免疫性血小板减少症MIF和FKBP5的表达与激素抵抗相关性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     探讨初治免疫性血小板减少症(ITP)患者巨噬细胞移动抑制因子(Macrophagemigration inhibitory factor,MIF)表达与糖皮质激素(Glucocorticoid,GC)抵抗的关系。
     方法:
     收集2009年2月—2012年11月大连医科大学附属第一医院,大连210医院血液科住院初治ITP患者90例(女性56例,男性34例),所有患者均采用GC治疗,根据GC疗效分为敏感组60例(女性36例,男性24例),抵抗组30例(女性20例,男性10例),通过实时荧光定量RT-PCR SYBR Green染料法检测敏感组和抵抗组患者外周血单个核细胞(Peripheral blood mononuclear cells,PBMC)MIF的mRNA表达,采用ELISA方法检测敏感组和抵抗组患者血浆中MIF的蛋白表达,比较组间差异。所有数据采用平均数±标准差表示,应用SPSS13.0统计软件分析试验结果。组间比较采用t检验,P<0.05认为具有统计学意义。
     结果:
     1.激素抵抗组ITP患者外周血单个核细胞MIF的mRNA表达(28.71±5.97)高于激素敏感组ITP患者(27.19±6.30),但两组无统计学意义(P>0.05)。激素抵抗组ITP患者血浆中MIF的蛋白表达(13.96±6.15)也高于激素敏感组ITP患者(12.82±5.54),两组相比无统计学意义(P>0.05)。
     2.根据性别,年龄,病情,病程分组比较,激素抵抗组ITP患者外周血单个核细胞MIF的mRNA表达与激素敏感组相比较有升高趋势,但均无显著性差异(P>0.05)。
     3.根据性别,年龄,病情,病程分组比较,激素抵抗组ITP患者外周血单个核细胞MIF的蛋白表达与激素敏感组相比较有升高趋势,但均无显著性差异(P>
     0.05)。
     结论:与激素敏感组ITP患者相比,激素抵抗组ITP患者MIF基因mRNA水平和蛋白水平均有升高趋势,但无显著性差异,推测MIF的表达可能与ITP患者GC抵抗无密切相关。
     背景及目的:
     糖皮质激素(GC)是治疗免疫性血小板减少症(ITP)的主要药物。然而,经过3个月的标准治疗后,临床上少数患者对GC治疗反应很差或者无反应,称为GC抵抗。GC抵抗是临床治疗上的难题,而GC抵抗的分子机制仍不明确。FKBP5蛋白,作为HSP90的分子伴侣,具有调节GC受体敏感性的作用。研究发现FKBP5的基因多态性(rs1360780)在与应激有关的精神病中能调节激素的敏感性。本研究目的调查FKBP5基因多态性与ITP患者GC疗效的关系,探讨ITP患者GC抵抗的可能机制。
     方法:
     搜集212个ITP患者和110个健康志愿者,其中激素抵抗患者55名,激素敏感ITP患者157名。测定FKBP5单核甘酸多态位点rs1360780,应用实时荧光定量PCR和cycling探针技术进行基因分型,分析FKBP5基因多态位点等位基因及单倍体在ITP患者和健康对照组中的表达,探讨该基因与ITP患者激素疗效的关系。数据分析使用SPSS13.0软件,组间比较使用卡方检验。
     结果:
     1. FKBP5rs1360780位点各基因型在ITP患者组和对照组中的分布符合遗传平衡规律。
     2.激素敏感ITP患者的CC,CT,和TT的基因型频率分别是:53%,43%,4%, C和T等位基因频率分别是:75%,25%。;正常对照组的CC, CT,和TT的基因型频率分别是:59%,36%,5%, C和T等位基因频率分别是:77%,23%;二组间各基因型(P=0.40)及等位基因(P=0.62,OR=1.13,95%CI=0.76-1.70)相比较无显著性差异。
     3.激素抵抗ITP患者的CC, CT,和TT的基因型频率分别是:59%,39%,2%, C
     和T等位基因频率分别是:78%,22%;正常对照组相比,二组间各基因型(P=0.51)
     及等位基因频率(P=0.89,OR=0.92,95%CI=0.53-1.60)无显著性差异。
     4.与激素敏感ITP患者相比较,激素抵抗ITP患者的基因型频率(P=0.67)和等位基因频率(P=0.52,OR=1.23,95%CI=0.73-2.06)无显著性差异。
     结论:
     1. FKBP5rs1360780位点基因各基因型在ITP组和正常对照组中的分布符合哈
     迪-温伯格遗传平衡定律;
     2. FKBP5rs1360780位点多态性可能与ITP患者GC疗效无关联。
     背景及目的:
     糖皮质激素(GC)是治疗免疫性血小板减少症(ITP)的主要药物。然而,经过标准治疗后,临床上大约10-30%的患者对激素治疗反应很差或者无反应,称为糖皮质激素抵抗。研究发现FKBP51的过度表达和FKBP52的低表达能影响GC的免疫抑制作用。本实验目的是探讨初治免疫性血小板减少症(ITP)患者FKBP51和FKBP52的mRNA表达与糖皮质激素抵抗的关系。
     方法:
     收集于2009年2月—2012年11月大连医科大学附属第一医院,大连210医院血液科住院初治ITP患者90例(女性56例,男性34例),所有患者均首选GC治疗,根据GC疗效分为敏感组60例(女性36例,男性24例),抵抗组30例(女性20例,男性10例),通过实时荧光定量RT-PCR SYBR Green染料法检测敏感组和抵抗组患者外周血单个核细胞FKBP51和FKBP52的mRNA表达,比较组间差异。
     结果:
     1.激素抵抗组ITP患者外周血单个核细胞FKBP51的mRNA表达(26.20±5.18)与激素敏感组ITP患者(27.80±5.99)相比,无统计学意义(P>0.05)。激素抵抗组ITP患者血浆中FKBP52的mRNA表达(17.35±4.96)与激素敏感组ITP患者(18.82±5.54)相比,无统计学意义(P>0.05)。
     2.根据性别,年龄,病情,病程分组比较,激素抵抗组ITP患者外周血单个核细胞FKBP51的mRNA表达与激素敏感组相比较有升高趋势,但均无显著性差异(P>0.05)。
     3.根据性别,年龄,病情,病程分组比较,激素抵抗组ITP患者外周血单个核细胞FKBP52的mRNA表达相与激素敏感组比较有降低趋势,但均无显著性差异(P>0.05)。
     结论:
     1.与激素敏感组ITP患者相比,激素抵抗组ITP患者FKBP51的mRNA表达与激素敏感组相比较虽有升高趋势,但均无显著性差异,推测FKBP51的mRNA表达可能与ITP患者GC抵抗无关。
     2.与激素敏感组ITP患者相比,激素抵抗组ITP患者FKBP52的mRNA表达与激素敏感组相比较虽有降低趋势,但均无显著性差异,推测FKBP52的mRNA表达可能与ITP患者GC抵抗无关。
Objective: To investigate the expression of macrophage migration inhibitoryfactor (MIF) in patients with primary immune thrombocytopenia(ITP) and itscorrelation with glucocorticoid resistance.
     Methods: The MIF mRNA expression was analyzed by semiquantitative real-timeRT-PCR in90newly diagnosed ITP patients. All the patients with ITP were dividedinto several subgroups according to glucocorticoid response, gengder, age, stages andseverity of desease, and difference between each pair of subgroups were analyzed. MIFprotein expression in serum was performed by ELISA.
     Results: We found no association of GC resistance and MIF mRNA and proteinexpression in ITP patients. According to the gengder, age, stages and severity ofdesease, the patients were further subdivided into8groups, no statistical difference wasfound.
     Conclusion: The present study suggested that the MIF expression does notcontribute to GC resistance in ITP.
     Objective: The FKBP5gene codes for the FK506-binding protein51(FKBP5), aco-chaperone of hsp90, which regulates glucocorticoid (GC) receptor sensitivity. TheFKBP5gene single nucleotide polymorphisms (SNP), rs1360780, has been found tomodulate GC sensitivity in stress-related psychiatric disorders. The aim of the presentstudy was to examine the effects of rs1360780on the treatment outcome of patientssuffering from idiopathic thrombocytopenic purpura (ITP) administered with GC.
     Methods: The polymorphism of FKBP5, rs1360780, was genotyped in55GC-resistant ITP patients,157GC-sensitive ITP patients and110unrelated healthyindividuals using real-time PCR and cycling probe technology with DNA extractedfrom peripheral blood.
     Results: No significant differences in FKBP5rs1360780genotypes (P=0.51) andalleles (P=0.89) were observed between the GC-resistant ITP patients and the healthycontrols. There were no significant differences observed between the GC-sensitive ITPpatients and the healthy controls (P=0.40for genotypes and P=0.62for T allele), as wellas between the GC-sensitive ITP patients and the GC-resistant patients (P=0.67forgenotypes and for T allele).
     Conclusion: The present study demonstrates that the FKBP5polymorphism maynot affect the response of ITP patients to GC treatment.
     Objective: Glucocorticoids (GCs) are considered the important drugs used intreatment of immune thrombocytopenia (ITP). However, about only10-30%patientswith ITP develop GC resistance after standard treatment with GC. Many studies hasbeen shown that the FKBP51overexpression and low expression of FKBP52affectedimmunosuppressive effects glucocorticoids. Here, we investigated the association of GCresistance with FKBP51and FKBP52mRNA expression in this case-control study.
     Methods:The FKBP51and FKBP52mRNA expression was analyzed bysemiquantitative real-time RT-PCR in90newly diagnosed ITP patients. All the patientswith ITP were divided into several subgroups according to glucocorticoid response,gengder, age, stages and severity of desease, and difference between each pair ofsubgroups were analyzed.
     Results: We found no association of GC resistance and FKBP51mRNAexpression in GC-resistant ITP patiences (26.20±5.18) compared with theGC-sensitive(27.80±5.99). We found no association of GC resistance and FKBP52mRNA expression in GC-resistant ITP patiences (17.35±4.96)compared with theGC-sensitive(18.82±5.54). According to gengder, age, stages and severity of desease,the patients were further subdivided into8groups, no statistical difference was found inGC-resistant ITP patiences compared with the GC-sensitive.
     Conclusion:The present study suggested that the FKBP51and FKBP52mRNAexpression does not contribute to GC resistance in ITP.
引文
[1] Cines DB, Blanchette VS. Medical progress: immune thrombocytopenic purpura. NEngl J Med.2002;346(13):995–1008.
    [2] Cines DB, Bussel JB. How I treat idiopathic thrombocytopenic purpura (ITP).Blood.2005;106(7):2244-2251.
    [3] El-Shiekh EH, Bessa SS, Abdou SM, et al. Role of DNA methyltransferase3AmRNA expression in Egyptian patients with idiopathic thrombocytopenic purpura.Int J Lab Hematol.2012;34(4):369-376.
    [4] Beardsley DS, Ertem M. Platelet autoantibodies in immune thrombocytopenicpurpura. Transfus Sci.1998;9(3):237-244.
    [5] Kuwana M, Okazaki Y, Kaburaki J, et al. Detection of circulating B cells secretingplatelet-specific autoantibody is useful in the diagnosis of autoimmunethrombocytopenia. Am J Med.2003;114(4):322-325.
    [6] Schipperus M, Fijnheer R. New therapeutic options for immune thrombocytopenia.Neth J Med.2011;69(11):480-485.
    [7] Crow AR, Song S, Siragam V, et al. Mechanisms of action of intravenousimmunoglobulin in the treatment of immune thrombocytopenia. Pediatr BloodCancer.2006;47(5Suppl):710-713.
    [8] Siragam V, Crow AR, Brinc D, et al. Intravenous immunoglobulin ameliorates ITPvia activating Fc gamma receptors on dendritic cells. Nat Med.2006;12(6):688-692.
    [9] Cines DB, Bussel JB, Liebman HA, et al.The ITP syndrome: pathogenic andclinical diversity. Blood.2009;113(26):6511–6521.
    [10]Calandra T, Roger T. Macrophage migration inhibitory factor: a regulator of innateimmunity. Nat Rev Immunol.2003;3(10):791-800.
    [11]Stosic-Grujicic S, Stojanovic I, Nicoletti F. MIF in autoimmunity and noveltherapeutic approaches. Autoimmun Rev.2009;8(3):244-249.
    [12]Denkinger CM, Metz C, Fingerle-Rowson G, et al. Macrophage migration inhibitorfactor and its role in autoimmune diseases. Arch Immunol Ther Exp.2004;52(6):389-400.
    [13]Vivarelli M, DUrbano LE, Insalaco A, et al. Macrophage migration inhibitoryfactor (MIF) and oligoarticular juvenile idiopathic arthritis (o-JIA): association ofMIF promoter polymorphisms with response to intra-articular glucocorticoids.Clinical and Experimental Rheumatology.2007;25(5):775-781.
    [14]侯明等.成人原发免疫性血小板减少症诊治的中国专家共识(修订版).中华血液学杂志2011;32:214-216.
    [15]Leech M, Metz C, Hall P, et al. Macrophage migration inhibitory factor inrheumatoid arthritis: evidence of proinflammatory function and regulation byglucocorticoids. Arthrit is Rheum,1999,42(8):1601-1618.
    [16]Wansheng L, Meiyun F, Xifei Y. FK506-binding protein51(FKBP5) genepolymorphism is not associated with glucocorticoid therapy outcome in patientswith idiopathic thrombocytopenic purpura. Mol Med Report.2012;6(4):787-790.
    [17]Lue HQ, Kleemann R, Calandra T, et al. Macrophage migration InhibitoryFactor(MIF): mechanisms of action and role in disease. Microbes Infection,2002;4(4):449-460.
    [18]Leech M, Metz C, Bucala R, et al. Regulation of macrophage migration inhibitoryfactor by endogenous glucocorticoids in rat adjuvan-t induced arthritis. Arthrit isRheum,2000,43(4):827-833.
    [19]Aeberli D, Yang Y, Mansell A, et al. Endogenous macrophage migration inhibitoryfactor modulates glucocorticoid sensitivity in macrophages via effects on MAPkinase phosphatase-1and p38MAP kinase. FEBS Lett,2006,580(3):974-981.
    [20]Roger T, Chanson AL, Knaup-Reymond M, et al. Macrophage migration inhibitoryfactor promotes innate immune responses by suppressing glucocorticoid-inducedexpression of mitogen-activated protein kinase phosphatase-1. Eur J Immunol,2005,35(12):3405-3413.
    [21]Flaster H, Bernhagen J, Calandra T, et al. The macrophage migration inhibitoryfactor-glucocorticoid dyad: regulation of inflammation and immunity. MolEndocrinol.2007;21(6):1267-1280.
    [22]Leng L, Wang W, Roger T, et al. Glucocorticoid-induced MIF expression byhuman CEM T cells. Cytokine.2009;48(3):177-185.
    [23]Ishiguro Y, Ohkawara T, Sakuraba H, et al. Macrophage migration inhibitory factorhas a proinflammatory activity via the p38pathway in glucocorticoid-resistantulcerative colitis. Clin Immunol.2006;120(3):335-341.
    [24]Jing L, Bu M. Role of macrophage migration inhibitory factor in glucocorticoidrelease and glucocorticoid receptor function in Rats. Ann Clin Lab Sci.2011;41(1):14-19.
    [25]Wang FF, Zhu LA, Zou YQ, et al. New insights into the role and mechanism ofmacrophage migration inhibitory factor in steroid-resistant patients with systemiclupuserythematosus. Arthritis Research and Therapy.2012;14(3):1-9.
    [26]Swantek JL, Cobb MH, Geppert TD. Jun N-terminal kinase/stress activated proteinkinase (JNK/SAPK) is required for lipopolysaccharide stimulation of tumornecrosis factor alpha (TNF-α) translation: glucocorticoids inhibit TNF-αtranslation by blocking JNK/SAPK. Mol Cell Biol1997;17(11):6274–6282.
    [27]Mitchell RA, Metz CN, Peng T, et al. Sustained mitogen-activated protein kinase(MAPK) and cytoplasmicphospholipase A2activation by macrophage migrationinhibitory factor (MIF). Regulatory role in cell proliferation and glucocorticoidaction. J Biol Chem1999;274(25):18100–18106.
    [28]Mulla A, Leroux C, Solito E, et al. Correlation between the anti-inflammatoryprotein annexin1(lipocortin1) and serum cortisol in subjects with normal anddysregulated adrenal function. J Clin Endocrinol Metab2005,90(1):557-562.
    [29]孙瑜。巨噬细胞移动抑制因子负向调节糖皮质激素抗炎作用及参与内皮细胞胰岛素抵抗的机制研究:[博士学位论文].上海:第二军医大学长海医院烧伤科,2009
    [30]Ghosh S, Karin M. Missing pieces in the NF-κB puzzle. Cell2002;109(suppl):s81-96.
    [31]Daun JM, Cannon JG. Macrophage migration inhibitory factor antagonizeshydrocortisone-induced increases in cytosolic I[kappa] B [alpha]. Am J PhysiolRegul Integr Comp Physiol,2000,279(3): R1043-R1049.
    [32]Johnson GL, Lapadat R. Mitogen-activated protein kinase pathways mediated byERK, JNK, and p38protein kinase. Science2002;298(5600):1911-1912.
    [33]Kleemann R, Hausser A, Geiger G, et al. Intracellular action of the cytokine MIFto modulate AP-1activity and the cell cycle through Jab1. Nature2000;408(6809):211–216.
    [34]Seeger M, Kraft R, Ferrell K, et al. A novel protein complex involved in signaltransduction possessing similarities to26S proteasome subunits. FASEB J1998;12(6):469–478.
    [35]Hong X, Xu LG, Li XY, et al. CSN3interacts with IKK gamma and inhibits TNF-α but not IL-1-induced NF-kappaB activation. FEBS Lett2001;499(1-2):133–136.
    [36]Onodera S, Nishihira J, Koyama Y, et al. Macrophage migration inhibitory factorup-regulates the expression of interleukin-8messenger RNA in synovial fibroblastsof rheumatoid arthritis patients: common transcriptional regulatory mechanismbetween interleukin-8and interleukin-1beta. Arthritis Rheum,2004,50(5):1437-1447.
    [37]Leng L, Metz C, Fang Y, et al. MIF signal transduction initiated by binding toCD74. J Exp Med2003;197(11):1467–1476.
    [38]Shi X, Leng L, Wang T, et al. CD44is the signaling compopnent of themacrophage migration inhibitory factor-CD74receptor complex. Immunity2006;25(4):595–606.
    [39]Leng L, Bucala R. Insight into the biology of macrophage migration inhibitoryfactor (MIF) revealed by the cloning of its cell surface receptor. Cell Res2006;16(2):162–168.
    [40]Santos LL, Lacey D, Yang Y, et al. Activation of synovial cell p38MAP kinase bymacrophage migration inhibitory factor. J. Rheumatol.2004;31(6):1038–1043.
    [41]Lasa M, Abraham SM, Boucheron C, et al. Dexamethasone causes sustainedexpression of mitogen-act ivated protein kinase (MAPK) phosphatase1andphosphatase-mediated inhibition of MAPK p38. Mol Cell Biol,2002,22(22):7802-7811.
    [42]Kassel O, Sancono A, Kratzschmar J, et al. Glucocort icoids inhibit MAP kinasevia increased expression and decreased degradation of MKP-1.EMBO,2001,20(24):7108-7116.
    [1] Zhou ZP, Yang RC. Rituximab treatment for chronic refractory idiopathicthrombocytopenic purpura. Hematology.2008;65(1):21-31.
    [2] George JN, Woolf SH,Raskob GE. ITP: practice guideline developed by explicitmethods for the American Society of Hematology. Blood.1996;88(1):3-40.
    [3] Beardsley DS, Ertem M. Platelet autoantibodies in immune thrombocytopenicpurpura. Transfus Sci.1998;9(3):237-244.
    [4] Kuwana M, Okazaki Y, Kaburaki J, et al. Detection of circulating B cells secretingplatelet-specific autoantibody is useful in the diagnosis of autoimmunethrombocytopenia. Am J Med.2003;114(4):322-325.
    [5] British Committee for Standards in Haematology. General Haematology TaskForce: Guidelines for the investigation and management of idiopathicthrombocytop enic purpura in adults, children and in pregnancy. Br J Haem atol.2003;120(4):574-596.
    [6] Cines DB, McMillan R. Management of adult idiopathic thrombocytopenic purpura.Annu Rev Med.2005;56:425-442.
    [7] Meletis J, Katsandris A, Raptis S et al. Successful treatment of immunethrombocytopenic purpura (ITP) with the thrombopoietin-mimetic romiplostim.Med Sci Monit.2010;16(8):100-102.
    [8] Kojouri, George JN. Recent advances in the treatment of chronic refractory immunethrombocytopenic purpura. Int J Hematol.2005;81(2):119-125.
    [9] Pierik M, Rutgeerts P, Vlietinck R, et al. Pharmacogenetics in inflammatory boweldisease. World J Gastroenterol.2006;12(23):3657-3667.
    [10]Rulten SL,Kinloch RA,Tateossian H,et a1.The human FK506-binding proteins:characterization of human FKBPl9.Mamm Genome,2006,17(4):322-331.
    [11]Fischer Q. peptidylprolyl cis—trans isomerases and their effectors.Angew Chemhat Ed Engl,1994,33(1414):1415-1436.
    [12]Nair SC, Rimerman RA, Toran EJ, et a1. Molecular cloning of human FKBP51andcomparisons of immunophilin interactions with Hsp90and progesterone receptor.Mol Cell Biol.1977;17(2):594-603.
    [13]Binder EB. The role of FKBP5, a co-chaperone of the glucocorticoid receptor in thepathogenesis and therapy of affective and anxiety disorders. Psychoneur oendocrinology.2009;34(Suppl1):186-195.
    [14]Davies TH,Ning YM,Sanchez ER.A new first step in activation of steroidreceptors:hormone—induced switching of FKBP51and FKBP52immunophilin.JBiol Chem,2002,277(7):4597-4600.
    [15]Westberry JM,Sadosky PW, Hubler TR,et a1.Glucoeorticoid resistance in squirrelmonkeys results from a combination of a transcriptionally incompetentglucoeorticoid receptor and overexpression of the glucoeorticoid receptorco-chaperone FKBP51.J Steroid Bioehem Mol Biol,2006,100(1-3):34-41.
    [16]Vermeer H, Hendricks-Stegemann BAI, Van der Burg B, et a1.Glucocorticoid-induced increase in lymphocytic FKBP51messenger ribonucleicacid expression: a potential marker for glucocorticoid sensitivity, potency, andbioavailability. J Clin Endocrin Metabol.2003;88(1):277-284.
    [17]Wochnik GM, Ruegg J, Abel GA, et a1. FK506-binding proteins51and52differentially regulate dynein interaction and nuclear translocation of theglucocorticoid receptor in mammalian cells. J Biol Chem.2005;280(6):4609-4616.
    [18]Binder EB, Salyakina D, Lichtner P, et al. Polymorphisms in FKBP5are associatedwith increased recurrence of depressive episodes and rapid response toantidepressant treatment. Nat Gen.2004;36(12):1319-1325.
    [19]Tatro ET, Everall IP, Masliah E, et a1. Differential expression of immunophilinsFKBP51and FKBP52in the frontal cortex of HIV-infected patients with majordepressive disorder. J Neuroimmune Pharmacol.2009;4(2):218-226.
    [20]Woodruff PG, Boushey HA, Dolganov GM, et al. Genome-wide profiling identifiesepithelial cell genes associated with asthma and with treatment response tocorticosteroids. Proc Natl Acad Sci USA.2007;104(40):15858-15863.
    [21]侯明等.成人原发免疫性血小板减少症诊治的中国专家共识(修订版).中华血液学杂志2011;32:214-216.
    [22]Shibuya N, Suzuki A, Sadahiro R, et al. Association study between a functionalpolymorphism of FK506-binding protein51(FKBP5) gene and personality traits inhealthy subjects. Neurosci Lett.2010;485(3):194-197.
    [23]Maltese P, Palma L, Sfara C, et al. Glucocorticoid resistance in Crohn's disease andulcerative colitis: an association study investigating GR and FKBP5genepolymorphisms. Pharmacogenomics.2012;12(5):432-438.
    [24]Scammell JG, Denny WB, Valentine DL et al. Overexpression of theFK506-binding immunophilin FKBP51is the common cause of glucocorticordresistance in three New World primates.Gen Comp Endocrinol.2001;124(2):152-165.
    [25]Hubler TR, Scammell JG. Intronic hormone response elements mediate regulationof FKBP5by progestins and glucocorticoids.Cell Stress Chaperones.2004;9(3):243-252.
    [26]Ising M, Depping AM, Siebertz A, Lucae S, Unschuld PG, Kloibers S, HorstmannS, Uhr M, Müller-Myhsok B and Holsboer F: Polymorphisms in the FKBP5generegion modulate recovery from psychosocial stress in healthy controls. Eur JNeurosci.2008;28:389-398.
    [27]Luijk MP, Velders FP, Tharner A, et al. FKBP5and resistant attachment predict cortisol reactivity in infants: gene-environment interaction. Psychoneuroendocrinology.2010;35(10):1454-1461.
    [28]Sarginson JE, Lazzeroni LC, Ryan HS, et al. FKBP5polymorphisms and antide-pressant response in geriatric depression. Am J Med Genet B NeuropsychiatrGenet.2010;153(2):554-560.
    [29]Papiol S, Arias B, Gasto C, et al. Genetic variability at HPA axis in majordepression and clinical response to antidepressant treatment. J AffectDisord.2007;104(1-3):83-90.
    [1] Cines DB, Blanchette VS. Medical progress: immune thrombocytopenic purpura. NEngl J Med.2002;346(13):995–1008.
    [2] Cines DB, Bussel JB. How I treat idiopathic thrombocytopenic purpura (ITP).Blood.2005;106(7):2244-2251.
    [3] El-Shiekh EH, Bessa SS, Abdou SM, et al. Role of DNA methyltransferase3AmRNA expression in Egyptian patients with idiopathic thrombocytopenic purpura.Int J Lab Hematol.2012;34(4):369-376.
    [4] Beardsley DS, Ertem M. Platelet autoantibodies in immune thrombocytopenicpurpura. Transfus Sci.1998;9(3):237-244.
    [5] Kuwana M, Okazaki Y, Kaburaki J, et al. Detection of circulating B cells secretingplatelet-specific autoantibody is useful in the diagnosis of autoimmunethrombocytopenia. Am J Med.2003;114(4):322-325.
    [6] Schipperus M, Fijnheer R. New therapeutic options for immune thrombocytopenia.Neth J Med.2011;69(11):480-485.
    [7] Crow AR, Song S, Siragam V, et al. Mechanisms of action of intravenousimmunoglobulin in the treatment of immune thrombocytopenia. Pediatr BloodCancer.2006;47(5Suppl):710-713.
    [8] Siragam V, Crow AR, Brinc D, et al. Intravenous immunoglobulin ameliorates ITPvia activating Fc gamma receptors on dendritic cells. Nat Med.2006;12(6):688-692.
    [9] Cines DB, Bussel JB, Liebman HA, et al.The ITP syndrome: pathogenic andclinical diversity. Blood.2009;113(26):6511–6521.
    [10]Pirkl F, Buchner J. Functional analysis of the Hsp90-associated human peptidylprolyl cis/transisomerases FKBP51, FKBP52and Cyp40. J Mol Biol.2001;308(4):795–806.
    [11]Cheung-Flynn J, Place SP,Cox Mar MB,et al. FKBP co-chaperone in steroidreceptor complexes. Cell Stress Proteins.Springer:2007;7:281-312.
    [12]12. Riggs DL, Roberts PJ, Chirillo SC, et al. The Hsp90-binding peptidylprolylisomerase FKBP52potentiates glucocorticoid signaling in vivo. EMBO J.2003;22(5):1158–1167.
    [13]Tranguch S, Cheung-Flynn J, Daikoku T, et al. Cochaperone immunophilinFKBP52is critical to uterine receptivity for embryo implantation. Proc Natl AcadSci U S A.2005;102(40):14326–14331.
    [14]Cheung-Flynn J, Prapapanich V, Cox MB,et al. Physiological role for thecochaperone FKBP52in androgen receptor signaling. Mol Endocrinol.2005;19(6):1654–1666.
    [15]Cox MB, Smith DF. Functions of the hsp90-bindign FKBP immunophilins. TheNetworking of Chaperones by Cochaperones. Eurekah.com;2006.
    [16]Riggs DL, Cox MB, Tardif HL, et al. Noncatalytic role of the FKBP52peptidyl-prolyl isomerase domain in the regulation of steroid hormone signaling.Mol Cell Biol.2007;27(24):8658–8669.
    [17]汪福洲,景亮.受体附件蛋白参与糖皮质激素受体激活的研究概况.国际麻醉学与复苏杂志.2007;3:263-266.
    [18]Wochnik GM, Ruegg J, Abel GA, et al. FK506-binding proteins51and52differentially regulate dynein interaction and nuclear translocation of theglucocorticoid receptor in mammalian cells. J Biol Chem,2005,280(6):4609-4616.
    [19]DaviesTH, Ning YM, Sanch ez ER. A new first step in activation of steroidreceptors: hormone-induced switching of FKBP51and FKBP52immunophilins. JBiol Chem,2002,277(7):4597-4600.
    [20]DaviesTH, Sanchez ER. FKBP52. Int J Biochem Cell Bio,l2005,37(1):42-47.
    [21]Scammell JG, Denny WB, Valentine DL, et al. Overexpression of the FK506-binding immunophilin FKBP51is the common cause of glucocorticord resistance in three New World primates. Gen Comp Endocrinol.2001;124(2):152-165.
    [22]Westberry JM, Sadosky PW, Hubler TR, et al. Glucocorticoid resistance in squirrelmonkeys results from a combination of a transcriptionally incompetentglucocorticoid receptor and overexpression of the glucocorticoid receptorco-chaperone FKBP51. J. Steroid Biochem. Mol. Biol.2006;100(1-3):34–41.
    [23]Denny WB, Prapapanich V, Smith DF, et al. Structure-function analysis of squirrelmonkey FK506-binding protein51, a potent inhibitor of glucocorticoid receptoractivity. Endocrinology2005;146(7):3194–3201.
    [24]侯明等.成人原发免疫性血小板减少症诊治的中国专家共识(修订版).中华血液学杂志2011;32:214-216.
    [25]Tissing WJ, Meijerink JP, den Boer ML, et al. mRNA expression levels of(co)chaperone molecules of the glucocorticoid receptor are not involved inglucocorticoid resistance in pediatric ALL. Leukemia2005b;19(5):727–733.
    [26]Pierik M, Rutgeerts P, Vlietinck R et al. Pharmacogenetics in inflammatory boweldisease. World J Gastroenterol.2006;12(23):3657-3667.
    [27]Davies TH, Ning YM, Sánchez ER. Differential control of glucocorticoid receptorhormone-binding function by tetratricopeptide repeat (TPR) proteins and theimmunosuppressive ligand FK506. Biochemistry2005;44(6):2030–2038.
    [28]Wolf IM, Periyasamy S, Hinds T Jr, Y et al..Targeted ablation reveals a novel roleof FKBP52in gene-specific regulation of glucocorticoid receptor transcriptionalactivity. J Steroid Biochem Mol Biol2009;113(1-2):36–45.
    [29]Harrell JM, Murphy PJ, Morishima Y, et al. Evidence for glucocorticoid receptortransport on microtubules by dynein. J Biol Chem2004;279(52):54647–54654.
    [30]Zhang X, Clark AF, Yorio T. FK506-binding protein51regulates nuclear transportof the glucocorticoid receptor beta and glucocorticoid responsiveness. InvestOphthalmol Vis Sci2008;49(3):1037–1047.
    [31]Woodruff PG, Boushey HA, Dolganov GM, et al. Genome-wide profiling identifiesepithelial cell genes associated with asthma and with treatment response tocorticosteroids. Proc Natl Acad Sci USA.2007;104(40):15858-15863.
    [32]Binder EB, Salyakina D, Lichtner P, et al. Polymorphisms in FKBP5are associatedwith increased recurrence of depressive episodes and rapid response toantidepressant treatment. Nat Genet2004;36(12):1319–1325.
    [33]Tatro ET, Everall IP, Kaul M, et al. Modulation of glucocorticoid receptor nucleartranslocation in neurons by immunophilins FKBP51and FKBP52: implications formajor depressive disorder. Brain Res2009;1286:1–12.
    [34]Bamberger CM, Bamberger AM, de Castro M, et al. Glucocorticoid receptor beta, apotentialendogenous inhibitor of glucocorticoid action in humans. J Clin Invest1995;95(6):2435–2441.
    [1] Schaeke H,Sehottelius A,Docke WD,et a1.Disseciation of transaction fromtransrepression by a selec tive glueocortieoid receptor agonist leads to separalion oftherapeutic effects from side effects. Proe Natl Aca Sci USA.2004.101(1):227-232.
    [2] Sanchez-Vega B,Gandhi V.Glucocorticoid resistance in a multiple myeloma cellline is regulated by a transcription elongation block in the glucocorticoid receptorgene (NR3C1). Br J Haematol,2009,144(6):856—864.
    [3] Kino T, Manoli I, Kelkar S, et a1. Glucocorticoid receptor (GR)βhas intrinsic, GRα-independent transcriptional activity. Biochem Biophys Res Commun2009;381(4):671–675.
    [4] Oakley RH, Jewell CM, Yudt MR, et a1. The dominant negative activity of thehuman glucocorticoid receptor βisoform: specificity and mechanisms of action. JBiol Chem1999;274(39):27857–27866.
    [5] Ito K, Chung KF,Adcock IM. Update on glucocorticoid action and resistance.JAllergy clin Immunol,2006,l17(3):522—543.
    [6]6.Rosmond R,Chagnon YC, Chagnon M, et al. A polymorphism of the5’-flankingregion of the glucocorticoid receptor gene locus is associated with basal cortisolsecretion in men. Metabolism2000;49(9):1197–1199.
    [7] Zobel, A. Jessen F, von Widdern O, et al. Unipolar depression and hippocampalvolume: impact of DNA sequence variants of the glucocorticoid receptor gene. Am.J.Med. Genet. B. Neuropsychiatr. Genet.2008;147(6):836–843.
    [8] Mwinyi J, Wenger C, Eloranta J, et al. Glucocorticoid receptor gene haplotypestructure and steroid therapy outcome in IBD patients. World J Gastroenterol2010;16(31):3888-3896.
    [9] van Rossum EF, Roks PH,de Jong FH, et al. Characterization of a promoterpolymorphism in the glucocorticoid receptor gene and its relationship to three otherpolymorphisms. Clin. Endocrinol.(Oxf.)2004;61(5):573–581.
    [10]Huizenga NA, Koper JW, De Lange P, et al. A polymorphism in the glucocorticoidreceptor gene may be associated with and increased sensitivity to glucocorticoids invivo. J. Clin. Endocrinol. Metab.1998;83(1):144–151.
    [11]Panek M, Pietras T, Antczak A, et al. The N363S and I559N single nucleotidepolymorphisms of the h-GR/NR3C1gene in patients with bronchial asthma. Int JMol Med.2012;30(1):142-150.
    [12]Chen HL, Li LR. Glucocorticoid Receptor Gene Polymorphisms andGlucocorticoid Resistance in Inflammatory Bowel Disease: A Meta-Analysis。DigDis Sci.201257(12):3065-3075.
    [13]Jewell CM,Cidlowski JA. Molecular evidence for a link between the N363Sglucocorticoid receptor polymorphism and altered gene expression. Clin.Endocrinol. Metab.2007;92(8):3268–3277.
    [14]Syed AA, Irving JA, Redfern CP, et al. Association of glucocorticoid receptorpolymorphism A3669G in exon9beta with reduced central adiposity in women.Obesity2006;14(5):759–764.
    [15]Cellini E, Castellini G, Ricca V, et al. Glucocorticoid receptor gene polymorphismsin Italian patients with eating disorders and obesity. Psychiatr Genet2010;20(6):282-288.
    [16]Van den Akker EL, Russcher H, van Rossum EF, et al. Glucocorticoid receptorpolymorphism affects transrepression but not transactivation. J Clin EndocrinolMetab2006;91:2800–2803.
    [17]Derijk RH, Schaaf MJ, Turner G, et al. A human glucocorticoid receptor genevariant that increases the stability of the glucocorticoid receptor β-isoformmRNA is associated with rheumatoid arthritis. J Rheumatol2001;28(11):2383–2388.
    [18]Van den Akker EL, Nouwen JL, Melles DC, et al. Staphylococcus aureus nasalcarriage is associated with glucocorticoid receptor gene polymorphisms. J InfectDis2006;194:814–818.
    [19]Van den Akker EL, Koper JW, van Rossum EF, et al: Glucocorticoid receptor geneand risk of cardiovascular disease. Arch Intern Med2008;168(1)::33–39.
    [20]van Rossum EF, Lamberts SW. Polymorphisms in the glucocorticoid receptor geneand their associations with metabolic parameters and body composition. RecentProg Horm Res2004(10);59:333–357.
    [21]Russcher H, Smit P, van den Akker EL, et al. Two polymorphisms in theglucocorticoid receptor gene directly affect glucocorticoid-regulated geneexpression. J Clin Endocrinol Metab2005;90(10):5804–5810.
    [22]van Rossum EF, Koper JW, Huizenga NA, et al. A polymorphism in theglucocorticoid receptor gene, which decreases sensitivity to glucocorticoids in vivo,is associated with low insulin and cholesterol levels. Diabetes2002;51(10):3128–3134.
    [23]van Rossum EF, Feelders RA, van den Beld AW, et al. Association of theER22/23EK polymorphism in the glucocorticoid receptor gene with survival andC-reactive protein levels in elderly men. Am J Med2004;117(3):158–162.
    [24]van Rossum EF, Voorhoeve PG, te Velde SJ, et al. The ER22/23EK polymorphismin the glucocorticoid receptor gene is associated with a beneficial body compositionand muscle strength in young adults. J Clin Endocrinol Metab2004;89(8):4004–4009.
    [25]Van Rossum EF,de Jong FJ,Koper JW, et al. Glucocorticoid receptor variant andrisk of dementia and white matter lesions. Neurobiol Aging.2008;29(5):716-723.
    [26]Russcher H, van Rossum EF, de Jong FH, et al. Increased expression of theglucocorticoid receptor-A translational isoform as a result of the ER22/23EKpolymorphism. Mol Endocrinol2005;19(7):1687–1696.
    [27]Yudt MR, Cidlowski JA. Molecular identification and characterization of a and bforms of the glucocorticoid receptor. Mol Endocrinol2001;15(7):1093–1103.
    [28]van Rossum EF, Koper JW, van den Beld AW, et al. Identification of the BclIpolymorphism in the glucocorticoid receptor gene: association with sensitivity toglucocorticoids in vivo and body mass index. Clin Endocrinol (Oxf)2003;59(5):585–592.
    [29]Cartegni L,Chew SL,Krainer AR,et al. Listening to silence and understandingnonsense exonic mutations that affect splicing. Nat Rev Genet2002,3(4):285-298.
    [30]Stevens A,Ray DW,Zeggini E, et al. Glucocorticoid sensitivity is determined by aspecific glucocorticoid receptor haplotype. The Journal of Clinical Endoerinology&Metabolism2004,89(2):892一897.
    [31]Rosmond R, Chagnon YC, Holm G, et al. A glucocorticoid receptor gene marker isassociated with abdominal obesity, leptin, and dysregulation of thehypothalamicpituitary-adrenal axis. Obes. Res.2000;8(3):211–218.
    [32]Tremblay A, Bouchard L, Bouchard C, et al. Long-term adiposity changes arerelated to a glucocorticoid receptor polymorphism in young females. J. Clin.Endocrinol. Metab.2003;88(7):3141–3145.
    [33]Ukkola O, Pérusse L, Weisnagel SJ, et al. Interactions among the glucocorticoidreceptor, lipoprotein lipase and adrenergic receptor genes and abdominal fat in theQuebec Family Study. Int. J. Obes. Relat. Metab. Disord.2001;25(2):1332–1339.
    [34]Buemann B,Vohl MC, Chagnon M, et al.Abdominal visceral fat is associated witha BclI restriction fragment length polymorphism at the glucocorticoid receptor genelocus. Obes. Res.1997;5(3):186–192.
    [35]Pietras T, Panek M, Tworek D, et al. The Bcl I single nucleotide polymorphismofthe human glucocorticoid receptor gene h-GR/NR3C1promoter in patients withbronchial asthma: pilot study.Mol Biol Rep,2010,38(6):3953-3958.
    [36]Charmandari E,Kino T,Ichijo T, et al.Functional characterization of the naturalhuman glucocorticoid receptor (hGR) mutants hGRαR477H and hGRαG679Sassociated with generalized glucocorticoid resistance. Clin Endocrinol Metab,2006,91(4):1535-1543.
    [37]赵峰,蔡累,李树钧,等.糖皮质激素受体基因R477H多态性与激素抵抗型哮喘的关系.临床肺科杂志,2009,14(5):597-599.
    [38]Ruiz M, Hedman E, G fvels M, et al. Further characterization of humanglucocorticoid receptor mutants, R477H and G679S, associated with primarygeneralized glucocorticoid resistance. Scand J Clin Lab Invest.2013Feb8
    [39]Charmandari E, Chrousos GP, Kino T. Identification of natural humanglucocorticoid receptor (hGR) mutations or polymorphisms and their functionconsequence at the hormone-receptor interaction level. Methods Mol Biol.2009,590:33-60.
    [40]Powers JH, Hillmann AG, Tang DC, et al. Cloning and expression of mutantglucocorticoid receptors from glucocorticoid-sensitive and resistant humanleukemic cells. Cancer Res1993;53(17):4059–4065.
    [41]CharmandariE, Kino T, Souvatzoglou E, et al. Natural glucocorticoid receptormutants causing generalized glucocorticoid resistance: molecular genotype, genetictransmission, and clinical phenotype. J Clin Endocrinol Metab.2004;89(4):1939-1949.
    [42]Nader N, Bachrach BE, Hurt DE, et al.A novel point mutation in helix10of thehuman glucocorticoid receptor causes generalized glucocorticoid resistance bydisrupting the structure of the ligand-binding domain. J Clin Endocrinol Metab.2010;95(5):2281–2285.
    [43]Trebble P, L Matthews L, Blaikley J,et al. Familial GC resistance: a novel,naturally occurring mutation which has dominant negative effects onligand-dependent and-independent GR action.The Journal of ClinicalEndocrinology and Metabolism2010,95(12):490-499.
    [44]Karl M, Von Wichert G, Kempter E, et al. Nelson's syndrome associated with asomatic frame shift mutation in the glucocorticoid receptor gene. J Clin EndocrinolMetab.1996;81(1):124-129.
    [45]Kino T, Stauber RH, Resau JH,et al.Pathologic human GR mutant has atransdominant negative effect on the wild-type GR by inhibiting its translocationinto the nucleus: importance of the ligand-binding domain for intracellular GRtrafficking.J Clin Endocrinol Metab.2001;86(11):5600-5608.
    [46]Warriar N, Yu C, Govindan MV. Hormone binding domain of humanglucocorticoid receptor. Enhancement of transactivation function by substitutionmutants M565R and A573Q. J Biol Chem.1994;18;269(46):29010-29015.