase-dependant pathway.
     3. HSP 70 and 90 served as effective protein after activation of PI3K/Akt triger transcription, and may be one of mechanisms in H_2O_2 precondition induced-cytoprotection.
     4. PI3K/Akt pathway lies in upstream of NF-кB in H_2O_2 precondition-induced adaptive cytoprotection.
     Our study demonstrated that both PI3K/Ak and NF-κB signal pathway mediate H_2O_2 precondition-induced adaptive cytoprotection. H_2O_2 precondition activates Akt in PI3K-dependant manner, and activation of Akt induce activate of NF-κB signal pathway, which antagonize apoptosis via inhibition caspase-3 activity. Simultaneously NF-κB signal pathway promote expression of some gene related with stress and synthesize protective protein HSP 90 and HSP 70, which confer cell ability to resist subsequent serous injury.
引文
1. Coyle JT, Puttfarcken P. Oxidative stress, glutamate, and neurodegenerative disorders. Science, 1993, 262:689-695.
    2. Ischiropoulos H, Beckman JS. Oxidative stress and nitration in neurodegeneration: cause, effect, or association? J Clin Invest, 2003, 111(2): 163-9.
    3. Robert A, Nezamis JE, Lancaster C et al: Mild irritants prevent gastric necrosis through“adaptive cytoprotection”mediated by prostaglandins.Am J Physiol, 1983; 245: G113-G1121.
    4. Murry CE, Jennings RB, Reimer KA, et al. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation, 1986, 74:1124-36.
    5. Przyklenk K., Bauer B., Ovize M., Kloner R.A., Whittaker P. Regional ischemic‘preconditioning’protects remote virgin myocardium from subsequent sustained coronary occlusion. Circulation, 1993, 87: 893-899.
    6. Kitagawa K., Matsumoto M., Tagaya M., Hata R., Ueda H., Niinobe M., Handa N., Fukunaga R., Kimura K., Mikoshiba K. Ischemic tolerance phenomenon found in brain. Brain Res, 1990, 528: 21-24.
    7. Chen J., Simon R. Ischemic tolerance in the brain. Neurology, 1997, 48: 306-311.
    8. Pang C.Y., Neligan P., Zhong A., He W., Xu H., Forrest C.R. Effector mechanism of adenosine in acute ischemic preconditioning of skeletal muscle against infarction. Am J Physiol Regulatory Integrative Comp. Physiol. 1997, 273: R887-R895.
    9. Islam C.F., Mathie R.T., Dinneet M.D., Kiely E.A., Peters A.M., Grace P.A. Ischaemia-reperfusion injury in the rat kidney: the effect of preconditioning. Br J Urol, 1997, 79: 842-847.
    10. DeFily D.V., Chilian W.M. Preconditioning protects coronary arteriolar endothelium from ischemia-reperfusion injury, Am J Physiol, 1993, 265: H700-H706.
    11. Shattock M.J., Matsuura H. Measurement of Na+-K+ pump current in isolated rabbit ventricular myocytes using the whole-cell voltage-clamp technique: inhibition of the pump by oxidant stress. Circ. Res. 1993, 72: 91-101.
    12. Ito K, Ozasa H, Sanada K, Horikawa S. Doxorubicin preconditiong: a protection against rat hepatic ischemia-reperfusion injury. Hepatology, 2000, 31(2):416-9.
    13. Leon O.S., Menendez S., Merino N., Castillo R., Sam S., Perez L., Cruz E., Bocci V. Ozone oxidative preconditioning: a protection against cellular damage by free radicals. Mediators Inflamm. 1998, 7(4): 289-294.
    14. Weinbrenner C, Schulze F, Sarvary L, Strasser RH. Remote precondition by infrarenal aortic occlusion is operative via deltal-opioid receptors and free radicals in vivo in the rat heart. Cardiovasc Res, 2004, 61(3): 591-9.
    15. Addison PD, Neligan PC, Ashrafpour H, et al. Noninvasive remote ischemic preconditioning for global protection of skeletal muscle against infarction. Am J Physiol Heart Circ Physio, 2003, 285(4): H1435-43.
    16. Ates E, Genc E, Erkasap N, et al. Renal protection by brief liver ischemia in rats. Transplantation, 2002, 74(9):1247-51.
    17. Jennifer L.M, Nikki J.H. Cellular response to oxidative stress: signialing for suicide and survival. Journal of cellular physiology, 2002, 192: 1-15.
    18. Kolch W. Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK pathway by protein intereaction. Biochem J, 2000, 351(Pt2): 289-305.
    19. Tournier C, Hess P, Yang DD, et al. Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Science, 2000, 288: 870-874.
    20. Zundel W, Giaccia A. Inhibition of the anti-apoptotic PI3 K/Akt/Bad pathway by stress. Genes Dev, 1998, 12:1941-1946.
    21. Kim AH, Khursigara G, Sun X, et al. Akt phosphorylates and negatively regulates apoptosis signial regulating kinase 1. Mol Cell Bio, 2001, 21: 893-901.
    22. Rhee SG, Bae YS. Regulation of phosphoinositide-specific phospholipase C isozymes. J Bio Chem, 1997, 272: 15045-15048.
    23. Majumder PK, Mishra NC, Sun X, et al. Targeting of protein kinase C to mitochondria in the oxidative stress response. Cell Growth Differ, 2001, 12: 465-470.
    24. Buschmann T, Potapova O, Bar-Shira A, et al. Jun NH2-terminal kinase phos phorylation of p53 on Thr-81 is important for p53 stabilization and transcriptional activities in response to stress. Mol Cell Bio, 2001, 21: 2743-2754.
    25. Shackelford RE, Innes CL, Sieber SO, et al. The ataxia telangiectasia gene product is required for oxidative stress-induced G1 and G2 checkpoint function in human fibroblasts. J Bio Chem,2001, 276: 21951-21959.
    26. Bowie A, O’Neill LA. Oxiadative stress and nuclear factor kappaB activation: a reassessment of the evidence in the light of recent discoveries. Biochem Pharmacol, 2000, 59: 13-23.
    27. Madamanchi NR, Li S, Patterson C, et al. Reactive oxygen species regulate heat-shock protein 70 via IAK/STAT pathway. Arterioscler Thromb Vasc Biol, 2001, 21: 321-326.
    28. Sun X, Majumber P, Shioya H, et al. Activation of the cytoplasmic c-Ab1 tyrosine kinase by reactive oxygen species. J Bio Chem, 2000, 275: 17237-17240.
    29. Andoh T, Lee SY, Chiueh CC. Precondition regulation of bcl-2 and p66shc by human NOS1 enhances tolance to oxidative stress. FASEB J, 2000, 14: 2144-2146.
    30. Jolly C, Morimoto RI. Role of the heat shock response and molecular chaperones in oncogenesis and cell death. J Natl Cancer Inst, 2000, 92: 1564-1572.
    31. Luo Y, Hattori A, Munoz J, Qin ZH, Roth GS. Intrastriatal dopamine injection induces apoptosis through oxidative-involved activation of transcription factors AP-1 and NF-Kappa B in rats. Mol Pharmacol, 1999, 56: 254-264.
    32. Nakai M, Qin ZH, Chen JF, Wang Y, Chase TN. Kainic acid-induced apoptosis in rat striatum is associated with nuclear factor-kappa B activation. J Neurochem, 2000, 74: 647-658.
    33. Jones BE, Lo CR, Liu H, Pradhan Z, Garcia L, Srinivasan A, Valentino KL, Czaja MJ. Role of caspases and NF-κB signaling in hydrogen peroxide-and superoxide-induced hepatocyte apoptosis. Am J Physiol Gastrointest Liver Physiol, 2000, 278: G693-G699.
    34. Hunot S, Brugg B, Ricard D, Michel PP, Muriel MP, Ruberg M, Faucheux BA, Agid Y, Hirsch EC. Nuclear translocation of NF-kappaB is increased in dopaminergic neurons of patients with Parkinson disease, Proc. Natl. Acad. Sci., 1997, 94: 7531-7536.
    35. Schneider A, Martin-Villalba A, Weih F, Vogel J, Wirth T, Schwaninger M. NF-kappaB is activated and promotes cell death in focal cerebral ischemia. Nat. Med, 1999, 5: 554-559.
    36. Aleyasin H, Cregan SP, Iyirhiaro G, O’Hare MJ, Callaghan SM, Slack RS, Park DS.Nuclear factor-(kappa)B modulates the p53 response in neurons exposed to DNA damage, J. Neurosci. 2004, 24: 2963-2973.
    37. Culmsee C, Siewe J, Junker V, Retiounskaia M, Schwarz S, Camandola S, El-Metainy S, Behnke H, Mattson MP, Krieglstein J. Reciprocal inhibition of p53 and nuclear factor-kappaB transcriptional activities determines cell survival or death in neurons.J. Neurosci, 2003, 23: 8586-8595.
    38. Giri DK, Aggarwal BB. Constitutive activation of NF-kappa B causes resistance to apoptosis in human cutaneous T cell lymphoma Hu T-78 cells. Autocrine role of tumor necrosis factor and reactive oxygen intermediates. J Biol Chem 1998, 273(22): 14008-14014.
    39. Bian X, Opipari AWJr, Ratanaproeksa AB, Boitano AE, Lucas PC, Castle VP. Constitutively active NF-kappa B is required for the survival of S-type neuroblastoma. J Biol Chem 2002, 277(44): 42144-42150.
    40. Bian X, McAllister-Lucas LM, Shao F, et al. NF-kappa B activation mediates doxorubicin-induced cell death in N-type neuroblastoma cells. J Biol Chem 2001, 276(52): 48921-48929.
    41. Kim DK, Cho ES, Lee BR, Um HD. NF-Kappa B mediates the adaptation of human U937 cells to hydrogen peroxide. Free Radiac Biol Med 2001; 30(5): 563-571.
    42. Taglialatela G, Robinson R, Perez-Polo JR. Inhibition of nuclear factor Kappa B (NF kappa B) activity induces nerve growth factor-resistant apoptosis in PC 12 cells. J Neurosci Res 1997; 47(2): 155-162.
    43. Koulich E, Nguyen T, Johnson K, Giardina C, D’mello S. NF-kappa B is involved in the survival of cerebellar granule neurons: association of IK kappa B beta phosphorylation with cell survival. J Neurochem 2001; 76(4): 1188-1198.
    44. Lezoualc’h F, Sagara Y, Holsboer F, Behl C. High constitutive NF-kappa B activity mediates resistance to oxidative stress in neuronal cells. J Neuosci 1998; 18(9): 3224-3232.
    45. Songyang Z, Baltimore D, Cantley LC, Kaplan DR, Franke TF.Interleukin 3-dependent survival by the Akt protein kinase.Proc Natl Acad Sci, 1997, 94(21): 11345-50.
    46. Ahmed NN, Grimes HL, Bellacosa A, Chan TO, Tsichlis PN.Transduction of interleukin-2 anti-apoptotic and proliferative signals via Akt protein kinase. Proc Natl Acad Sci, 1997, 94(8): 3627-32.
    47. Khwaja A, Rodriguez-Viciana P, Wennstr?m S, Warne PH, Downward J.Matrix adhesion and Ras transformation both activate a phosphoinositide 3-OH kinase and protein kinase B/Akt cellular survival pathway. EMBO J, 1997, 16(10): 2783-93.
    48. Wang XT, McCullough KD, Franke TF, Holbrook NJ. Epidermal growth factor receptor - dependent Akt activation by oxidative stress enhances cell survival. J Biol Chem, 2000, 275:14624–14631.
    49. Baregamian N, Song J, Jeschke MG, Evers BM, Chung DH. IGF-1 protects intestinal epithelial cells from oxidative stress-induced apoptosis. J Surg Res, 2006, 136(1):31-37.
    50. Franke TF, Hornik CP, Segev L, Shostak GA, Sugimoto C. PI3K/Akt and apoptosis: size matters. Oncogene, 2003, 22: 8983-8998.
    51. Brunet A, Datta SR, Greenberg ME. Transcription-dependent and -independent control of neuronal survival by the PI3K-Akt signaling pathway. Curr Opin Neurobiol, 2001, 11: 297-305.
    52. Martin D, Salinas M, Lopez-Valdaliso R, Serrano E, Recuero M, Cuadrado A. Effect of the Alzheimer amyloid fragment Aβ25–35 on Akt/PKB kinase and survival of PC12 cells. J Neurochem, 2001, 78: 1000–1008.
    53. Salinas M, Martin D, Alvarez A, Cuadrado A. Akt1/PKB protects PC12 cells against the parkinsonism-inducing neurotoxin 1-methyl-4-phenylpyridinium and reduces the levels of oxygen-free radicals. Mol Cell Neurosci, 2001, 17: 67–77.
    54. Salinas M, Diaz R, Abraham NG, Ruiz de Galarreta CM, Cuadrado A. Nerve growth factor protects against 6-hydroxydopamine-induced oxidative stress by increasing expression of heme oxygenase-1 in a phosphatidylinositol 3-kinase-dependent manner. J Biol Chem, 2003, 78: 13898-13904.
    55. Martin D, Salinas M, Fujita N, Tsuruo T, Cuadrado A. Ceramide and reactive oxygen species generated by H2O2 induce caspase-3-independent degradation of Akt/protein kinase B. J Biol Chem 2002, 277: 42943-42952.
    56. Honda Y, Honda S. The daf-2 gene network for longevity regulates oxidative stress resistance and Mn-superoxide dismutase gene expression in Caenorhabditis elegans.FASEB J, 1999, 13(11):1385-1393.
    57. Kops GJ, Dansen TB, Polderman PE, Saarloos I, Wirtz KW, Coffer PJ, Huang TT, Bos JL, Medema RH, Burgering BM. Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress. Nature, 2002, 419 (6904): 316–321.
    58. Clancy DJ, Gems D, Harshman LG, Oldham S, Stocker H, Hafen E, Leevers SJ, Partridge L. Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate protein. Science, 2001, 292 (5514):104-106.
    59. Zhou H, Summers SA, Birnbaum MJ, Pittman RN. Inhibition of Akt kinase by cell-permeable ceramide and its implications for ceramide-induced apoptosis. J Biol Chem, 1998, 273: 16568-16575.
    60. Meier R, Thelen M, Hemmings BA. Inactivation and dephosphorylation of protein kinase Balpha (PKBalpha) promoted by hyperosmotic stress. EMBO J, 1998, 17: 7294-7303.
    61. Zundel W, Giaccia A. Inhibition of the anti-apoptotic PI (3)K/Akt/ Bad pathway by stress. Genes Dev, 1998, 12: 1941-1946.
    62.唐小卿,冯鉴强,李平阳,郭瑞鲜,叶美红. H2O2预处理对PC12细胞氧化应激损伤的适应性细胞保护作用.中国药理学通报, 2003, 19: 1115~1118.
    63. Tang XQ, Feng JQ, Chen J, Chen PX, Zhi JL, Cui Y, Guo RX, Yu HM. Protection of oxidative preconditioning against apoptosis induced by H2O2 in PC 12 cells: Mechanisms via MMP, ROS, and Bcl-2. Brain Res. 2005; 1057: 57-64.
    64.李景田,职君利,陈秀琴,刘微,崔宇,冯鉴强. Survivin在过氧化氢预处理诱导的适应性细胞保护中的作用.解剖学研究, 2006, 28: 213-217.
    65. Tang XQ, Yu HM, Zhi JL, Cui Y, Tang EH, Feng JQ, Chen PX. Inducible nitric oxide synthase and cyclooxygenase-2 mediate protection of hydrogen peroxide preconditioning against apoptosis induced by oxidative stress in PC12 cells. Life Sci, 2006, 79(9): 870-876.
    66. Yu HM, Zhi JL, Cui Y, Tang EH, Sun SN, Feng JQ, Chen PX. Role of the JAK-STAT pathway in protection of hydrogen peroxide preconditioning against apoptosis induced by oxidative stress in PC12 cells. Apoptosis, 2006, 11(6): 931-41.
    1. Sen R, Baltimore D. Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell, 1986, 46: 705-706.
    2. Ba¨uerle P, Baltimore D. IkB: a specific inhibitor of the NF-κB transcription factor. Science, 1988, 242: 540-546.
    3. Baldwin AS. The NF-κB and IκB proteins: new discoveries and insights. Annu Rev Immunol, 1996, 14: 649-81.
    4. Israel A. A role for phosphorylation and degradation in the control of NF-κB activity. Trends Genet, 1995, 11: 203-205.
    5. Schmidt KN, Amstad P, Cerutti P, B?uerle PA. The roles hydrogen peroxide and superoxide as messengers in the activation of transcription factor NF-κB. Chem Biol, 1995, 2: 13-22.
    6. Wu M, Lee HY, Bellas RE, Schauer SL, Arsura M, Katz D, Fitzgerald MJ, Rothstein TL, Sherr DH, Sonenshein GE. Inhibition of NF-κB/rel induces apoptosis of murine B cells. EMBO J, 1996, 15: 4682-4690.
    7. Van der Burg B, Liden J, Okret S, Delaunay F, Wissink S, van der Saag P, Gustafsson J-A. Nuclear factor-k B repression in antiinflammation and immunosuppression by glucocorticoids. Trends Endocrinol Metab, 1997, 8: 152-157.
    8. Schmidt KN, Amstad P, Cerutti P, Ba¨uerle PA. The roles of hydrogen peroxide and superoxide as messengers in the activation of transcription factor NF-κB. Chem Biol, 1995, 2: 13-22.
    9. Schreck R, Zorbas H, Winnacker EL, Ba¨uerle PA. Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-κB transcription factor and HIV-1. EMBO J, 1991, 10: 2247-2258.
    10. Kaltschmidt B, Kaltschmidt C. NF-κB in the nervous system. 2003. In: Beyaert, R. (Ed.), Nuclear Factor kB. Regulation and Role in Disease. Kluwer Academic Publishers, pp. 375–394.
    11. Denis-Donini S, Caprini A, et al. Members of the NF-kappaB family expressed in zones of active neurogenesis in the postnatal and adult mouse brain. Brain Res. Dev. Brain Res, 2005,154 (1): 81–89.
    12. Kaltschmidt B, Widera D, et al. Signaling via NF-kappaB in the nervous system. Biochim.Biophys. Acta, 2005, 1745 (3): 287–299.
    13. Bian X, McAllister-Lucas LM, Shao F, et al. NF-kappa B activation mediates doxorubicin-induced cell death in N-type neuroblastoma cells. J Biol Chem 2001, 276(52): 48921-48929.
    14. Bian X, Opipari AWJr, Ratanaproeksa AB, Boitano AE, Lucas PC, Castle VP. Constitutively active NF-kappa B is required for the survival of S-type neuroblastoma. J Biol Chem 2002, 277(44): 42144-42150.
    15. Taglialatela G, Robinson R, Perez-Polo JR. Inhibition of nuclear factor Kappa B (NF kappa B) activity induces nerve growth factor-resistant apoptosis in PC 12 cells. J Neurosci Res 1997; 47(2): 155-162.
    16. Kim DK, Cho ES, Lee BR, Um HD. NF-Kappa B mediates the adaptation of human U937 cells to hydrogen peroxide. Free Radiac Biol Med 2001; 30(5): 563-571.
    17. Koulich E, Nguyen T, Johnson K, Giardina C, D’mello S. NF-kappa B is involved in the survival of cerebellar granule neurons: association of IK kappa B beta phosphorylation with cell survival. J Neurochem 2001; 76(4): 1188-1198.
    18. Wang CY, Mayo MW, Korneluk RG, Goeddel DV, Baldwin ASJr. NF-κB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science, 1998, 281:1680-1683.
    19. Fries KL, Miller WE, Raab-Traub N. The A20 protein interacts with the Epstein-Barr virus latent membrane protein 1(LMP1) and alters the LMP1/TRAF1/TRADD complex. Virology, 1999, 264: 159-166.
    20. Wang CY, Guttridge DC, Mayo MW, Baldwin AS Jr. NF-κB induces expression of the Bcl-2 homologue A1/Bfl-1 to preferentially suppress chemotherapy-induced apoptosis. Mol.Cell. Biol, 1999, 19: 5923-5929.
    21. Zong WX, Edelstein LC, Chen C, Bash J, Gelinas C. The prosurvival Bcl-2 homologue Bfl-1/A1 is a direct transcriptionaltarget of NF-κB that blocks TNFa-induced apptosis. Gen Dev, 1999, 13: 382-387.
    22. Lee HH, Dadgostar H, Cheng Q, Shu J, Cheng G. NF-κBmediated up-regulation of Bcl-x and Bfl-1/A1 is required for CD40 survival signaling in B lymphocytes. Proc. Natl. Acad. Sci, 1999, 96: 9136-9141.
    23. Luo Y, Hattori A, Munoz J, Qin ZH, Roth GS. Intrastriatal dopamin injection induces apoptosis through oxidation-involved activation of transcription factors AP-1 and NF-kappaB in rats. Mol Pharmacol, 1999, 56: 254-264.
    24. Nakai M, Qin ZH, Chen JF, Wang Y, Chase T N. Kainic acid-induced apoptosis in rat striatum is associated with nuclear factor-kappaB activation. J Neurochem, 2000, 74: 647-658.
    25. Hunot S, Brugg B, Ricard D, Michel PP, Muriel MP, Ruberg M, Faucheux BA, Agid Y, Hirsch EC. Nuclear translocation of NF-kappaB is increased in dopaminergic neurons of patients with Parkinson disease, Proc. Natl. Acad. Sci., 1997, 94: 7531-7536.
    26. Schneider A, Martin-Villalba A, Weih F, Vogel J, Wirth T, Schwaninger M. NF-kappaB is activated and promotes cell death in focal cerebral ischemia. Nat. Med, 1999, 5: 554-559.
    27. Farr SB, Kogoma T. Oxidative stress responses in Escherichiacoli and Salmonella typhimurium. Microbiol. Rev, 1991, 55: 561-585.
    28. Demple B. Regulation of bacterial oxidative stress genes. Annu Rev Genet, 1991, 25:315-337.
    29. Davies JMS, Lowry CV, Davies KJA. Transient adaptation to oxidative stress in yeast. Arch Biochem Biophys, 1995, 317: 1-6.
    30. Wiese AG, Pacifici RE, Davies KJA. Transient adaptation to oxidative stress in mammalian cells. Arch Biochem Biophys, 1995, 318: 231-240.
    31. Lee BR, Um HD. Hydrogen peroxide suppresses U937 cell death by two different mechanisms depending on its concentration. Exp Cell Res, 1999, 248 430-438.
    32. Cheng B, Christakos S, Mattson MP. Tumor necrosis factors protect neurons against metabolic-excitotoxic insults and promote maintenance of calcium homeostasis. Neuron, 1994, 12: 139-153.
    33. Barger SW, Horster D, Furukawa K, Goodman Y, Krieglstein J, Mattson MP. Tumor necrosis factors alpha and beta protect neurons against amyloid beta-peptide toxicity: evidence for involvement of a kappa B-binding factor and attenuation of peroxide and Ca2+ accumulation. Proc. Natl. Acad. Sci. 1995, 92: 9328–9332.
    34. Kaltschmidt B, Uherek M, Wellmann H, Volk B, Kaltschmidt C. Inhibition of NF-κB potentiates amyloid-h-mediated neuronal apoptosis, Proc. Natl. Acad. Sci. 1999, 96: 9409–9414.
    35. Kaltschmidt B, Uherek M, Wellmann H, Volk B, Kaltschmidt C. Inhibition of NF-kappaBpotentiates amyloid beta-mediated neuronal apoptosis. Proc. Natl. Acad. Sci. 1999, 96: 9409–9414.
    36. Ravati A, Ahlemeyer B, Becker A, Klumpp S, Krieglstein J. Preconditioning-induced neuroprotection is mediated by reactive oxygen species and activation of the transcription factor nuclear factor-κB. J Neurochem 2001, 78: 909-919.
    37. Blondeau N, Widmann C, Lazdunski M, Heurteaux C. Activation of the nuclear factor-kappaB is a key event in brain tolerance. J. Neurosci, 2001, 21: 4668– 4677.
    38. Lee BR, Um HD. Hydrogen peroxide suppresses U937 cell death by two different mechanisms depending on its concentration. Exp. Cell Res. 1999, 248: 430-438.
    39. Kim DK, Cho ES, Lee BR, Um HD. NF-Kappa B mediates the adaptation of human U937 cells to hydrogen peroxide. Free Radiac Biol Med 2001; 30(5): 563-571.
    40. Chen ZH, Yasukazu Y, Saito Y, Niki E. Adaptation to hydrogen peroxide enhances PC12 cell tolerance against oxidative damage. Neuroscience Letters, 2005, 383: 256-259.
    41. Sompol P, Xu Y, Ittarat W, Daosukho C, St Clair D.NF-kappaB-associated MnSOD induction protects against beta-amyloid-induced neuronal apoptosis. J Mol Neurosci, 2006, 29(3):279-88.
    42. Tang XQ, Feng JQ, Chen J, Chen PX, Zhi JL, Cui Y, Guo RX, Yu HM. Protection of oxidative preconditioning against apoptosis induced by H2O2 in PC 12 cells: Mechanisms via MMP, ROS, and Bcl-2. Brain Res. 2005; 1057: 57-64.
    43. Lipton SA. Janus faces of NF-κB: neurodestruction versus neuroprotection. Nat Med 1997; 3: 20-22.
    44. Gu Z, Cain L, Werrbach-Perez K, Perez-Polo J. Differential alterations of NF-κB to oxidative stress in primary basal forebrain culture. Int J Devel Neurosci 2000; 18: 185-192.
    45. Baichwal VR, Baeuerle PA. Activate NF-κB or die? Curr Biol 1997; 7: R94-R96.
    46. Lin B, Williams-Skipp C, Tao Y, Schleicher MS, Cano LL, Duke RC, Scheinman RI. NF-κB functions as both a proapoptotic and antiapoptotic regulator factor within a single cell type. Cell Death Different 1999; 6: 570-582.
    47. Karin M, Lin A. NF-kappaB at the crossroads of life and death. Nat Immunol, 2002, 3: 221-227.
    48. Kaltschmidt B, Widera D, Kaltschmidt C. Signaling via NF-kappaB in the nervous system. Biochim Biophys Acta, 2005, 1745(3): 287-299. Kaltschmidt B, Ndiaye D, Korte M, Pothion S, Arbibe L, Prüllage M, Pfeiffer J, Lindecke A,
    49.Staiger V, Isra?l A, Kaltschmidt C, Mémet S.NF-kappaB regulates spatial memory formation and synaptic plasticity through protein kinase A/CREB signaling. Mol Cell Biol, 2006, 26(8): 2936-46.
    50. Lorenzo HK, Susin SA.Mitochondrial electors in caspase-independent cell death. FEBS Lett, 2004, 557:14-20.
    51. Green DR, Reed JC. Mitochondria and Apoptosis. Science, 1998, 281:1309–1312.
    52. Kim YM, Talanian RV, Billiar TR. et al. Nitric oxid inhibits apoptosis by perventing increase on caspase-3-like activity via two distinct mechanisms. J Biol Chem, 1997, 272: 31138-31148.
    53. Lu, D.; Maulik, N.; Moraru, I. I.; Kreutzer, D. L.; Das, D. K. Molecular adaptation of vascular endothelial cells to oxidative stress. Am. J. Physiol. 264:C715–C722; 1993
    54. Wiese, A. G.; Pacifici, R. E.; Davies, K. J. A. Transient adaptation to oxidative stress in mammalian cells. Arch. Biochem. Biophys.318:231–240; 1995.
    55. Bond U, Schlesinger MJ. Heat shock proteins and development. Adv Genet, 1987, 24 (1): 1-19.
    56. Gething MJ, Sambrook J. Protein folding in the cell. Nature, 1992, 355: 33–45.
    57. Mosser DD, Caron AW, Bourget L, Denis-Larose C, Massie B. Role of the human heat shock protein hsp70 in protection against stress-induced apoptosis. Mol Cell Biol, 1997, 17: 5317–5327.
    58.Benjamin IJ, McMillan DR. Stress (heat shock) proteins: molecular chaperones in cardiovascular biology and disease. Circ Res, 1998, 83: 117–132.
    59. Mosser DD, Caron AW, Bourget L, Meriin AB, Sherman MY, Morimoto RI, Massie B. The chaperone function of hsp 70 is required for protection against stress-induced apoptosis. Mol Cell Biol, 2000, 20: 7146-7159.
    60. Baek SH, Min JN, Park EM, Han MY, Lee YS, Lee YJ, Park YM. Role of small heat shock protein HSP25 in radioresistance and glutathione-redox cycle. J Cell Physiol, 2000, 183:100-107.
    61. Fujita N, Sato S, Ishida A, Tsuruo T. Involvement of Hsp90 in signaling and stability of -40-3-phosphoinositide- dependent kinase-1. J Biol Chem, 2002, 277: 10346–10353.
    62. Mayer MP, Bukau B. Hsp70 chaperones: Cellular functions and molecular mechanism. Cell Mol Life Sci, 2005, 62: 670–684.
    63. Batulan Z, Taylor DM, Aarons RJ, Minotti S, Doroudchi MM, Nalbantoglu J, Durham HD. Induction of multiple heat shock proteins and neuroprotection in a primary culture model of familial amyotrophic lateral sclerosis.Neurobiol Dis, 2006, 24: 213–225.
    64. Mestril R, Chi SH, Sayen MR, O’Reilly K, Dillmann WH. Expression of inducible stress protein 70 in rat heart myogenic cells confers protection against stimulated ischemia-induced injury. J Clin Invest 1994, 93: 759-767.
    65. Marber MS, Yellon DM. Myocardial adaption, stress proteins, and the second window of protection. Ann NY Acad Sci 1996, 793: 123-141.
    66. Nayeen MA, Hess ML, Qian YZ, Loesser KE, Kukreja RC. Delayed preconditioning of cultured adult rat cardiac myocytes: role of 70-and-90 KDa heat stress proteins. Am J Physiol 1997; 273: H861-H868.
    67. Khomenko IP, Bakhtina LY, Zelenina OM, Kruglov SV, Manukhina EB, Bayda LA, Malyshev IY. Role of heat shock proteins HSP70 and HSP32 in the protective effect of adaptation of cultured HT22 hippocampal cells to oxidative stress. Bull Exp Biol Med, 2007, 144(2):174-7.
    1. Vivanco I, Sawyers CL. The phosphatidylinositol 3-kinase AKT pathway in human cancer. Nat Rev Cancer, 2002, 2: 489-501.
    2. Datta SR, Brunet A, Greenberg ME. Cellular survival: a play in three Akts.Genes Dev, 1999, 13:2905-2927.
    3. Meier R, Thelen M, Hemmings BA. Inactivation and dephos-phorylation of protein kinase Balpha(PKBalpha) promoted by hyperosmotic stress. EMBO J, 1999, 17: 7294-7303.
    4. Kops GJ, de Ruiter ND, De Vries-Smits AM, et al. Direct control of the Forkhead transcription factor AFX by protein kinase B.Nature, 1999, 398: 630-634.
    5. del Peso L, Gonzalez-Garcia M, Page C, et al. Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt. Science, 1997, 278: 687-689.
    6. Mayo LD, Donner DB. A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from cytoplasm to the nucleus. Proc Natl Acad Sci USA, 2001, 98: 11598-11603.
    7. Iwakuma T, Lozano G. Mdm2, an introduction. Mol Cancer Res, 2003, 1: 993-1000.
    8. Dan HC, Sun M, Kaneko S, et al. Akt phosphorylation and stabilization of X-linked inhibitor of apoptosis protein (XIAP). J Biol Chem, 2004, 279: 5405-5412.
    9. Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y, Greenberg ME. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell, 1997 91, 231–241.
    10.Chiang GG, Abraham RT. Phosphorylation of mammalian target of rapamycin (mTOR) at Ser-2448 is mediated by p70S6 kinase. J Biol Chem, 2005, 280, 25485-25490.
    11. Sarbassov DD, Guertin DA,Ali SA,et al. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex.Science, 2005, 307:1098–1101.
    12. Lorenzo HK, Susin SA.Mitochondrial electors in caspase-independent cell death. FEBS Lett, 2004, 557: 14-20.
    13. Cardone MH, Roy N, Stennicke HR, et al. Regulation of cell death protease caspase-9 by phosphorylation.Science, 1998, 282: 1318-1321.
    14. Songyang Z, Baltimore D, Cantley LC, Kaplan DR, Franke TF.Interleukin 3-dependent survival by the Akt protein kinase.Proc Natl Acad Sci, 1997, 94(21): 11345-50.
    15. Kauffmann-Zeh A, Rodriguez-Viciana P, Ulrich E, Gilbert C, Coffer P, Downward J, Evan G. Suppression of c-Myc-induced apoptosis by Ras signalling through PI(3)K and PKB. Nature, 1997, 385(6616): 544-8.
    16. Ahmed NN, Grimes HL, Bellacosa A, Chan TO, Tsichlis PN.Transduction of interleukin-2 anti-apoptotic and proliferative signals via Akt protein kinase. Proc Natl Acad Sci, 1997, 94(8): 3627-32.
    17. Khwaja A, Rodriguez-Viciana P, Wennstr?m S, Warne PH, Downward J.Matrix adhesion and Ras transformation both activate a phosphoinositide 3-OH kinase and protein kinase B/Akt cellular survival pathway. EMBO J, 1997, 16(10): 2783-93.
    18. Kennedy SG, Wagner AJ, Conzen SD, Jordán J, Bellacosa A, Tsichlis PN, Hay N. The PI 3-kinase/Akt signaling pathway delivers an anti-apoptotic signal. Genes Dev, 1997, 11(6):701-13.
    19. Wang XT, McCullough KD, Franke TF, Holbrook NJ. Epidermal growth factor receptor - dependent Akt activation by oxidative stress enhances cell survival. J Biol Chem, 2000, 275: 14624–14631.
    20. Crowder RJ, Freeman RS. Phosphatidylinositol 3-kinase and Akt protein kinase are necessary and sufficient for the survival of nerve growth factor-dependent sympathetic neurons. J Neurosci, 1998, 18: 2933-2943.
    21. Philpott KL, McCarthy MJ, Klippel A, RubinLL. Activated phosphatidylinositol 3-kinase and Akt kinase promote survival of superior cervical neurons. J Cell Biol. 1997, 139: 809-815.
    22. Xue L, Murray JH, Tolkovsky AM. The Ras/phosphatidylinositol 3-kinase and Ras/ERK pathways function as independent survival modules each of which inhibits a distinct apoptotic signaling pathway in sympathetic neurons. J Biol Chem. 2000, 275: 8817-8824.
    23. Konishi H, Matsuzaki H, Tanaka M, Ono Y, Toku.naga C, Kur oda S, Kikkawa U. Activation of RAC-protein kinase by heat shock and hyperosmolarity stress through a pathway independent of phosphatidylinositol 3-kinase. Proc Natl Acad Sci, 1996, 93: 7639-7643.
    24. Konishi H, Matsuzaki H, Tanaka M, Takemura Y, Kuroda S, Ono Y, Kikkawa U. Requirement for phosphatidylinositol-3 kinase in the prevention of apoptosis by nerve growth factor. FEBS Lett, 1997, 410: 493-498.
    25. Shaw M, Cohen P, Alessi DR. The activation of protein kinase B by H2O2 or heat shock ismediated by phosphoinositide 3-kinase and not by mitogen-activated protein kinase-activated protein kinase-2. Biochem J, 1998, 336: 241-246.
    26. Sonoda Y, Watanabe S, Matsumoto Y, Aizu-Yokota E, Kasahara T. FAK is the upstream signal protein of the phosphatidylinositol 3-kinase-Akt survival pathway in hydrogen peroxideinduced apoptosis of a human glioblastoma cell line. J Biol Chem, 1999, 274: 10566-10570.
    27. Franke TF, Hornik CP, Segev L, Shostak GA, Sugimoto C. PI3K/Akt and apoptosis: size matters. Oncogene, 2003, 22: 8983-8998.
    28. Brunet A, Datta SR, Greenberg ME. Transcription-dependent and -independent control of neuronal survival by the PI3K-Akt signaling pathway. Curr Opin Neurobiol, 2001, 11: 297-305.
    29. Martin D, Salinas M, Lopez-Valdaliso R, Serrano E, Recuero M, Cuadrado A. Effect of the Alzheimer amyloid fragment Aβ25–35 on Akt/PKB kinase and survival of PC12 cells. J Neurochem, 2001, 78: 1000–1008.
    30. Salinas M, Martin D, Alvarez A, Cuadrado A. Akt1/PKB protects PC12 cells against the parkinsonism-inducing neurotoxin 1-methyl-4-phenylpyridinium and reduces the levels of oxygen-free radicals. Mol Cell Neurosci, 2001, 17: 67–77.
    31. Salinas M, Diaz R, Abraham NG, Ruiz de Galarreta CM, Cuadrado A. Nerve growth factor protects against 6-hydroxydopamine-induced oxidative stress by increasing expression of heme oxygenase-1 in a phosphatidylinositol 3-kinase-dependent manner. J Biol Chem, 2003, 78: 13898-13904.
    32. Martin D, Salinas M, Fujita N, Tsuruo T, Cuadrado A. Ceramide and reactive oxygen species generated by H2O2 induce caspase-3-independent degradation of Akt/protein kinase B. J Biol Chem 2002, 277: 42943-42952.
    33. Zhou H, Summers SA, Birnbaum MJ, Pittman RN. Inhibition of Akt kinase by cell-permeable ceramide and its implications for ceramide-induced apoptosis. J Biol Chem, 1998, 273: 16568-16575.
    34. Meier R, Thelen M, Hemmings BA. Inactivation and dephosphorylation of protein kinase Balpha (PKBalpha) promoted by hyperosmotic stress. EMBO J, 1998, 17: 7294-7303.
    35. Zundel W, Giaccia A. Inhibition of the anti-apoptotic PI (3)K/Akt/ Bad pathway by stress.Genes Dev, 1998, 12: 1941-1946.
    36. Yuan J, Yankner BA. Apoptosis in the nervous system. Nature, 2000, 407: 802-809.
    37. Holgado-Madruga M, Moscatello DK, Emlet DR, et al. Grb2-associated binder-1 mediates phosphatidylinositol 3-kinase activation and the promotion of cell survival by nerve growth factor. Proc Natl Acad Sci, 1997, 94: 12419-12424.
    38. Yao R, Cooper GM. Requirement for phosphatidylinositol-3 kinase in the prevention of apoptosis by nerve growth factor. Science, 1995, 267: 2003-2006.
    39. Dudek H, Datta SR, Franke TF, Birnbaum MJ, Yao R, Cooper GM, Segal RA, Kaplan DR, Greenberg ME. Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science, 1997, 275 (5300): 661-5.
    40. Goswami R, Kilkus J, Dawson SA, Dawson G. Overexpression of Akt (protein kinase B) confers protection against apoptosis and prevents formation of ceramide in response to pro-apoptotic stimuli. J Neurosci Res, 1999, 57(6): 884-93
    41. Kulik G, Klippel A, Weber MJ. Antiapoptotic signalling by the insulin-like growth factor I receptor, phosphatidylinositol 3-kinase, and Akt. Mol Cell Biol, 1997, 17(3):1595-606.
    42. Lee JW, Juliano RL. Alpha5beta1 integrin protects intestinal epithelial cells from apoptosis through a phosphatidylinositol 3-kinase and protein kinase B-dependent pathway. Mol Biol Cell, 2000, 11(6): 1973-87.
    43. Lee JW, Juliano RL.The alpha5beta1 integrin selectively enhances epidermal growth factor signaling to the phosphatidylinositol-3-kinase/Akt pathway in intestinal epithelial cells. Biochim Biophys Acta, 2002, 1542 (1-3): 23-31.
    44. Datta SR, Dudek H, Tao X, et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell, 1997, 91: 231-241.
    45. Du K, Montminy M. CREB is a regulatory target for the protein kinase Akt/PKB. J Biol Chem, 1998, 273: 32377-32379.
    46. Brunet A, Bonni A, Zigmond MJ, et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell, 1999, 96: 857–868.
    47. Cardone MH, Roy N, Stennicke HR, et al. Regulation of cell death protease caspase-9 by phosphorylation. Science, 1998, 282, 1318-1321.
    48. Hresko RC, Muechler M, mTOR.RICTOR is the ser473 kinase for Akt/protein kinase B in 3T3-L1 adipocytes. J Biol Chem, 2005, 280: 40406-40416.
    49. Ozes ON, Akca H, Mayo LD, Gustin JA, Maehama T, Dixon JE, Donner DB. A hosphatidylinositol 3-kinase/Akt/mTOR pathway mediates and PTEN antagonizes tumor necrosis factor inhibition of insulin signaling through insulin receptor substrate-1. Proc Natl Acad Sci, 2001, 98(8): 4640-5.
    50. Wick A, Wick W, Waltenberger J, Weller M, Dichgans J, Schulz JB. Neuroprotection by Hypoxic Preconditioning Requires Sequential Activation of Vascular Endothelial Growth Factor Receptor and Akt. J Neurosci, 2002, 22(15): 6401-6407.
    51. Yin W, Signore AP, Iwai M, Cao G, Gao Y, Johnnides M J, Hickey RW, Chen J. Preconditioning suppresses inflammation in neonatal hypoxic ischemia via Akt activation. Stroke, 2007, 38: 1017-1024.
    52. Shein NA, Tsenter J, Alexandrovich AG, Horowitz M, Shohami E. Akt phosphorylation is required for heat acclimation-induced neuroprotection. J Neurochem, 2007, 103(4): 1523-1529.
    53. Cao L, Cao DX, Su XW, Chen LJ, Liu AL, Jian WJ, Wu YP, Qiu PX, Yan GM. Activation of PI3-K/Akt pathway for thermal preconditioning to protect cultured cerebellar granule neurons against low potassium-induced apoptosis.Acta Pharmacol Sin, 2007, 28 (2): 173-179
    54. Malhotra S, Savitz SI, Ocava L , Rosenbaum DM. Ischemic preconditioning is mediated by erythropoietin through PI-3 kinase signaling in an animal model of transient ischemic attack. J Neurosci Res. 2006, 83: 19–27.
    55. Uchiyama T, Engelman RM, Maulik N, Das DK. Role of Akt signaling in mitochondrial survival pathway triggered by hypoxic preconditioning. Circulation, 2004, 109: 3042-3049.
    56. Gething MJ, Sambrook J. Protein folding in the cell. Nature, 1992, 355: 33–45.
    57. Mosser DD, Caron AW, Bourget L, Denis-Larose C, Massie B. Role of the human heat shock protein hsp70 in protection against stress-induced apoptosis. Mol Cell Biol, 1997, 17: 5317–5327.
    58. Benjamin IJ, McMillan DR. Stress (heat shock) proteins: molecular chaperones in cardiovascular biology and disease. Circ Res, 1998, 83: 117–132.
    59. Mosser DD, Caron AW, Bourget L, Meriin AB, Sherman MY, Morimoto RI, Massie B. Thechaperone function of hsp 70 is required for protection against stress-induced apoptosis. Mol Cell Biol, 2000, 20: 7146-7159.
    60. Shimamura, Haruko, Terada, et al. The PI3 - Kinase - Akt Pathway Promotes Mesangial Cell Survival and Inhibits Apoptosis In Vitro via NF-[kappa]B and Bad. The American Society of Nephrology, 2003, 14 (6): 1427 - 1434.
    61. Rojo AI, Salinas M, Martín D, Perona R, Cuadrado A. Regulation of Cu/Zn-superoxide dismutase expression via the phosphatidylinositol 3 kinase/Akt pathway and nuclear factor-kappaB. J Neurosci, 2004, 24(33): 7324-34.
    62. Taylor JM, Peter J. Crack PJ, Gould JA, Ali U, Hertzog PJ, Iannello RC. Akt phosphorylation and NF-κB activation are counterregulated under conditions of oxidative stress. Experimental Cell Research, 2004, 300: 463-475.
    63. Wang HQ, Quan TH, He TY, Franke TF, Voorhees JJ, Fisher GJ. Epidermal Growth Factor Receptor-dependent, NF-κB-independent Activation of the Phosphatidylinositol
    3-Kinase/Akt Pathway Inhibits Ultraviolet Irradiation-induced Caspases-3, -8, and -9 in Human Keratinocytes. J Biol Chem, 2003, 278 (46): 45737-45745.
    64. Romashkova JA, Makarov SS. NF-kappaB is a target of AKT in anti-apoptotic PDGF signaling. Nature, 1999, 401: 86-90.
    65. Ozes ON, Mayo LD, Gustin JA, Pfeffer SR, Pfeffer LM, Donner DB. NF-kappaB activation by tumour necrosis factor requires the Akt serine-threonine kinase. Nature, 1999, 401(6748): 82-5.
    66. Madrid LV, Wang CY, Guttridge DC, Schottelius AJ, Baldwin AS Jr, Mayo MW. Akt suppresses apoptosis by stimulating the transactivation potential of the RelA/p65 subunit of NF-kappaB. Mol Cell Biol, 2000, 20(5): 1626-38.
    67. Madrid LV, Mayo MW, Reuther JY, Baldwin AS Jr. Akt stimulates the transactivation potential of the RelA/p65 Subunit of NF-kappa B through utilization of the Ikappa B kinase and activation of the mitogen-activated protein kinase p38.J Biol Chem, 2001, 276(22): 18934-40.
    68. Yuan ZQ, Feldman RI, Sun M, Olashaw NE, Coppola D, Sussman GE, Shelley SA, Nicosia SV, Cheng JQ. Inhibition of JNK by cellular stress- and tumor necrosis factor alpha-inducedAKT2 through activation of the NF kappa B pathway in human epithelial Cells. J Biol Chem, 2002, 277(33): 29973-82.
    69. Meng FY, Liu L, Chin PC, D'Mello SR. Akt is a downstream target of NF-kappa B. J Biol Chem, 2002 , 277(33): 29674-80.
    70. Meng FY, D’Mello SR. NF-κB stimulates Akt phosphorylation and gene expression by distinct signaling mechanisms. Biochimica et al Biophysica Acta, 2003, 1630: 35-40.
    71. Jennifer L. Martindale, Nikkl J. Holbrook. Cellular Response to Oxidative Stress: Signaling for Suicide and Survival. Journal of Cellular Physiology, 2002, 192 (1): 1 - 15.
    1. Simonian NA, Coyle JT. Oxidative stress in neurodegenerative diseases. Ann Rev Phar macol Taxicol, 1996, 36: 83-87.
    2. Weher GF. The pathophgsiology of reactive oxygen intermediates in the central nervous system. Med Hypotheses, 1994, 43: 223-228.
    3. Golstein P. Controlling cell death [J]. Science, 1997, 275[5303): I 081-I 082.
    4. Chinnaiyan AM, Rourke K. Lane ER, et al. Interaction of CED-4 with CED-3 and CED-9:a molecular framework for cell death[J], Science .1997 ,275(5303) :I 122-I 126 .
    5. Nicholson D W, Thornherry NA. Caspases: killer proteases [J].Trends Biochem Sci.1997, 22(8): 299-306.
    6. Nicholson D W. Ali A. Thornberry NA. et al. Identification and inhibition of the ICE/CED3 protease necessary for mammalian apoptosis[J]. Nature, 1995, 376(6535): 37-43.
    7. Casciola-Rosen LA, Anbalt GI, Rosen A. DNA-dependent protein kinase is one of a subset of autoantigens specifically cleaved early during apoptosis [J]. J Exp Med.1995 .182(6) : I 625-I 634.
    8. Mashima T. Naito M. Fujita N. et al. Identification of actin as a substrate of ICE and ICE-like protease and involvement of an ICE-like protease but not ICE in VP-16-induced U937 apoptosis [J). Biochem Biophys Res Com .1995, 217(3):I185-I192.
    9. Kuida K. Zheng TS, Na S, et al. Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice [J]. Nature.1996, 389(6607): 368-372.
    10. Du Y, Dodel RC, Sales KR , et aI , Involvement of a caspase-3-like cysteine protease in I-methyl-4-phenylpyridinium-mediated apoptosis of cultured crebellar granule neurons[J] . J Neurochem, 1997, 69(4): I382-I 388.
    11.王爱民,马春.氧自由基对基因表达的作用[J].生命的化学,1998,18(4):25-26.
    12.M ark PM , Carsten C, Zai FY, et al. Ro1es of nuclear factor kappa B in neuronal survival and plasticity[J ] J Neurochem , 2000, 74(2) : 443-456.
    13. Prendergast GC. Mchanisms of apoptosis by c-myc. Oncogene, 1999, 18: 2967-2987.
    14. Yamashita H. Otsuki Y. Matsumntu K. et al. Fas ligand, fas antigen and bcl- 2 expression in human endometrium during the menstrual cycle. MOl Hum Rsprod, 1999, 5:358-364.
    15. Grove M, Plvmb M. C/EBP, NF-κB and C-Ets family members and transcriptional regulationof the cell - specific and inducible macrophage inflammatory protein-1 immediate - early gene . Mol Cell Biol, 1996, 13: 5776-5789.
    16.于如同,李祥,高立达等.氧化应激诱导神经细胞凋亡与C-myc、fas-fasl、核因子NF-κB关系的研究[J].中华创伤杂志, 2003,19(6): 344-347.
    17. Choi Dw. Excitoxic cell death [J]. J Neuro Biol, 1992 .23: 1261-1276.
    18. Lipton SA. Rosenberg PA. Excitatory amino acids as a final common pathway for neurologic disorders. N Engl J Med, 1994, 330( 9) :613-22
    19. Christopher 7F, Yukio A, Gunnar T. Comparison of the effects of hydrogen peroxide,
    4-hydroxy-2-nonenal andβ-amyloid (25- 35) upon calcium signaling. J Neurochem. 2003, 87(2): 386-394
    20. Coyle IT, PuttfarckenP. Oxidative stress, glutamate and neurodegenerative disorder, Science, 1993, 262: 689.
    21. Bykens IA, Stern A.Trenkner E. Mechanisms of kainate toxicity to cereballar neurons in vitro is analogous to reperfusion tissue injury.] Neurochem,1987,49:222.Neurochemistry, 1998 , 33: 161– 172
    22. Prendsrgast GC. Mechanisms of apoptosis by c - Myc. Oncogene, 1999, 18: 2967-2987.
    23. Post A, Crochemore C. Uhr M. et al. Differential induction of NF-kappa B activity and neural cell death by antidepressants in vitro. Eur J Neurosci, 2000, 12: 4331-4337.
    24. Yasuo 0. Akemi H. Toshiko U. et al. Characterization of 2’7’-dichlorofuorescin fluorescence in dissociated mammalian brain neurons: estimation on intracelluar content of hydrogen peroxide [J] .Brain Res, 1994, 635: 113-117.
    25. Sharpe MA, Ruby SJ, Clark J13. Nitric oxide and Fenton/Haber-Weiss chemistry; nitric oxide is a potent antioxidant at physiological concentration. J Neurochem, 2003, 87(2): 386-394.
    26. Berges A, Van Nassauw L, Bosmans J, et al. Role of nitric oxide and oxidative stress in ischaemic myocardial injury and preconditioning. Acta Cardiol, 2003, 58(2): 119-32.
    27. Kitamoto 5, Egashira K. The role of nitric oxide in ischemic heart disease. Nippon Rinsho 2003, 61 (suppl 5): 853– 859.
    28. Spear N, btevez AG, Rarbeito L, et al. Nerve growth factor protects PC12 cells against peroxynitrite-induce apoptosis via a mechanism dependent on phosphatidylionsitol 3-kinase [J] .J Neurochem . 1997, 69(1): 53 - 59.
    29. Namura S. Zhu J. Fink K. et al. Activation and cleavage of caspase- 3 in apoptosis induced by experimental cerebral is chemia [J]. J Neurosci. 1998, 8(10): 3659 - 3668.
    30. Lander IIM. Jacovina AT. Davis RJ, et al. Differential activation of mitogen- activated protein kinase by nitric oxide related species [J]. J Biol Che m. 1996, 271 (33): I 9705 -I 9709.
    31. Janicke RU, Sprengart ML. Wati MR. et al. Caspase-3 is required for DNA fragmentation and morphological changes associated with apoptosis [J]. J Biol Chem. 1998, 273 (16): 9357 - 9360.
    32. xia Z . Dickens M. Raingeaud J. et al. Opposing effects of ERK and JNK - p38 MAP kinase on apoptosis [J ] . Science.1995, 70(24): I 326 - I 331.
    33.罗成义,徐如祥,杨志林.p38应急信号通路参与一氧化氮诱导PC12细胞死亡. Chinese Jounal of Pathophysiology, 2002, 18(1): 80 - 82
    34. Desagher S , Martinou JC . Mitochondria as the central control point of apoptosis[J]. Trends Cell Biol, 2000, 10: 369-377
    35. Mixuno Y , Dhta S , Tanaka M , et al. Deficiencies in complex I subunits of the respiratory chain in Parkinson' s disease [ J ] .Bioche m Biophys Res Commun , 1989 , 163 : 1450-1455
    36. Camins A, Sureda FX, Gabriel C, et al. Effect of 1- methyl-4-phenylpyridinium (MPP +) on mitochondrial membrane potential incerebella- neurons: interaction with the NMDA receptor [J]. J Neural Transm, 1997, 104: 569-577
    37.Ramsay RR, Singer TP. Energy- dependent uptake of Nmethyl-4-phenylpyridinium, the neurotoxic metabolite of 1-methyl-4-phenyl-1 ,2 , 3 , 6- tetrahydropyridine , by mitochondria[ J ] . J Biol Chem, 1998, 261: 7585-7587
    38. Jacotot E, Costantini P, La boureau E, et al. Mitochondrial membrane permeabilization during the apoptotic process [J]. Ann NY Acad Sci, 1999, 887: 18-30.
    39. Fisktim G. [J]. Ann NY Acad Sci, 2003, 991: 777-779.
    40. Bddyrev AA. Problems and prespectives in studying the biological role of carnosine [J]. Biochemistry, 2000, 65: 884-890.
    41. Alen RG. 7resini M. oxidative stress and gene regulation [J] Free Radio Bio Med. 2000, 28: 463-499.