细菌纤维素/碳纳米管复合材料的制备及结构性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纳米管以其特有的力学、电学和化学特性以及独特的准一维纳米管状分子结构,作为增强和导电材料广泛用于高聚物基高性能复合材料的制备。
     本文以木醋杆菌为菌种,以葡萄糖为碳源,采用静态培养和摇床培养合成高性能纳米细菌纤维素纤维,并通过原位合成、浸泡法和打浆法,与碳纳米管复合,制成细菌纤维素纤维/碳纳米管纳米复合材料,具体内容如下:
     以木醋杆菌1.1812为发酵菌种,采用Hestrin&Schramm's培养液,静态培养细菌纤维素,系统考察接种量、培养温度、培养时间等因素对细菌纤维素产量的影响,确定了高产率和高转化率下的静态培养条件,制备了高品质细菌纤维素纤维。通过元素分析,经4wt%NaOH溶液煮沸1h的初生细菌纤维素膜,可有效除去残留在膜上的细菌体和培养液;通过X射线衍射分析,证明碱处理没有破坏晶体结构。用扫描电镜(SEM)分析,观察到细菌纤维素膜由直径40~100 nm、长数微米的细菌纤维素纤维交织成网状结构的薄膜,有大量微孔,持水量高达98.5%。用红外光谱(FT-IR)、X射线衍射(XRD)和固体核磁共振(solid state ~(13)CNMR)分析,得出碱处理的细菌纤维素纤维,结晶指数高达84.3%(XRD分析数据),纤维素I_α含量达87.4%(NMR分析数据),比BPR2001静态培养的高。细菌纤维素膜拉伸强度高达56.2 MPa,拉伸模量达831.1 MPa。
     在30℃下摇床培养HS培养液,生成松散的“雪花状”细菌纤维素,经SEM观察,其形态结构发生显著变化,由静态培养的纤维素束转变为扁平状纤维素带,持水量大幅提高,由98.5%提高到99.34%,能吸收自重150倍的水分;通过FT-IR、XRD和NMR分析,结晶指数、晶粒尺寸和都纤维素I_α含量降低了,结晶指数由84.3%(XRD分析数据)下降到67.1%,纤维素I_α含量由87.4%(NMR分析数据)下降到75.3%。在14℃下摇床培养,其形态结构变化加剧,生成带状纤维素微纤,产生强烈扭曲,形成空心球状,并通过FT-IR、XRD和NMR进一步分析,表明该纤维素由高结晶纤维素转变为完全无定形纤维素。
     为了增强了碳纳米管的亲水性和表面活性,提高了水相体系的分散性和稳定性,将碳纳米管经浓硫酸/浓硝酸回流处理,FT-IR分析表明,在其表面有羟基、羧基等亲水基团存在。把酸处理后的碳纳米管引入到培养体系,同样能实现细菌纤维素的制备,间接表明了酸处理的碳纳米管有良好的生物相容性;在系统考察培养方式和培养条件的基础上,通过SEM、原子力显微镜(AFM)、FT-IR、XRD和NMR分析,结果表明:在30℃下静态培养条件下,原位合成了细菌纤维素纤维/碳纳米管复合材料,碳纳米管被嵌入细菌纤维素纤维的网络中,形成了碳纳米管网络,与细菌纤维素纤维网络互相贯穿,构建成细菌纤维素纤维一碳纳米管三维网络结构;碳纳米管的加入既影响了细菌纤维素亚微纤组装方式,由纤维素束转变为扁平状纤维素带,宽度达400~900 nm,又影响其结晶形态和结晶度,结晶指数由84.3%降为80.65%,纤维素I_α含量由87.4%降为79.6%。在30℃下摇床培养,原位合成了细菌纤维素纤维/碳纳米管复合材料,细菌纤维素纤维包裹碳纳米管,拧成纤维状绳,纤维素的结晶指数和纤维素I_α含量比静态培养低。在14℃下摇床培养,原位制备了细菌纤维素纤维和碳纳米管复合材料,碳纳米管和细菌纤维素自组装成空心球,沿径向呈放射状排列,分布均匀,经FT-IR、XRD和NMR分析,证明该纤维素是完全无定形纤维素。
     把细菌纤维素膜浸泡在碳纳米管悬浮液中,利用吸附作用,制备细菌纤维素纤维/碳纳米管复合材料,结果表明,在膜表面均匀沉积了一层碳纳米管,形成导电网络,通过SEM分析和电阻率测试表明,碳纳米管浓度越高,浸泡时间越长,碳纳米管的沉积量越多;在摇床振荡和超声波辅助作用下,碳纳米管沉积量可进一步增加,使得细菌纤维素纤维/碳纳米管纳米复合材料的电阻率降低至0.865Ω·cm。
     细菌纤维素纤维经匀浆后形成浆液,利用打浆法制备细菌纤维素纤维/碳纳米管纳米复合材料,经AFM分析,细菌纤维素纤维和碳纳米管形成互相穿贯的三维网络。加入碳纳米管提高了复合材料的力学性能、热稳定性和电导率:当碳纳米管含量高于5wt%时,碳纳米管网络可贯穿整个复合材料体系,一方面保持细菌纤维素纤维的韧性,同时大幅提高了复合材料的拉伸强度;另一方面,大幅度降低复合材料电阻率,降低了3个数量级。
Owning to their unique and superior physical properties,including mechanical, electrical,chemical properties and high aspect ratio,carbon nanotubes(CNTs) have been uesd to fabricate performanced composite materials by embedded into the polymer matrix as reinforcing and electric materials.
     In this study,the bacterial cellulose(BC) nanofibers with unique properties were synthesized by Acetobacter xylinum(A.xylinum) which consumed the glucose in static and agitated culture.The BC/CNTs nanocomposites were manufactured using BC microfibrils and carbon nanotubes via in situ synthesis in CNTs-containing culture medium,immersing BC membrane in CNTs suspension and homogenizing BC membranes into slurry to mix the CNTs suspension.The fabricating methods, structure and properties ofnanocomposites were investigated as follows:
     The Acetobacter xylinum 1.1812 strains were cultivated in Hestrin & Schramm's static medium.The effects of inoculum amount,cultivation temperature and time on the BC yield were systematically studied.The optimization cultivation conditions for the greatest BC productivity and transfer efficiency were ascertained. The high quality and properties BC was obtained.The elemental analysis data showed that the residual culture medium and bacterial cell debris in the nascent BC membrane were removed efficiently by boiling in a 4w/v%aqueous solution of NaOH for 1 h.
     The alkali treatment did not destroy the crystal microstructure of the BC ribbons from the X-ray Diffraction(XRD) analysis.The scanning electron microscopy(SEM) analysis showed that the BC membrane was fabricated into layer-by-layer network pellicles by microfibrils with about 40~100 nm width and several microns length.The porous BC membrane had high water holding capacity(WHC) with 98.5%.The data from by Fourier transform infrared spectroscopy(FT-IR),CP/MAS ~(13)C NMR and XRD analysis indicated the alkali treatment BC had a high crystalline index with 84.3%(CrI~(XRD)) and high cellulose I_αcontent with 87.4%(f_α~(NMR)),higher than that synthesized by BRP2001.The dried BC membranes had great tensile strength with 56.2 MPa and tensile modulus with 831.1 MPa.
     The morphology and microstructure of BC strictly depended on the culture conditions.The snow-like assemblies consisting of loose microfibrils were synthesized in agitated medium at 30℃and could absorb the 150 times water than its dried weight,which WHC was changed from 98.5%into 99.34%.The SEM images showed that the microfibrils assemblies changed from cellulose ribbons into flat cellulose bands.Comparing with the cellulose synthesized in static culture,the snow-like assemblies decreased the crystalline index,crystallite size and cellulose l_αcontent determined by FT-IR,NMR and XRD analysis,which may be ascribed that the agitated stress influenced the secretion,assembly and crystallization of BC microfibrils.While cultivation in agitated culture at 14℃,the BC microfibrils twisted intensively and assembled a hollow spheres,which was amorphous cellulose determined by FT-IR,NMR and XRD analysis.
     The CNTs were fluxed by concentrated H_2SO4 and HNO_3 and the chemical structure was analyzed by FT-IR.As a result,amount of functional aqueous groups such as carbonyl,carboxyl and hydroxyl groups were introduced onto the surface of CNTs,which increased their surface activities and adsorbability and improved their dispersibility and stabilizability in water.The acid-treated CNTs were dispersed uniformly in the culture medium and the A.xylinum strains could grow and synthesize cellulose continuously,which indicated that the acid-treated CNTs had good biocompatibility.On the basis of systematic research on the culture methods and conditions,black composite membranes could be in situ synthesized in static medium containing CNTs at 30℃.The SEM images showed that the CNTs were incorporated into the BC microfibrils network and formed nano-network.The BC microfibrils interwound with the MWNTs,and constructed the three-dimensional reticular tissue. By SEM,AFM,FT-IR,XRD and NMR analysis,the results showed that the CNTs in the medium influenced the assembly and crystallization of microfibrils,changed the morphology,resulting in flat BC bands with 400~900 nm width and the crystalline index changed from 84.3%into 80.65%,and the cellulose I_αcontent changed from 87.4%into 79.6%.In agitated medium containing CNTs at 30℃,the BC/CNTs composites could also be in situ synthesized.However,the BC microfibrils packed the CNTs and formed fibrous assemblies.Comparing with the static culture,the fibrous assemblies synthesized in agitated CNTs medium had lower crystalline index and cellulose I_αcontent.Interestingly,the BC microfibrils and CNTs could assemble a hollow sphere in agitated medium at 14℃.The BC microfibrils and CNTs arranged uniformly along the radial direction.The spherical BC microfibrils were amorphous cellulose determined by FT-IR,XRD and NMR analysis.
     The purified BC membranes were immersed into the CNTs suspension and a layer of MWNTs were adsorbed onto the surface of BC membrane,resulting in the BC/CNTs composites.The higher the CNTs content was and the more time BC membrane was immersed,the more CNTs were adsorded.The agitating or ultrasonic treatment could help the CNTs adhere to the BC membrane.The CNTs on the surface of BC could construct electrical conductive networks,and formed the low electrical resistivity composites with 0.865Ω·cm.The electric conductive mechanism of composite membranes was also investigated.
     The BC microfibrils were disintegrated by a double-cylinder type homogenizer and formed the suspension,which was rapidly blended with the CNTs suspension. The mixed suspension was filtered using a Buckner funnel and a composite film was obtained.The BC microfibrils and CNTs impenetrated each other and built a new 3-dimensional reticulate structure by SEM and AFM analysis.The CNTs could enhance the mechanical properties,thermal stability and the conductivity of composites.When the CNTs content in the composites was above 5wt%,the CNTs could construct a continuous network and enhance sharply the tensile strength and modulus,and reduce the electrical resistance.
引文
[1]Jonas R,Farah L F.Production and application of microbial cellulose.Polymer Degradation and Stability,1998,59(1-3):101-106.
    [2]Benziman M,Haigler C H,Brown R M,et al.Cellulose biogenesis:polymerization and crystallization are coupled processes in Acetobacter xylinum.Proceedings of the National Academy of Sciences of the USA,1980,77(11):6678-6682.
    [3]Tajima K,Fujiwara M,Takai M,et al.Enhancement of bacterial cellulose productivity by water-soluble chitosan.Mokuzai Gakkaishi,1996,42(3):279-288.
    [4]Ishida T,Mitarai M,Sugano Y,et al.Role of water-soluble polysaccharides in bacterial cellulose production.Biotechnulogy and Bioengineering,2003,83(4):474-478.
    [5]Hackney J M,Atalla R H,Vanderhart D L.Modification of crystalliulty and crystalline structure of Acetobacter xylinum cellulose in the presence of water-soluble beta-1,4-linked polysaccharides:13C-NMR evidence,Int J Biol Macromol,1994,16(4):215-218.
    [6]Iijima S.Helical microtubules of graphitic carbon.Nature,1991,354:56-58.
    [7]Sainz R,Benito A M,Martinez M T,et al.A soluble and highly functional polyaniline-carbon nanotube composite.Nanotechnology,2005,16(5):150-154.
    [8]Munoz E,Dalton A B,Collins S,et al.Multifunctional carbon nanotuhe composite fibers.Advanced Engineering Materials,2004,6(10):801-804.
    [9]Baughman R H,Zakhidov A A,De H W.Carbon nanotohes-the route toward applications.Science,2002,297(5582):787-792.
    [10]Baughman R H,Cui C X,Zakhidov A A,et al.Carbon nanotube actuators.Science,1999,284(5418):1340-1344.
    [11]Atkinson K R,Hawkins S C,Huynh C,et al.Multifunctional carbon nanotuhe yarns and transparent sheets:Fabrication,properties,and applications.Physica B-Condensed Matter,2007,394(2):339-343.
    [12]Eitan A,Jiang K Y,Dukes D,et al.Surface modification of multiwalled carbon nanotuhes:Toward the tailoring of the interface in polymer composites.Chemistry of Materials,2003,15(16):3198-3201.
    [13]Esumi K,Ishigami M,Nakajima A,et al.Chemical treatment of carbon nanotubes.1996,:279-281.
    [14]Vohrer U,Kolaric I,Haque M H,et al.Carbon nanotube sheets for the use as artificial muscles.Carbon,2004,42(5-6):1159-1164.
    [15]Brauns F E.The chemistry of Ligin,New York:Academic Press Inc.,1852.5.
    [16]Astley O M,Chanliaud E,Donald A M,et al.Structure of Acetobacter cellulose composites in the hydrated state.International Journal of Biological Macromolecules,2001,29(3):193-202.
    [17]Ross P,Maynr R,Benziman M.Cellulose Biosynthesis and Function in Bacteria.Microbiological Reviews,1991,55(1):35-38.
    [18]Brown R M.Collulnse structure and biosynthesis:what is in store for the 21st century? Jonrnal of Polymer Science:Part A:Polymer Chemistry,2004,42:487-495.
    [19]Delmer D P,Amor Y.Cellulose Biosynthesis.Plant Cell,1995,7(7):987-1000.
    [20]刘仁庆.纤维素化学基础,1985.
    [21]French A D,Johnson G P.What crystals of small analogs are trying to tell us about cellulose structure.Cellulose,2004,11(1):5-22.
    [22]Oh S Y,Yoo D I,Shin Y,et al.FTIR analysis of cellulose treated with sodium hydroxide and carbon dioxide.Carbohydrate Research,2005,340(3):417-428.
    [23]Gardner K H,Blackwell J.The hydrogen bonding in native cellulose.Biochim Biophys Acta,1974,343(1):232-237.
    [24]Osullivan A C.Cellulose:the structure slowly unravels.Cellulose,1997,4(3):173-207.
    [25]Atalla R H,Vanderhart D L.Native cellulose:a composite of two distinct crystalline forms.Science,1984,223:283-285.
    [26]Debzi E M,Chanzy H,Sugiyama J,et al.The Iα→Iβ transformation of highly crystalline cellulose by annealing in various mediums.Macromolecules,1991,24(26):6816-6822.
    [27]叶代勇,黄洪,傅和青等.纤维素化学研究进展.化工学报,2006,57(8):1782-1791.
    [28]Aggarwal P,Dollimore D,Heon K.Comparative thermal analysis study of two biopolymers,starch and cellulose.Journal of Thermal Analysis,1997,50(1-2):7-17.
    [29]Chen H P,Brown R M.Thermal stability of the cellulose synthase complex of Acetobacter xylinum.Cellulose,1999,6(2):137-152.
    [30]Huang M R,Li X G.Thermal degradation of cellulose and cellulose esters.Journal of Applied Polymer Science,1998,68(2):293-304.
    [31]Kr H A.Cellulose:structure,accessibility,and reactivity,Yverdon,Switzerland;Philadelphia:Gordon and Breach Science,1993.ⅹⅵ,376 p.
    [32]Buchhulz V,Adler P,Backer M,et al.Regeneration and Hydroxyl Accessibility of Cellulose in Ultrathin Films.Langmuir,1997,13(12):3206-3209.
    [33]Klemm D,Schumann D,Udhardt U,et al.Bacterial synthesized cellulose - artificial blood vessels for microsurgery.Progress in Polymer Science,2001,26(9):1561-1603.
    [34]Brown A J.On an acetic ferment which forms cellulose.Journal of Chemical Society,1886,49:172-186.
    [35]Hestrin S,Schramm M.Synthesis of cellulose by Acetobacter xylinum 2.preparation of freeze-dried cells capable of polymerization glucose to cellulose.Biochemical Journal,1954,58:345-352.
    [36]Schramm M,Hestrin S.Synthesis of cellulose by Acetobacter xylinum 1.Mieromethod for the determination of celluloses.Biochemical Journal,1954,56:163-166.
    [37]Tonouchi N,Tsuchida T,Yoshinaga F,et al.Characterization of the biosynthetic pathway of cellulose from glucose and fructose in Acetobacter xylinum.Bioscience Biotechnology and Biochemistry,1996,60(8):1377-1379.
    [38]Brown R M,Kudlicka K,Saxena I,et al.Abiogenic and in-Vitro Assembly of Cellulose-Recent Progress.Plant Physiology,1995,108(2):8-8.
    [39]Yamanaka S,Ishihara M,Sugiyama J.Structural modification of bacterial cellulose.Cellulose,2000,7(3):213-225.
    [40]Tonouchi hi,Tsuchida T,Yoshinaga F,et al.Characterization of the biosynthetic pathway of cellulose from glucose and fructose in Acetobacter xylinum.Bioscience Biotechnology and Biochemistry,1996,60(8):1377-1379.
    [41]Hestrin S,Schramm M.Synthesis of cellulose by acetobacter xylinum.Ⅱ.Preparation of freeze-dried cells capable ofpolymerizing glucose to cellulose.J Biochem,1954,58:345-352.
    [42]Tahara K,Abe Y,Sugata S,et al.Improved apparatus for solid-liquid multi-stage counter-current extraction.Journal of Chromatography A,2003,1017(1-2):63-69.
    [43]Kunihiko W,Shigeiu Y.Effects of oxygen tension in gaseous phase on production and physical properties of bacterial cellulose formed under static culture condition.Bioscience Biotechnology and Biochemistry,1995,55(1):65-68.
    [44]Konda T,Naritomi T,Yano H,et al.Effects of oxygen and carbon dioxide pressures on bacterial cellulose production by Acetobacter in aerated and agitated culture.Journal of Fermentation and Bioengineering,1997,84(2):124-127.
    [45]马承铸,顾真荣.细菌纤维素生物理化特性和商业用途(综述).上海农业学报,2001,17(4):93-98.
    [46]Krystynowicz A,Czaja W,Wiktorowska-jezierska A,et al.Factors affecting the yield and properties of bacterial cellulose.Journal of Industrial Microbiology & Biotechnology,2002,29(4):189-195.
    [47]Yamanaka S,Watanabe K,lguchi M,et al.Production,property,and application of bacterial cellulose.Nippon Nogeikagaku Kaishi-Journal of the Japan Society for Bioscience Biotechnology and Agrochemistry,1998,72(9):1039-1044.
    [48]Helenios G,Backdahl H,Bodin A,et al.In vivo biocompatibility of bacterial cellulose.Journal of Biomedical Materials Research Part A,2006,76A(2):431-438.
    [49]svensson A,Nicklasson E,Harrah T,et al.Bacterial cellulose as a potential scaffold for tissue engineering of cartilage.Biomaterials,2005,26:419-431.
    [50]Czaja W,Krystynowicz A,Bietlecki S,et al.Microbial cellulose-the natural power to heal wounds.Biomaterials,2006,27,145-151.
    [51]Bodin A,Backdahl H,Risherg B,et al.Nano cellulose as a scaffold for tissue engineered blood vessels.Tissue Engineering.2007,13(4):885-885.
    [52]Hirai A,Tsuji M,Horii F.Helical sense of ribbon assemblies and splayed microfibrils of bacterial cellulose.Sen-I Gakkaishi,1998,54(10):506-510.
    [53]Uhlin K I,Atalla R H,Thompson N S.Influence of Hemicelluloses on the Aggregation Patterns of Bacterial Cellulose.Cellulose,1995,2(2):129-144.
    [54]Haigier C H,White A R,Brown R M,et al.Alteration of In Vivo Cellulose Ribbon Assembly by Carboxymethylcellulose and Other Cellulose Derivatives.The Journal of Cell Biology,1982,94:64-69.
    [55]Tokoh C,Takabe K,Fujita M,et al.Cellulose synthesized by Acetobacter xylinum in the presence of acetyl glucomannan.Cellulose,1998,5(4):249-261.
    [56]Kacurakova M,Capek P,Sasinkova V,et al.FT-IR study of plant cell wall model compounds:pectic polysaccharides and hemicelluloses.Carbohydrate Polymers,2000,43(2):195-203.
    [57]Ben-hayyim G,Ohad I.Synthesis of cellulose by acetobacter xylinum.The Journal of Cell Biology,1965,25:191-207.
    [58]Haigler C H,R M B,Benziman M.Calcofluor white ST alters the in vivo assembly of cellulose microfibrils.Science,1980,210(21):903-906.
    [59]Tokoh C,Takabe K,Fujita M,et al.Cellulose synthesized by Acetobacter xylinum in the presence of acetyl glucomannan.Cellulose,1998,5(4):249-261.
    [60]Keshk S.Physical properties of bacterial cellulose sheets produced in presence of lignosulfonate.Enzyme and Microbial Technology,2006.
    [61]Duchesne I,Hult E,Molin U,et al.The influence of hemicelluiose on fibril aggregation of kraft pulp fibres as revealed by FE-SEM and CP/MAS C-13-NMR.Cellulose,2001,8(2):103-111.
    [62]Seifert M,Hesse S,Kabrelian V,et al.Controlling the water content of never dried and reswollen bacterial cellulose by the addition of water-soluble polymers to the culture medium.Journal of Polymer Science Part a-Polymer Chemistry,2004,42(3):463-470.
    [63]Whitney S E C,Brigham J E,Darke A H,et al.Structural aspects of the interaction of mannan-based polysaccharides with bacterial cellulose.Carbohydrate Research,1998,307:299-309.
    [64]Astley O M,Chanliaud E,Donald A M,et al.Tensile deformation of bacterial cellulose composites.International Journal of Biological Macromolecules,2003,32(1-2):28-35.
    [65]Iwata T,Indrarti L,Azuma J L Affinity of hemicellulose for cellulose produced by Acetobacter xylinum.Cellulose,1998,5(3):215-228.
    [66]Serafica G,Mormino R,Bungay H.Inclusion of solid particles in bacterial cellulose.Applied Microbiology and Biotechnology,2002,58(6):756-760.
    [67]Mormino R,Bungay H.Composites of bacterial cellulose and paper made with a rotating disk bioreactor.Applied Microbiology and Biotechnology,2003,62(5-6):503-506.
    [68]Watanabe K,Tabuchi M,Morinaga Y,et al.Structural features and properties of bacterial cellulose produced in agitated culture.Cellulose,1998,5(3):187-200.
    [69]George J,Ramana K V,Sabapathy S N,et al.Characterization of chemically treated bacterial (Acetobacterxylinum) biopolymer.Some thermo-mechanical properties.International Journal of Biological Macromolecules,2005,37:189-194.
    [70]Linder A,Bergman R,Bodin A,et al.Mechanism of assembly of xylan onto cellulose surfaces.Langmuir,2003,19(12):5072-5077.
    [71]Kim D Y,Nishiyama Y,Kuga S.Surface acetylation of bacterial cellulose.Cellulose,2002,9(3-4):361-367.
    [72]Roman M,Winter W T.Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose.Biornacromolecules,2004,5(5):1671-1677.
    [73]Dubey V,Pandey L K,Saxena C.Pervaporative separation of ethanol/water azeotrope using a novel chitosan-impregnated bacterial cellulose membrane and chitosanopoly(vinyl alcohol) blends.Journal of Membrane Science,2005,251(1-2):131-136.
    [74]Grunert M,Winter W T.Nanocomposites of cellulose acetate butyrate reinforced with cellulose nanocrystals.Journal of Polymers and the Environment,2002,10(1-2):27-30.
    [75]Svensson A,Nicldasson E,Harrah T,et al.Bacterial cellulose as a potential scaffold for tissue engineering of cartilage.Biomaterials,2005,26(4):419-431.
    [76]Wan Y Z,Hong L,Jia S R,et al.Synthesis and characterization of hydroxyapatite-bacterial cellulose nanocomposites.Composites Science and Technology,2006,66(11-12):1825-1832.
    [77]Charpentier P A,Maguire A,Wan W K.Surface modification of polyester to produce a bacterial cellulose-based vascular prosthetic device.Applied Surface Science,2006,252(18):6360-6367.
    [78]修慧娟,王志杰,李金宝.细菌纤维素用于制浆造纸的研究.西南造纸2005,34(2):23-24.
    [79]Okiyama A,Motoki M,Yamanaka S.Bacterial cellulose Ⅱ.processing of the gelatinous cellulose for food materials.Food Hydrocolloids,1992,6:479-487.
    [80]Legeza V I,Galenko-yaroshevskii V P,Zinov E V,et al.Effects of new wound dressings on healing of thermal bums of the skin in acute radiation disease.Bulletin of Experimental Biology and Medicine,2004,138(3):311-315.
    [81]陈卫祥,涂江平等.碳纳米管的特性及其高性能的复合材料.复合材料学报,2001,18(4):1-5.
    [82]孙晓刚,曾效舒等.碳纳米管的特性及应用.中国粉体技术,2001,7(6):29-33.
    [83]Issi J P,Langer L,Heremans J,et al.Electronic-Properties of Carbon Nanotubes - Experimental Results.Carbon,1995,33(7):941-948.
    [84]代凯,绵登松,余昺等.Chemical Treatment of Carbon Nanotubes as Electrodes in Electrochemical Double-Layer Capacitors.上海大学学报:英文版,2005,9(6):557-560.
    [85]Saito T,Matsushige K,Tanaka K.Chemical treatment and modification of multi-walled carbon nanotubes.Physica B,2002,323:280-283.
    [86]Ebbesen T W.Wetting,filling and decorating carbon nanotubes.Journal of Physics and Chemistry of Solids,1996,57(6-8):951-955.
    [87]Smalley R E,Li Y B,Moore V C,et al.Single wall carbon nanotube amplification:En route to a type-specific growth mechanism.Journal of the American Chemical Society,2006,128(49):15824-15829.
    [88]Liu J,Rinzler A G,Dai H J,et al.Fullerene pipes.Science,1998,280(5367):1253-1256.
    [89]Popev V N.Carbon nanotubes:properties and application.Materials Science and Engineering R,2002,43:61-102.
    [90]邹雪莲,王田霖,丁亚平.分析化学中的碳纳米管修饰电极.化学世界,2007,48(3):179-182.
    [91]Hiura H,Ebbesen T W.Opening and purification of carbon nanotubes in high yields.Advanced Materials,1995,7:275-276.
    [92]刘云芳,岳冬梅,沈曾民等.超声波技术制备碳纳米管/氢化丁腈橡胶复合材料.合成橡胶工业,2003,26(6):379-379.
    [93]Xia H S,Qiu G H,Wang Q.Polymer/carbon nanotube composite emulsion prepared through ultrasonically assisted in situ emulsion polymerization.Journal of Applied Polymer Science,2006,100(4):3123-3130.
    [94]Yuan Q,Misra R D.Polymer nanocomposites:current understanding and issues.Materials Science and Technology,2006,22(7):742-755.
    [95]Moniruzzaman M,Winey K I.Polymer nanocomposites containing carbon nanotubes.Macromolecules,2006,39(16):5194-5205.
    [96]Krishnamoorti R.Dispersion and properties of carbon nanotube based polymer nanocomposites.Abstracts of Papers of the American Chemical Society,2005,230:4112-4112.
    [97]Hussain F,Hojjati M,Okamoto M,et al.Review article:Polymer-matrix nanocomposites,processing,manufacturing,and application:An overview.Journal of Composite Materials,2006,40(17):1511-1575.
    [98]Golberg D,Bando Y,Mitome M,et al.Nanocomposites:synthesis and elemental mapping of aligned B-C-N nanotubes.Chemical Physics Letters,2002,360(1-2):1-7.
    [99]Angles M N,Dufresne A.Plasticized starch/tunicin whiskers nanocomposites.1.Structural analysis.Macromolecules,2000,33(22):8344-8353.
    [100]Wilde G.Nanostructures and nanocrystalline composite materials-synthesis,stability and phase transformations.Surface and Interface Analysis,2006,38(6):1047-1062.
    [101]Miyngawa H,Misra M,Mohanty A K.Mechanical properties of carbon nanotubes and their polymer nanocomposites.J Nanosci Nanotechnol,2005,5(10):1593-1615.
    [102]Lin Y,Meziani M J,Sun P.Functionalized carbon nanotubes for polymeric nanocomposites.Journal of Materials Chemistry,2007,17(12):1143-1148.
    [103]Kashiwagl T,Grulke E,Hilding J,et al.Thermal and flammability properties of polypropylene/carbon nanotube nanocomposites.Polymer,2004,45(12):4227-4239.
    [104]Fahmy T Y,Mobarak F,Fahmy Y,et al.Nanocomposites from natural cellulose fibers incorporated with sucrose.Wood Science and Technology,2006,40(1):77-86.
    [105]Ajayan P M,Zhou O Z.Applications of carbon nanotubes.Carbon Nanotubes,2001,80:391-425.
    [106]Yeh M K,Tai N H,Lin Y J.Fabrication and mechanical properties of MWNTs/phenolic nanocomposites.Progress on Advanced Manufacture for Micro/Nano Technology 2005,Pt 1 and 2,2006,505-507:121-126.
    [107]Wu S H,Masaharu I,Natsuki T,et al.Electrical conduction and percolation behavior of carbon nanotuhes/UPR nanocomposites.Journal of Reinforced Plastics and Composites,2006,25(18):1957-1966.
    [108]Steinert B W,Jose M V,Thomas V,et aL Aligned carbon nanotube/nylon-6 nanocomposites.Abstracts of Papers of the American Chemical Society,2006,231.
    [109]Saeed K,Park S Y.Preparation and properties of multiwalled carbon nanotube/polycaprolactone nanocomposites.Journal of Applied Polymer Science,2007,104(3):1957-1963.
    [110]Peeterbroeck S,Laoutid F,Swoboda B,et al.How carbon nanotube crushing can improve flame retardant behaviour in polymer nanocomposites? Macromolecular Rapid Communications,2007,28(3):260-264.
    [111]Liang G D,Tjong S C.Electrical properties of low-density polyethylene/muitiwalled carbon nanotube nanocomposites.Materials Chemistry and Physics,2006,100(1):132-137.
    [112]Dufresne A,Paillet M,Putaux J L,et al.Processing and characterization of carbon nanotube/poly(styrene-co-butyl acrylate) nanocomposites.Journal of Materials Science,2002,37(18):3915-3923.
    [113]Choi Y J,Hwang S H,Hong Y S,et al.Preparation and characterization of PS/multi-walled carbon nanotube nanocomposites.Polymer Bulletin,2005,53(5-6):393-400.
    [114]Choi C S,Park B J,Choi H J.Electrical,and rbeological characteristics of poly(vinyl acetate)/multi-walled carbon nanotube nanocomposites.Diamond and Related Materials,2007,16(4-7):1170-1173.
    [115]Wall A,Coleman J N,Ferreira M S.Physical mechanism for the mechanical reinforcement in nanotube-polymer composite materials.Physical Review B,2005,71(12).
    [116]Ramamurthy P C,Harreil W R,Gregory R V,et al.Mechanical and electrical properties of solution-processed polyaniline/multiwalled carbon nanotube composite films.Journal of the Electrochemical Society,2004,151(8):502-506.
    [117]Morsi K,Esawi A.Effect of mechanical alloying time and carbon nanotube(CNT) content on the evolution of aluminum(Al)-CNT composite powders.Journal of Materials Science,2007,42(13):4954-4959.
    [118]Minus M L,Kumar S.Shear induced poly(vinyl alcohoi)/single wall carbon nanotube composite fiber formation in solution.Abstracts of Papers of the American Chemical Society,2005,229:1116-1116.
    [119]Leung A Y,Kuang J L.Nanomechanics of a multiwalled carbon nanotube via Flugge's theory of a composite cylindrical lattice shell.Physical Review B,2005,71(16).
    [120]Jang J,Bae J,Yoon S H.Fabrication and performance improvement of liquid crystalline epoxy/carbon nanotube composite by surface treatment of carbon nanotube.Abstracts of Papers of the American Chemical Society,2003,226:498-498.
    [121]Guo D J,Li H L.Well-dispersed multi-walled carbon nanotube/polyaniline composite films.Journal of Solid State Electrochemistry,2005,9(6):445-449.
    [122]吕国伟,程波林,沈鸿等.Optical properties of carbon nanotubes and BaTiO3 composite thin films.中国物理:英文版,2006,15(8):1815-1818.
    [123]Raravikar N R,Schadler L S,Vijayaraghavan A,et al.Synthesis and characterization of thickness-aligned carbon nanotube-polymer composite films.Chemistry of Materials,2005,17(5):974-983.
    [124]Cui P.,Li F.S.,Zhou J.,et al.Preparation of Cu/CNTs composite particles and thermal decomposition behavior of ammonium perchlorate.Journal of Inorganic Materials,2006,21(2):303-308.
    [125]Chen X H,Li W H,Chert C S,et al.Preparation and properties of Cu matrix composite reinforced by carbon nanotubes.Transactions of Nonferrous Metals Society of China,2005,15(2):314-318.
    [126]Chert X H,Chen C S,Xiao H N,et al.Dry friction and wear characteristics of nickel/carbon nanotube electroless composite deposits.Tribology International,2006,39(1):22-28.
    [127]Chen X H,Chen C S,Xiao H N,et al.Corrosion behavior of carbon nanotubes - Ni composite coating.Surface & Coatings Technology,2005,191(2-3):351-356.
    [128]Abbaspour A,lzadyar A.Carbon nanotube composite coated platinum electrode for detection of Cr(Ⅲ) in real samples.Talanta,2007,71(2):887-892.
    [129]安百刚,李莉香,李洪锡.Preparation of carbon nanotube composite material with metal matrix by electroplating.中国有色金属学会会刊:英文版,2005,15(5):1045-1048.
    [130]Curran S,Davey A P,Coleman J,et al.Evolution and evaluation of the polymer nanotube composite.Synthetic Metals,1999,103(1-3):2559-2562.
    [131]Cooper C A,Young R J,Halsall M.Investigation into the deformation of carbon nanotubes and their composites throush the use of Raman spectroscopy.Composites Part a-Applied Science and Manufacturing,2001,32(3-4):401-411.
    [132]Allaoui A,Bai S,Cheng H M,et al.Mechanical and electrical properties of a MWNT/epoxy composite.Composites Science and Technology,2002,62(15):1993-1998.
    [133]Pirlot C,Willems I,Fonseca A,et al.Preparation and characterization of carbon nanotube/polyacrylonitrile composites.Advanced Engineering Materials,2002,4(3):109-114.
    [134]Vignlo B,Penicaud A,Coulon C,et al.Macroscopic fibers and ribbons of oriented carbon nanotubes.Science,2000,290(5495):1331-1334.
    [135]Chen L,Pang X J,Yu Z L.Study on polycarbonate/multi-walled carbon nanotubes composite produced by melt processing.Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2007,457(1-2):287-291.
    [136]Newman G,Wilkinson D,Shambaugh R,et al.(Carbon nanotube)/polymer composite fiber formation in the melt blowing process.Abstracts of Papers of the American Chemical Society,2000,220:434-434.
    [137]Li Z,Ying Z,Liu M,et al.Preparation and tensile properties of MWNT/polypropylene composite fibers by melt spinning.New Carbon Materials,2005,20(2):108-114.
    [138]Jin Z,Pramoda K P,Xu G,et al.Dynamic mechanical behavior of melt-processed multi-walled carbon nanotube/poly(methyl methacrylate) composites.Chemical Physics Letters,2001,337(1-3):43-47.
    [139]Tbostenson E T,Cbou T W.Aligned multi-walled carbon nanotube-reinforced composites:processing and mechanical characterization.Journal of Physics D-Applied Physics,2002,35(16):77-80.
    [140]Ajayan P M,Redlich P,Ruhle M.Structure of carbon nanotube-based nanocomposites.Journal of Microscopy-Oxford,1997,185:275-282.
    [141]Haggenmueller R,Gommans H H,Rinzler A G,et al.Aligned singie-wall carbon nanotubes in composites by melt processing methods.Chemical Physics Letters,2000,330(3-4):219-225.
    [142]Zhao D.L.,Zeng X.W.,Shen Z.M.Synthesis of carbon nanotube/polyaniline composite nanotube and its microwave permittivity.Acta Physica Sinica,2005,54(8):3878-3883.
    [143]Kamalakaran R,Lupo F,Grobert N,et al.In-situ formation of carbon nanotubes in an alumina-nanotube composite by spray pyrolysis.Carbon,2003,41(14):2737-2741.
    [144]Colorado R,Diosomito M E,Barron A R.In-situ fabrication of freestanding single-wailed carbon nanotube-silicate composite hex nuts.Advanced Materials,2005,17(13):1634-+.
    [145]贾志杰;王正元.原位法制取碳纳米管/尼龙6复合材料.清华大学学报(自然科学版),2002,40(4):14-16.
    [146]Maser W K,Benito A M,Callejas M A,et al.Synthesis and characterization of new polyaniline/nanotube composites.Materials Science & Engineering C-Biomimetic and Supramolecular Systems,2003,23(1-2):87-91.
    [147]Velasco-santos C,Martinez-hemandez A L,Lozada-cassou M,et al.Chemical functionalization of carbon nanotubes through an organosilane.Nanotechnology,2002,13(4):495-498.
    [148]Fan J H,Wan M X,Zhu D B,et al.Synthesis,characterizations,and physical properties of carbon nanotubes coated by conducting polypyrrole.Journal of Applied Polymer Science,1999,74(11):2605-2610.
    [149]Yang M H,Yang Y H,Liu Y L,et al.Platinum nanoparticles-doped sol-gel/carbon nanotubes composite electrochemical sensors and biosensors.Biosensors & Bioelectronics,2006,21(7):1125-1131.
    [150]Yoen S H,Jin H J,Kook M C,et al.Electrically conductive bacterial cellulose by incorporation of carbon nanotubes.Biomacromolecoles,2006,7(4):1280-1284.
    [151]Leng T,Huie P,Bilbao K V,et al.Carbon nanotube becky paper as an artificial support membrane and Broch's membrane patch in subretinal RPE and IPE transplantation.Investigative Ophthalmology & Visual Science,2003,44:97-97.
    [152]Vohrer U,Kolaric I,Haque M H,et al.Carbon nanotube sheets for the use as artificial muscles.Carbon,2004,42:1159-1164.
    [153]Hestrin S,Aschner M,Mager J.Synthesis of cellulose by resting cells of Acetobacter xylinum.Nature,1947,159:64-65.
    [154]Galas E,Krystynowicz A,Tarabasz-szymanska L,et al.Optimization of the production of bacterial cellulose using multivariable linear regression analysis.Acta Biotechnologica,1999,19(3):251-260.
    [155]Schramm M,Hestrin S.Factors affecting production of cellulose at the air/liquid interface of a Acetobacter xylinum,Journal of General Microbiology,1954,11:123-129.
    [156]Brown R M,Willison J H,Richardson C.Cellulose biosynthesis in Acetobacter xylinum:Visualization of the site of synthesis and direct measurement of the in vivo process.Proc.Natl.Acad.Sci.USA,1976,73(12):4565-4569.
    [157]Geyer U,Heinze T,Stein A,et al.Formation,Derivatization and Applications of Bacterial Cellulose.International Journal of Biological Macromolecules,1994,16(6):343-347.
    [158]高洁:汤烈贵.纤维素科学,北京:科学出版社,1996.
    [159]Marechal Y,Chanzy H.The hydrogen bond network in I-beta cellulose as observed by infrared spectrometry.Journal of Molecular Structure,2000,523:183-196.
    [160]Oh S Y,Yoo D I,Shin Y,et al.Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy.Carbohydr Res,2005,340(15):2376-2391.
    [161]Czaja W,Romanovicz D,Brown R M.Structural investigations of microbial cellulose produced in stationary and agitated culture.Cellulose,2004,11(3-4):403-411.
    [162]Sugiyama J,Persson J,Chanzy H.Combined Infrared and Electron Diffraction Study of the Polymorphism of Native Celluloses.Macromolecules,1991,24(9):2461-2466.
    [163]Sugiyama J,Vuong R,Chanzy H.Electron Diffraction Study on the Two Crystalline Phases Occurring in Native Cellulose from an Algal Cell WalL Macromolecules,1991,24(14):4168-4175.
    [164]Kataoka Y,Kondo T.Quantitative analysis for the cellulose I alpha crystalline phase in developing wood cell walls.International Journal of Biological Macromolecules,1999,24(1):37-41.
    [165]Imai T,Suglyama J.Nanedomains of I alaph and I belta Cellulose in Algal Microfibrils.Macromolecules,1998,31(18):6275-6279.
    [166]殷敬华,莫志深.现代高分子物理学(下册),北京:科学出版社,2001.
    [167]Garvey C J,Parker I H,Simon G P.On the interpretation of X-ray diffraction powder patterns in terms of the nanostrocture of cellulose I fibres.Macromolecular Chemistry and Physics,2005,206(15):1568-1575.
    [168]Wada M,Sugiyama J,Okano T.Native cellulose on the basis of two crystalline phase(I-alpha/I-belta)system.Journal of Applied Polymer Science,1993,49:1491-1496.
    [169]Cao Y,Tan H M.Study on crystal structures of enzyme-hydrolyzed cellulosic materials by X-ray diffraction.Enzyme and Microbial Technology,2005,36(2-3):314-317.
    [170]焦剑,雷渭媛.高聚物结构、性能与测试,北京:化学工业出版社,2003.
    [171]Kono H,Numata Y.Structural investigation of cellulose I-alpha and I-beta by 2D RFDR NMR spectroscopy:determination of sequence of magnetically inequlvalent D-glucose units along cellulose chain.Cellulose,2006,13(3):317-326.
    [172]Atalla R H,Vanderhart D L.The role of solid state 13C NMR spectroscopy in studies of the nature of native celluloses.Solid State Nuclear Magnetic Resonance,1999,15(1):1-19.
    [173]Yamamoto H,Horii F.CP/MAS I3C NMR Analysis of the Crystal Transformation Induced for Vdonia Cellulose by Annealing at High Temperatures.Macromolecules,1993,26(6):1313-1317.
    [174]Zhao H B,Kwak J H,Wang Y,et al.Effects of crystallinity on dilute acid hydrolysis of cellulose by cellulose ball-milling study.Energy & Fuels,2006,20(2):807-811.
    [175]Mansikkamaki P,Lahtinen M,Rissanen K.The conversion from cellulose Ⅰ to cellulose Ⅱ in NaOH mercerization performed in alcohol-water systems:An X-ray powder diffraction study.Carbohydrate Polymers,2007,68(1):35-43.
    [176]Guhadns G,Wan W K,Hutter J L.Measurement of the elastic modulus of single bacterial cellulose fibers using atomic force microscopy.Langmuir,2005,21(14):6642-6646.
    [177]Heo M S,Son H J.Development of an optimized,simple chemically defined medium for bacterial cellulose production by Acetobacter sp A9 in shaking cultures.Biotechnology and Applied Biochemistry,2002,36:41-45.
    [178]Son H J,Heo M S,Kim Y G,et al.Optimization of fermentation conditions for the production of bacterial cellulose by a newly isolated Acetobacter sp A9 in shaking cultures.Biotechnology and Applied Biochemistry,2001,33:1-5.
    [179]Son H J,Kim H G,gim K K,et al.Increased production of bacterial cellulose by Acetobacter sp V6 in synthetic media under shaking culture conditions.Bioresource Technology,2003,86(3):215-219.
    [180]Hestrin S,Schramm M.Synthesis of cellulose by acetobacter xylinum.Ⅱ.Preparation of freeze-dried cells capable of polymerizing glucose to cellulose.J Biochem,1954,58:345-352.
    [181]Hirai A,Tsuji M,Horii F.TEM study of band-like cellulose assemblies produced by Acetobacter xylinum at 4 degrees C.Cellulose,2002,9(2):105-113.
    [182]George J,Ramana K V,Sabapathy S N,et al.Characterization of chemically treated bacterial(Acetobacter xylinum) biopolymer:Some thermo-mechanical properties.International Journal of Biological Macromolecules,2005,37(4):189-194.
    [183]Barud H S,Ribeiro C A,Crespi M S,et al.Thermal characterization of bacterial cellulose-phosphate composite membranes.Journal of Thermal Analysis and Calorimetry,2007,87(3):815-818.
    [184]Aguilera J M,Cuadros T R,Del V J.Differential scanning calorimetry of low-moisture apple products.Carbohydrate Polymers,1998,37(1):79-86.
    [185]Baranov A I,Anisimova V N,Khripunov A K,et al.Dielectric properties and dipole glass transition in cellulose acetobacter xylinium.Ferroelectrics,2003,286:863-873.
    [186]Kataoka Y,Kondo T.Quantitative analysis for the cellulose Ⅰ alpha crystalline phase in developing wood cell walls.International Journal of Biological Macromolecules,1999,24(1):37-41.
    [187]Nelson M L,O'conner R T.Journal Of Applied Polymer Science,1964,8:1311.
    [188]Hinterstoisser B,Akerholm M,Salmen L.Effect of fiber orientation in dynamic FTIR study on native cellulose.Carbohydrate Research,2001,334(1):27-37.
    [189]Focher B,Palma M T,Canetti M,et al.Structural differences between non-wood plant celluloses:evidence from solid state NMR,vibrational spectroscopy and X-ray diffractometry.Industrial Crops and Products,2001,13(3):193-208.
    [190]Kacurakova M,Smith A C,Gidley M J,et al.Molecular intoractions in bacterial cellulose composites studied by ID FT-IR and dynamic 2D FT-IR spectroscopy.Carbohydrate Research,2002,337(12):1145-1153.
    [191]Ridont M J,Brownsey G J,Morris V J,et al.Physicochemical characterization of an acetan variant secreted by Acetobacter xylinum strain CR1/4.Int J Biol Macromol,1994,16(6):324-330.
    [192]Liu C F,Xu F,Sun J X,et al.Physicocbemical characterization of cellulose from perennial ryegrass leaves (Lolium perenne).Carbohydrate Research,2006,341(16):2677-2687.
    [193]Sun J X,Xu F,Sun X F,et al.Physico-chemical and thermal characterization of cellulose from barely straw.Polymer Degradation and Stability,2005,88:521-531.
    [194]Akerholm M,Hinterstoisser B,Salmen L.Characterization of the crystalline structure of cellulose using static and dynamic FT-IR spectroscepy.Carbohydrate Research,2004,339(3):569-578.
    [195]Bates S,Zografi G,Engers D,et al.Analysis of amorphous and nanocrystailine solids from their X-ray diffraction patterns.Pharmaceutical Research,2006,23(10):2333-2349.
    [196]Kondo T,Sawatari C,A Fourier transform infra-red spectroscopic analysis of the character of hydrogen bonds in amorphous cellulose.Polymer,1996,37(3):393-399.
    [197]Yamamoto H,Horii F,Hirai A.In situ crystallization of bacterial cellulose.2.Influences of different polymeric additives on the formation of celluloses I-alpha and I-beta at the early stage of incubation.Cellulose,1996,3(4):229-242.
    [198]Hirai A,Tsuji M,Yamamoto H,et al.In situ crystallization of bacterial cellulose - Ⅲ.Influences of different polymeric additives on the formation of microfibrils as revealed by transmission electron microscopy.Cellulose,1998,5(3):201-213.
    [199]Tokoh C,Takabe K,Sugiyama J,et al.Cellulose synthesized by Acetohacter xylinum in the presence of plant cell wall polysaccharides.Cellulose.,2002,9(1):65-74.
    [200]Kuznetsova A,Mawhinney D B,Naumcnko V,et al.Enhancement of adsorption inside of single-walled nanotubes:opening the entry ports.Chemical Physics Letters,2000,321(3-4):292-296.
    [201]Goyanes S,gubiolo G R,Salazar A,et al.Carboxylation treatment of multiwalled carbon nanotubes monitored by infrared and ultraviolet spectroscopies and scanning probe microscopy.Diamond & Related Materials,2007,16(2):412-417.
    [202]曹茂盛,刘海涛等.碳纳米管表面处理技术的研究.中国表面工程,2002,15(4):32-36.
    [203]余颖,贾志杰,曾艳等.碳纳米管增强PA6复合材料的机理.高分子材料科学与工程,2003,19(3):198-200.
    [204]Hesse S,Kondo T.Behavior of cellulose production of Acetobacter xylinum in C-13-enriched cultivation media including movements on nematic ordered cellulose templates.Carbohydrate Polymers,2005,60(4):457-465.
    [205]Ross P,Weinhouse H,Aloni Y,et al.Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid.Nature,1987,325:279-281.
    [206]Shibazaki H,Saito M,Kuga S,et al.Native cellulose Ⅱ production by Acetobacter xylinum under physical constrain.Cellulose,1998,5(3):165-173.
    [207]Wang Z,Ba D C,Liu F,et al.Synthesis and characterization of large area well-aligned carbon nanotubes by ECR-CVD without substrate bias.Vacuum,2005,77(2):139-144.
    [208]Liu Y,Gao L.In situ coating multiwalled carbon nanotubes with CdS nanoparticles.Materials Chemistry and Physics,2005,91:365-369.
    [209]Hirai A,Tsuji M,Horii F.TEM study of band-like cellulose assemblies produced by Acetobacter xylinum at 4 degrees C.Cellulose,2002,9(2):105-113.
    [210]Svensson A,Nicklasson E,Harrah T,et al.Bacterial cellulose as a potential scaffold for tissue engineering of cartilage.Biomaterials,2005,26(4):419-431.
    [211]Chen G X,Kim H S,Park B H,et al.Multi-walled carbon nanotubes reinforced nylon 6 composites.Polymer,2006,47(13):4760-4767.
    [212]Gupta V K,Pangannaya N B.Carbon nanotubes:bibliometric analysis of patents.World Patent Information,2000,22:185-189.
    [213]Qian D,Dickey E C,Andrews R,et al.Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites.Applied Physics Letters,2000,76(20):2868-2870.
    [214]Meincke O,Kaempfer D,Weickmann H,et al.Mechanical properties and electrical conductivity of carbon-nanotube filled polyamide-6 and its blends with acryionitrile/butadiene/styrene.Polymer,2004,45(3):739-748.
    [215]Tai N H,Yeh M K,Liu J H,et al.Fabrication and characterization of nanocomposites reinforced by carbon nanotubes(2) - Testing of mechanical properties.Composite Materials Iv,2006,313:1-6.
    [216]Shaffer M S,Windle A H.Fabrication and characterization of carbon nanotube/poly(vinyl alcohol)composites.Advanced Materials,1999,11(11):937.
    [217]Chen L,Pang X J,Qu M Z,et al.Fabrication and characterization of polycarbonate/carbon nanotubes composites.Composites Part a-Applied Science and Manufacturing,2006,37(9):1485-1489.
    [218]Gou J H.Single-walled nanotube bucky paper and nanocomposite.Polymer Intemational,2006,55(11):1283-1288.
    [219]何曼君;陈维孝;董西侠.高分子物理,上海:复旦大学出版社,1993.343-359.