乙酰羟酸合成酶亚基间相互作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是一个人口多、耕地少的农业大国,农业的增长和可持续发展是我国经济繁荣与社会稳定的基础。农药的使用极大地改善了农业生产,但也面临农药过度使用或单一机制长期大面积使用而产生的抗性问题。如何充分利用已经被实践证明了的超高效除草剂靶标酶,发展新型绿色农药,解决除草剂抗性问题,已经成为全球关注的科学问题。
     乙酰羟酸合成酶(acetohydroxyacid synthase, AHAS)是几类商品化超高效除草剂的作用靶标,是催化支链氨基酸生物合成途径中的第一个关键性酶。所有的AHAS都是由催化亚基和调控亚基组成的,催化亚基和调控亚基的相互作用对酶行使全部机制非常重要。我们的研究成果及相关文献表明:AHAS调控亚基激活功能的缺失对AHAS活性的影响程度与除草剂所起的作用相当。并且AHAS亚基间异源重组激活现象说明AHAS亚基间相互作用具有共同的作用界面。这个共同作用界面是潜在的抑制剂靶位,通过模拟相互作用的肽段以及设计靶向相互作用的小分子,可以发展新作用机制的农药活性先导化合物。
     迄今为止,AHAS复合物的晶体结构还没有被报道,分子水平上的亚基间相互作用的报道也很少,对于AHAS的催化反应机制、调控亚基对催化亚基的激活机制以及支链氨基酸对全酶活性的反馈调控机制更是知之甚少。因此,AHAS亚基间相互作用的研究对开发新型的农药活性先导化合物具有重要的意义。本论文主要进行了以下几方面的工作:
     一、首次建立了蛋白表面扫描标记技术(a global-surface, site-directed labeling scanning method)用于快速鉴定蛋白-蛋白相互作用的关键结构域,并与定点突变技术以及计算机方法相结合提出了一套完整的研究分子水平蛋白-蛋白相互作用的方法。该方法可以广泛的用于研究其他具有相互作用的蛋白。
     二、通过以上方法对AHAS亚基间相互作用进行了研究,并确定了调控亚基(ilvH)的Arg26和Asp69是与催化亚基(ilvl)相互作用的关键残基。生物活性数据与pulldown实验结果一致证明:ilvH的Arg26和Asp69是与ilvl相互作用的关键氨基酸残基;Arg26和Asp69侧链的电性对相互作用很重要;并且Arg26和Asp69与ilvI的作用是相互协同的。依次以亚基相互作用的关键区域和关键残基为条件筛选HEX对接得到的AHAS全酶复合物构象,确定了最接近自然状态的复合物结构。依据复合物的结构信息对AHAS的激活和调控机制进行了初步的探讨。
     三、催化亚基(ilvI)的六个半胱氨酸全部突变为丙氨酸得到的ilvI'的活性与ilvI相似,可以用ilvI'来代替ilvI进行实验。通过蛋白表面扫描标记的方法初步确定催化亚基Ter308周围可能是与调控亚基相互作用的区域。催化亚基二聚体界面残基的突变研究发现:催化亚基的聚集状态对酶催化活性以及与调控亚基的相互作用有很大的影响。
     四. AHAS亚基间的相互作用受反应体系的影响,反应缓冲液pH值对相互作用的影响实验结果说明,极性的环境有利于亚基间的相互作用,暗示了在AHAS亚基相互作用的界面上可能有较多的极性残基。AHAS的催化反应需要金属离子作为辅酶,但是其对金属离子的特异性并不高。同一主族的二价金属离子Mg2+、Ca2+、Sr2+和Ba2+,都可以使大肠杆菌AHAS Ⅲ行使催化功能,但是随着金属离子半径的增加,单独催化亚基和重组酶的活性都在降低,但是调控亚基对催化亚基的激活倍数却在增加。
     五、激活大肠杆菌AHAS Ⅲ催化亚基(ilvI)的最小调控亚基(ilvH)的肽段被确定是△N14-△C89,它构成一个完整的ACT结构域,但是不具有反馈调控活性,暗示了调控亚基对催化亚基的激活和反馈调控进行的相互作用是存在差异的。酶活性数据与微量热泳动(MST)实验结果表明:ΔN14-ΔC89不仅可以激活和结合同源的催化亚基ilvI和同种属异源的ilvB(大肠杆菌AHAS I的催化亚基),还可以跨种属激活和结合酵母、拟南芥以及烟草AHAS的催化亚基。而且ΔN14-ΔC89的氨基酸序列在AHAS调控亚基中具有高度的序列相似性。这些实验结果表明在所有的AHAS中存在共同的亚基间相互作用的界面。这为靶向亚基间相互作用开发AHAS抑制剂提供了理论基础。
     六、AHAS调控亚基中包含典型的ACT结构域,如同其他的ACT结构域,与效应子(支链氨基酸)结合实现对AHAS催化活性的调控。支链氨基酸对AHAS全酶活性的抑制可以达到80%左右,与磺酰脲类和咪唑啉酮类除草剂的抑制效率相当。通过对二十种编码氨基酸抑制活性的筛选,确定支链氨基酸的抑制能力最强。希望在计算机模拟对接的指导下对支链氨基酸进行化学修饰,获得模仿支链氨基酸反馈抑制机制的新型的农药活性先导化合物。在生物进化过程中,ACT结构域作为一个进化模块,广泛的分布于各种生物体内,出现在各种不同的蛋白中。ACT结构域的氨基酸序列的平均相似性只有16%,但是目前已有的ACT结构域的三维结构却高度相似(RMSD约为2.5A)。AHAS的最小激活肽段构成一个完整的ACT结构域,它的跨种属激活能力引发了我们对ACT结构域调控网络存在的思考。大肠杆菌AHAS Ⅱ的调控亚基(ilvM)与其它AHAS调控亚基的氨基酸序列相似性很低(13-22%),但是ilvM可以使大肠杆菌、酵母、烟草以及拟南芥AHAS催化亚基的活性增加8-16倍,这更坚定了我们对ACT结构域调控网络存在的想法。我们设计构建了三种ACT结构域蛋白,活性数据结果显示:不同的ACT结构域蛋白可以使AHAS的催化亚基活性增加1-2倍,激活所需ACT结构域蛋白的量因AHAS催化亚基的种属不同而存在差异。初步证实了ACT结构域跨途径调控网络存在的可能性。
     综上所述,本文首次提出了可快速鉴定蛋白-蛋白相互作用关键区域以及残基的蛋白表面扫描标记技术,与定点突变技术以及计算方法相结合构建了一套完整的研究分子水平蛋白相互作用的方法,该方法可以广泛的用于研究其他具有相互作用的蛋白。本文中通过该方法确定了大肠杆菌AHAS Ⅲ亚基间相互作用的界面以及关键氨基酸残基,建立了AHAS催化亚基与调控亚基相互作用的分子模型。并且对AHAS的催化、激活以及反馈调控机制进行了初步的探讨。研究了反应体系对AHAS亚基间相互作用的影响。确定了激活AHAS催化亚基的最小调控亚基肽段,这个最小激活肽段,构成完整的ACT结构域,具备跨种属异源激活AHAS催化亚基的能力,而且其氨基酸序列在AHAS调控亚基中具有很高的相似性,说明所有的AHAS中存在共同的亚基间相互作用的界面。这为靶向亚基间相互作用开发新作用机制的农药活性先导化合物提供了理论基础。支链氨基酸对AHAS催化活性的抑制程度与商品化的除草剂相当,模仿支链氨基酸的反馈调控,可以用来开发新型作用机制的农药活性先导化合物。在生物进化过程中,ACT结构域作为一个进化模块,出现在各种不同的蛋白中。AHAS最小激活肽段的跨种属激活现象引发了我们对ACT结构域潜在的广谱调控网络存在的思考,通过对ACT结构域的研究初步证实了ACT结构域跨途径调控网络存在的可能性。
China is a large agricultural country with large population and little arable land, hence the growth and sustainable development of agriculture is the foundation of economic prosperity and social stability. The pesticide has greatly improved agricultural production, but also faces the problem of pesticide resistance, duing to overuse or/and single mechanism for long-term use. How to use the proved ultra-efficient target enzymes to develop new green pesticides and solve the resistance problem has became a global scientific issue.
     Acetohydroxyacid synthase (AHAS, EC2.2.1.6), which is an important target of action of several commercialized herbicide with high herbicidal efficience, catalyzes the first common step in the biosynthesis of branched chain amino acids (valine, leucine and isoleucine). AHAS is composed of catalytic and regulatory subunits and the enzyme exhibits full activity only when the regulatory subunit (RSU) binds to the catalytic subunit (CSU). Previous results have suggested that the losing of the RSU has the considerable effect on AHAS activation with the herbicides inhibition. Addtionally, the heterologous activation among subunits of AHAS impled that there was a common interface between the CSU and the RSU. Hence, the common interface of AHAS is proposed to be a potential target for developing the new inhibitor with new action mechanism.
     The crystal structure of the holoenzyme has not been reported yet, and the molecular interaction between the CSU and the RSU is also unknown. The mechanism of catalytion, activation and feedback inhition was poorly understood. Therefore, the sduty on subunits interaction of AHAS is very important to develop the new pesticide. Work in this thesis was carried out as following:
     1. The global-surface, site-directed labeling scanning method is established to efficiently identify the key regions and residues for protein-protein interactions. Combined with the site-directed mutagenesis and computational approach, a protocol was established for the identification of the molecular interactions between proteins.
     2. Based on the protocol, the subunits interaction of E. coli AHAS III was studied. The Arg26and Asp69of the regulatory subunit were identified to be the key residues to interact with the catalytic subunit. The results of enzyme activation and pulldown experiment both showed that Arg26and Asp69were the key residues for subunits interaction with cooperative action and the charge of side-chain of Arg26and Asp69played an important role on the subunits interaction. A plausible protein-protein interaction model of the holoenzyme of E. coli AHAS III was proposed, based on the mutagenesis and protein docking studies.
     3. The mutant ilvl', which was constructed by substituting all cyscines in the catalytic subunit of E. coli AHAS III (ilvl) with alaines, showed comparable activity with the wild-type ilvl. Hence the ilvl' was able to instead of ilvl in the expriment. The potential interaction region of ilvl was determined to be around the residue Ter308using global-surface, site-directed labeling scanning method. The mutation in the dimer interface of ilvl showed that:the aggregation state of ilvl had effect on the enzymatic activity and interaction with ilvH. Further experimental data on the thermodynamics of subunit associations will be required for further understanding.
     4. The nature of reaction buffer has a significant impact on subunit interaction of AHAS. The results of pH dependency experiment showed that the polarity of the environment was conducive to subunits interaction, suggesting that there were more polar residues at the interface. AHAS catalytic reaction requires a divalent metal ion as a coenzyme but it does not have high specificity. The activity of E. coli AHAS Ⅲ can be activated by Mg2+, Ca2+, Sr2+and Ba2+. The enzymatic activity of both the isolated CSV and the reconstituted holoenzyme decreased with increasing the metal ion radius, but the activation ability of the RSU to the CSU increased.
     5. The minimum peptide of ilvH to activate ilvl. was determined to be the ΔN14-ΔC89, which comprises a full ACT domain. ΔN14-ΔC89was insensitive to valine inhibition, suggesting different elements for enzymatic activation and feedback regulation. The results of enzymatic activition and microscale thermophoresis (MST) showed that this peptide could not only activate and bind to its homologous ilvI and heterologous ilvB (CSU of E. coli AHAS I), but also heterologously activate and bind to the CSUs of AHAS from Saccharomyces cerevisiae, Arabidopsis thaliana and Nicotiana plumbaginifolia. The high sequence similarity of the peptide ΔN14-ΔC89to RSUs across species hints that this peptide represents the minimum activation motif in RSU and that it regulates all AHASs. These results would shed light on the design of inhibitor or regulator molecular targeted for PPI of AHAS.
     6. The RSU of AHAS contains the typical ACT domain, like all the other ACT domains, binding with the effector (BCAA, branched chain amino acids) to regulate the enzymatic activity. The inhibition efficiency of the BCAA was about80%, considerable with sulfonylurea and imidazolinone herbicides. The inhibitory activity of the20encoding amino acids was screened and the BCAA was the most efficient. The inhibition efficiency of the BCAA was considerable with sulfonylurea and imidazolinone herbicides. Therefore, to mimic the feedback regulation of the BCAA could develop the new pesticide active lead compounds with a novel action mechanism. The ACT domain is an evolutionarily mobile ligand binding regulatory module that has been fused to different enzymes at various times. The average sequence similarity of the ACT domian is only16%, but the three-dimensional structure is highly similar (RMSD-2.5A). The AHAS minimum activation peptides comprises a full ACT domain with cross-species activate ability, which triggered the thinking of the existence of the potential and broad spectrum regulatory networks of the ACT domain. The regulatory subunit of E. coli AHAS II (ilvM) has low sequence similarity in the RSU of AHAS (13-22%), but the ilvM can increase the activity of the CSU from E. coli, S. cerevisiae, A. thaliana and N. plumbaginifolia by8-16times. These results confirmed our idea of regulatory networks of the ACT domain. Three ACT domain proteins of different passways had been designed to activate the CSU of AHAS. The activation results suggested that the enzymatic activity of the CSU increased1-2times with the ACT proteins, verifing the presence of a potential and broad spectrum regulatory networks of the ACT domain in different passways.
     In summary, this thesis first established a global-surface, site-directed labeling scanning method to rapidly and efficiently identify the key interaction regions and residues for PPI. Combined with the site-directed mutagenesis and computational approach, a protocol was established for determining the molecular interactions of the PPI. Using this protocol, the key residues for subunits interaction of E. coli AHAS III have been indentified and a plausible PPI model of the holoenzyme of E. coli AHAS Ⅲ is proposed. The activation and regulatory mechanism of AHAS has been preliminary studied. The effect of reaction buffer on subunit interaction of AHAS has been discussed. The minimum activation peptide has been determined, which comprises a full ACT domain. This peptide could activate catalytic subunits across the species and has a high sequence similarity with RSUs, suggesting that it represents the minimum activation motif in RSU and regulates all AHASs. The inhibition efficiency of the BCAA was considerable with sulfonylurea and imidazolinone herbicides. Therefore, to mimic the feedback regulation of the BCAA could develop the new pesticide active lead compounds with a novel action mechanism. The ACT domain is an evolutionarily mobile ligand binding regulatory module that has been fused to different enzymes at various times. The AHAS minimum activation peptides comprises a full ACT domain with cross-species activate ability, which triggered the thinking of the existence of the potential and broad spectrum regulatory networks of the ACT domain in different passways.
引文
[1]Subramanian M V and Gerwick B C, Inhibition of acetolactate synthase by triazolopyrimidines. Plant physiology and biochemistry,1989:277-288.
    [2]Hawkes T, Studies of herbicides which inhibit branched chain amino acid biosynthesis. Monograph-British Crop Protection Council.,1989, (42):131-138.
    [3]Shaner D, C.Anderson P and Stidham M A, Imidazolinones:Potent Inhibitors of Acetohydroxyacid Synthase. Plant Physiology,1984,76:545-546.
    [4]Ray T B, Site of Action of Chlorsulfuron:Inhibition of Valine and Isoleucine Biosynthesis in Plants. Plant Physiology,1984,75:823-831.
    [5]McCourt J A and Duggleby R G, Acetohydroxyacid synthase and its role in the biosynthetic pathway for branched-chain amino acids. Amino Acids,2006,31 (2):173-210.
    [6]Rost T L, The comparative cell cycle and metabolic effects of chemical treatments on root tip meristems. III. Chlorsulfuron. Journal of Plant Growth Regulation,1984,3 (0721-7595 (Print) 1435-8107 (Online)):51-63.
    [7]Duggleby R G and Pang S S, Acetohydroxyacid synthase. Journal of Biochemistry and Molecular Biology,2000,33 (1):1-36.
    [8]Epelbaum S, LaRossa R A, VanDyk T K, et al., Branched-chain amino acid biosynthesis in Salmonella typhimurium: a quantitative analysis. Journal of Bacteriology,1998,180 (16): 4056-4067.
    [9]Gedi V and Yoon M Y, Bacterial acetohydroxyacid synthase and its inhibitors-a summary of their structure, biological activity and current status. Febs Journal,2012,279:946-963.
    [10]Barak Z and Chipman D M, Allosteric regulation in Acetohydroxyacid Synthases (AHASs)-different structures and kinetic behavior in isozymes in the same organisms. Archives of Biochemistry and Biophysics,2012,519 (2):167-174.
    [11]Duggleby R G, McCourt J A and Guddat L W, Structure and mechanism of inhibition of plant acetohydroxyacid synthase. Plant Physiology and Biochemistry,2008,46 (3): 309-324.
    [12]Wek R C, Hauser C A and Hatfield G W, The. nucleotide sequence of the ilvBN operon of Escherichia coli:sequence homologies of the acetohydroxy acid synthase isozymes. Nucleic Acids Research,1985,13:3995-4010.
    [13]Lawther R P, Wek R C, Lopes J M, et al., The complete nucleotide sequence of the ilvGMEDA Operon of Escherichia Coli K-12 Nucleic Acids Research,1987,15 (5): 2137-2155.
    [14]Alexander C C, Latin wo L M and Jackson J H, Acetohydroxy acid synthase activity from a mutation at ilvF in Escherichia coli K-12. Journal of Bacteriology,1990,172:3060-3065.
    [15]Squires C H, De Felice M, Lago C T, et al., IlvIH locus of Salmonella typhimurium. The Journal of Bacteriology,1983,154:1054-1063.
    [16]Lawther R P, Calhoun D H, Adams C W, et al., Molecular basis of valine resistance in Escherichia coli K12. Proceedings of the National Academy of Sciences,1981,78 (2): 922-925.
    [17]Ricca E, Lago C T, Sacco M, et al., Absence of acetohydroxy acid synthase III in Salmonella typhimurium is due to early termination of translation within the ilvl gene. Molecular Microbiology,1991,5:1741-1743.
    [18]Jackson J H, Davis E J, Madu A C, et al., Three-factor reciprocal cross mapping of a gene that causes expression of feedback-resistant acetohydroxy acid synthase in Escherichia coli K-12. Molecular and General Genetics,1981,181:417-419.
    [19]Robinson C L and Jackson J H, New acetohydroxy acid synthase activity from mutational activation of a cryptic gene in Escherichia coli K-12. Molecular and General Genetics,1982, 186:240-246.
    [20]Jackson J H, Herring P A, Patterson E B, et al., A mechanism for valine-resistant growth of Escherichia coli K-12 supported by the valine-sensitive acetohydroxy acid synthase IV activity from ilvJ662. Biochimie,1993,75:759-765.
    [21]Stormer F and Umbarger H, The requirement for flavine adenine dinucleotide in the formation of acetolactate by Salmonellatyphimurium extracts. Biochemical and Biophysical Research Communications,1964,17 (5):587-592.
    [22]Grimminger H and Umbarger H, Acetohydroxy acid synthase I of Escherichia coli: purification and properties. Journal of Bacteriology,1979,137 (2):846-853.
    [23]Squires C H, Felice M D, Devereux J, et al., Molecular structure of ilvIH and its evolutionary relationship to ilvG in Escherichia coli K12. Nucleic Acids Research,1983,11 (15):5299-5313.
    [24]Barak Z, Chipman D M and Gollop N, Physiological implications of the specificity of acetohydroxy acid synthase isozymes of enteric bacteria. Journal of Bacteriology,1987,169 (8):3750-3756.
    [25]Umbarger H E. in Escherichia coli and Salmonella typhimurium: cellular and molecular biology. Washington, D.C: American Society for Microbiology,1987.
    [26]Umbarger H E. in Escherichia coli and Salmonella: cellular and molecular biology. Washington, D.C.:American Society for Microbiology,1996.
    [27]Gollop N, Damri B, Chipman D M, et al., Physiological implications of the substrate specificities of acetohydroxy acid synthases from varied organisms. The Journal of Bacteriology,1990,172:3444-3449.
    [28]Eoyang L and Silverman P M, Role of small subunit (ilvN polypeptide) of acetohydroxyacid synthase I from Escherichia coli K-12 in sensitivity of the enzyme to valine inhibition. The Journal of Bacteriology,1986,166:901-904.
    [29]Weinstock O, Sella C, Chipman D M, et al., Properties of subcloned subunits of bacterial acetohydroxy acid synthases. The Journal of Bacteriology,1992,174:5560-5566.
    [30]Eoyang L and Silverman P M, Purification and subunit composition of acetohydroxyacid synthase I from Escherichia coli K-12. The Journal of Bacteriology,1984,157:184-189.
    [31]Barak Z, Calvo J M and Schloss J V, Acetolactate synthase isozyme III from Escherichia coli. Methods in enzymology,1988,155:456-458.
    [32]Hill C M, Pang S S and Duggleby R G, Purification of Escherichia coli acetohydroxyacid synthase isozyme Ⅱ and reconstitution of active enzyme from its individual pure subunits. Biochemical Journal,1997,327:891-898.
    [33]Vyazmensky M, Zherdev Y, Slutzker A, et al., Interactions between Large and Small Subunits of Different Acetohydroxyacid Synthase Isozymes of Esherichia coli. Biochemistry,2009,48 (36):8731-8737.
    [34]Niu C W, Feng W, Zhou Y F, et al., Homologous and heterologous interactions between catalytic and regulatory subunits of Escherichia coli acetohydroxyacid synthase I and III. Science in China Series B-Chemistry,2009,52 (9):1362-1371.
    [35]Arfin S M and Koziell D A, Acetolactate synthase of Pseudomonas aeruginosa I. Purification and allosteric properties. Biochimica et Biophysica Acta (BBA)-Enzymology, 1973,321 (1):348-355.
    [36]Arfin S M and Kozieli D S, Acetolactate synthase of Pseudomonas aeruginosa. II. Evidence for the presence of two nonidentical subunits. Biochimica et Biophysica Acta (BBA)-Enzymology,1973,321 (1):356-360.
    [37]Schloss J V, Van Dyk D E, Vasta J F, et al., Purification and properties of Salmonella typhimurium acetolactate synthase isoenzyme Ⅱ from Escherichia coli HB101/pDU9. Biochemistry,1985,24:4952-4959.
    [38]Snoep J, de Mattos M J T, Starrenburg M, et al., Isolation, characterization, and physiological role of the pyruvate dehydrogenase complex and alpha-acetolactate synthase of Lactococcus lactis subsp. lactis bv. diacetylactis. Journal of Bacteriology,1992,174 (14): 4838-4841.
    [39]Yang J H and Kim S S, Purification and characterization of the valine sensitive acetolactate synthase from Serratia marcescens ATCC 25419. Biochimica et Biophysica Acta,1993, 1157:178-184.
    [40]Carroll N, Sheehan D and Cogan T, Purification of alpha-acetolactate synthase from Leuconostoc lactis NCW1. Biochemical Society Transactions,1995,23 (366S):
    [41]Dartois V, Phalip V, Schmitt P, et al., properties and DNA sequence of the D-lactate dehydrogenase from Leuconostoc mesenteroides subsp. Research in microbiology,1995, 146 (4):291-302.
    [42]Kopecky J, Janata J, Pospisil S, et al., Mutations in two distinct regions of acetolactate synthase regulatory subunit from Streptomyces cinnamonensis result in the lack of sensitivity to end-product inhibition. Biochemical and Biophysical Research Communications,1999,266(1):162-166.
    [43]Zohar Y, Einav M, Chipman D M, et al., Acetohydroxyacid synthase from Mycobacterium avium and its inhibition by sulfonylureas and imidazolinones. Biochimica Et Biophysica Acta-Proteins and Proteomics,2003,1649 (1):97-105.
    [44]Leyval D, Uy D, Delaunay S, et al., Characterisation of the enzyme activities involved in the valine biosynthetic pathway in a valine-producing strain of Corynebacterium glutamicum. Journal of Biotechnology,2003,104 (1):241-252.
    [45]Porat I, Vinogradov M, Vyazmensky M, et al., Cloning and characterization of acetohydroxyacid synthase from Bacillus stearothermophilus. Journal of Bacteriology,2004, 186 (2):570-574.
    [46]Choi K J, Yu Y G, Hahn H G, et al., Characterization of acetohydroxyacid synthase from Mycobacterium tuberculosis and the identification of its new inhibitor from the screening of a chemical library. Febs Letters,2005,579 (21):4903-4910.
    [47]Gollop N, Damri B, Barak Z, et al., Kinetics and mechanism of acetohydroxy acid synthase isozyme III from Escherichia coli. Biochemistry,1989,28 (15):6310-6317.
    [48]Vyazmensky M, Sella C, Barak Z, et al., Isolation and characterization of subunits of acetohydroxy acid synthase isozyme III and reconstitution of the holoenzyme. Biochemistry, 1996,35:10339-10346.
    [49]Polaina J, Cloning of the ilv2, ilv3 and ilv5 genes of Saccharomyces cerevisiae. Carlsberg Res. Commun,1984,49:577-584.
    [50]Falco S C and Dumas K S, Genetic analysis of mutants of Saccharomyces cerevisiae resistant to the herbicide sulfometuron methyl. Genetics,1985,190:21-35.
    [51]Oliver S G, van der Aart Q J M, Agostoni-Carbone M L, et al., The complete DNA sequence of yeast chromosome III Nature,1992,357:38-46.
    [52]Duggleby R G, Identification of an acetolactate synthase small subunit gene in two eucaryotes. Gene,1997,190:245-249.
    [53]Cullin C, Baudin-Baillieu A, Guillemet E, et al., Functional analysis of YCL09c: evidence for a role as the regulatory subunit of acetolactate synthase. yeast,1996,12:1511-1518.
    [54]Pang S S and Duggleby R G, Expression, purification, characterization, and reconstitution of the large-and small subunits of yeast acetohydroxyacid synthase. Biochemistry,1999,38 (16):5222-5231.
    [55]Chaleff R S and Mauvais C J, Acetolactate synthase is the site of action of two sulfonylurea herbicides in higher plants, science,1984,224:1443-1445.
    [56]Chang A K. and Duggleby R G, Expression, purification and characterization of Arabidopsis thaliana acetohydroxyacid synthase. Biochemical Journal,1997,327 (1):161-169.
    [57]Lee Y T and Duggleby R G, Identification of the regulatory subunit of Arabidopsis thaliana acetohydroxyacid synthase and reconstitution with its catalytic subunit. Biochemistry,2001, 40 (23):6836-6844.
    [58]Bekkaoui F, Schorr P and Crosby W L, Acetolactate synthase from Brassica napus: Immunological characterization and quaternary structure of the native enzyme. Plant Physiology,1993,88:475-484.
    [59]Sing B K, Stidham M A and Shaner D L, Separation and characterization of two forms of acetohydroxy acid synthase from Black Mexican Sweet corn cells. Journal of Chromatography A,1988,444:251-261.
    [60]Chang A K and Duggleby R G, Herbicide-resistant forms of Arabidopsis thaliana acetohydroxyacid synthase: characterization of the catalytic properties and sensitivity to inhibitors of four defined mutants. Biochemical Journal,1998,333:765-777.
    [61]Hershey H P, Schwartz L J, Gale J P, et al., Cloning and functional expression of the small subunit of acetolactate synthase from Nicotiana plumbaginifolia. Plant Molecular Biology, 1999,40 (5):795-806.
    [62]Lee Y T and Duggleby R G, Regulatory interactions in Arabidopsis thaliana acetohydroxy acid synthase. FEBS Letters 2002,512:180-182.
    [63]Cornell W D, Cieplak P, Bayly C I, et al., A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. Journal of the American Chemical Society, 1995,117 (19):5179-5197.
    [64]Laskowski R A, MacArthur M W, Moss D S, et al., PROCHECK: a program to check the stereochemical quality of protein structures. Journal of applied crystallography,1993,26 (2): 283-291.
    [65]Forlani G, Riccardi G, Rossi E, et al., Biochemical evidence for multiple forms of acetohydroxy acid synthase in Spirulina platensis. Archives of Microbiology,1991,155 (3): 298-302.
    [66]Milano A, De Rossi E, Zanaria E, et al., Molecular characterization of the genes encoding acetohydroxy acid synthase in the cyanobacterium Spirulina platensis. Journal of general microbiology,1992,138 (7):1399-1408.
    [67]Bowen T L, Union J, Tumbula D L, et al., Cloning and phylogenetic analysis of the genes encoding acetohydroxyacid synthase from the archaeon Methanococcus aeolicus. Gene, 1997,188:77-84.
    [68]Vyazmensky M, Barak Z, Chipman D M, et al., Characterization of acetohydroxy acid synthase activity in the archaeon Haloferax volcanii. Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology,2000,125 (2):205-210.
    [69]Xing R and Whitman W B, Purification and properties of the oxygen-sensitive acetohydroxy acid synthase from the archaebacterium Methanococcus aeolicus. The Journal of Bacteriology,1994,176:1207-1213.
    [70]Landstein D, Chipman D M, Arad S M, et al., Acetohydroxy acid synthase activity in Chlorella emersonii under auto-and heterotrophic growth conditions. Plant Physiology,1990, 94 (2):614-620.
    [71]Funke T, Han H, Healy-Fried M L, et al., Molecular basis for the herbicide resistance of Roundup Ready crops. Proceedings of the National Academy of Sciences,2006,103 (35): 13010-13015.
    [72]Reith M and Munholland J, Two amino-acid biosynthetic genes are encoded on the plastid genome of the red alga Porphyra umbilicalis. Current genetics,1993,23 (1):59-65.
    [73]Halpern Y and Umbarger H, Evidence for two distinct enzyme systems forming acetolactate in Aerobacter aerogenes. Journal of Biological Chemistry,1959,234 (12):3067-3071.
    [74]Wille G, Meyer D, Steinmetz A, et al., The catalytic cycle of a thiamin diphosphate enzyme examined by cryocrystallography. Nature chemical biology,2006,2 (6):324-328.
    [75]Bar-Ilan A, Balan V, Tittmann K, et al., Binding and activation of thiamin diphosphate in acetohydroxyacid synthase. Biochemistry,2001,40 (39):11946-11954.
    [76]Kern D, Kern G, Neef H, et al., How thiamine diphosphate is activated in enzymes. science, 1997,275 (5296):67-70.
    [77]Jordan F, Current mechanistic understanding of thiamin diphosphate-dependent enzymatic reactions. Natural product reports,2003,20 (2):184-201.
    [78]Schulz A, Sponemann P, Kocher H, et al., The herbicidally active experimental compound Hoe 704 is a potent inhibitor of the enzyme acetolactate reductoisomerase. Febs Letters, 1988,238 (2):375-378.
    [79]McCourt J A, Pang S S, King-Scott J, et al., Herbicide binding sites revealed in the structure of Arabidopsis thaliana acetohydroxyacid synthase. Proceedings of the National Academy of Sciences of the United States of America,2006,103:569-573.
    [80]Vyazmensky M, Steinmetz A, Meyer D, et al., Significant Catalytic Roles for Glu47 and Gln 110 in All Four of the C-C Bond-Making and -Breaking Steps of the Reactions of Acetohydroxyacid Synthase II. Biochemistry,2011,50 (15):3250-3260.
    [81]Engel S, Vyazmensky M, Vinogradov M, et al., Role of a conserved arginine in the mechanism of acetohydroxyacid synthase - Catalysis of condensation with a specific ketoacid substrate. Journal of Biological Chemistry,2004,279 (23):24803-24812.
    [82]Le D T, Yoon M Y, Kim Y T, et al., Roles of three well-conserved arginine residues in mediating the catalytic activity of tobacco acetohydroxy acid synthase. Journal of Biochemistry,2005,138 (1):35-40.
    [83]Jordan F, Zhang Z and Sergienko E, Spectroscopic evidence for participation of the 1', 4'-imino tautomer of thiamin diphosphate in catalysis by yeast pyruvate decarboxylase. Bioorganic chemistry,2002,30 (3):188.
    [84]Nemeria N, Baykal A, Joseph E, et al., Tetrahedral intermediates in thiamin diphosphate-dependent decarboxylations exist as a 1',4'-imino tautomeric form of the coenzyme, unlike the Michaelis complex or the free coenzyme. Biochemistry,2004,43 (21): 6565-6575.
    [85]Dyda F, Furey W, Swaminathan S, et al., Catalytic centers in the thiamin diphosphate dependent enzyme pyruvate decarboxylase at 2.4-. ANG. resolution. Biochemistry,1993,32 (24):6165-6170.
    [86]Jordan F and Mariam Y H, N1'-Methylthiaminium diiodide. Model study on the effect of a coenzyme bound positive charge on reaction mechanisms requiring thiamin pyrophosphate. Journal of the American Chemical Society,1978,100 (8):2534-2541.
    [87]Lie M A, Celik L, J(?)rgensen K A, et al., Cofactor activation and substrate binding in pyruvate decarboxylase. Insights into the reaction mechanism from molecular dynamics simulations. Biochemistry,2005,44 (45):14792-14806.
    [88]Chipman D M, Duggleby R G and Tittmann K, Mechanisms of acetohydroxyacid synthases. Current Opinion in Chemical Biology,2005,9 (5):475-481.
    [89]McCourt J A, Pang S S, Guddat L W, et al., Elucidating the specificity of binding of sulfonylurea herbicides to acetohydroxyacid synthase. Biochemistry,2005,44 (7): 2330-2338.
    [90]Tittmann K, Golbik R, Ghisla S, et al., Mechanism of elementary catalytic steps of pyruvate oxidase from Lactobacillus plantarum. Biochemistry,2000,39 (35):10747-10754.
    [91]LaRossa R A and Schloss J V, The sulfonylurea herbicide sulfometuron methyl is an extremely potent and selective inhibitor of acetolactate synthase in Salmonella typhimurium. Journal of Biological Chemistry,1984,259 (14):8753-8757.
    [92]Chang Y Y and Cronan J, Common ancestry of Escherichia coli pyruvate oxidase and the acetohydroxy acid synthases of the branched-chain amino acid biosynthetic pathway. Journal of Bacteriology,1988,170 (9):3937-3945.
    [93]Tittmann K, Schroder K, Golbik R, et al., Electron transfer in acetohydroxy acid synthase as a side reaction of catalysis. implications for the reactivity and partitioning of the carbanion/enamine form of (alpha-hydroxyethyl)thiamin diphosphate in a "nonredox" flavoenzyme. Biochemistry,2004,43 (27):8652-8661.
    [94]Umbarger H E and Brown B, Isoleucine and valine metabolism in Escherichia coli. Journal of Biological Chemistry,1958,233 (2):415.
    [95]Vinogradov V, Vyazmensky M, Engel S, et al., Acetohydroxyacid synthase isozyme Ⅰ from Escherichia coli has unique catalytic and regulatory properties. Biochimica Et Biophysica Acta-General Subjects,2006,1760 (3):356-363.
    [96]Vyazmensky M, Sella C, Barak Z e, et al., Isolation and characterization of subunits of acetohydroxy acid synthase isozyme Ⅲ and reconstitution of the holoenzyme. Biochemistry, 1996,35(32):10339-10346.
    [97]Robichon - Szulmajster H and Magee P, The Regulation of Isoleucine - Valine Biosynthesis in Saccharomyces cerevisiae. European Journal of Biochemistry,1968,3 (4):492-501.
    [98]TAKENAKA S and KUWANA H, Control of acetohydroxy acid synthetase in Neurospora crassa. Journal of Biochemistry,1972,72 (5):1139-1145.
    [99]Lee Y T and Duggleby R G, Mutations in the regulatory subunit of yeast acetohydroxyacid synthase affect its activation by MgATP. Biochemical Journal,2006,395:331-336.
    [100]Pang S S and Duggleby R G, Regulation of yeast acetohydroxyacid synthase by valine and ATP. Biochemical Journal,2001,357:749-757.
    [101]Miflin B, Cooperative feedback control of barley acetohydroxyacid synthetase by leucine, isoleucine, and valine. Archives of Biochemistry and Biophysics,1971,146 (2):542-550.
    [102]Oda Y, Nakano Y and Kitaoka S, Properties and regulation of valine-sensitive acetolactate synthase from mitochondria of Euglena gracilis. Journal of general microbiology,1982,128 (6):1211-1216.
    [103]Durner J and Boger P, Oligomeric forms of plant acetolactate synthase depend on flavin adenine dinucleotide. Plant Physiology,1990,93 (3):1027-1031.
    [104]Miflin B, Acetolactate synthetase from barley seedlings. Phytochemistry,1969,8 (12): 2271-2276.
    [105]Karanth N M and Sarma S P, Coil-to-helix transition in IlvN regulates allosteric control of E. coli Acetohydroxyacid Synthase I. Biochemistry,2012,52 (1):70-83.
    [106]Sella C, Weinstock O, Barak Z, et al., Subunit association in acetohydroxy acid synthase isozyme Ⅲ. The Journal of Bacteriology,1993,175:5339-5343.
    [107]Mendel S, Vinogradov M, Vyazmensky M, et al., The N-terminal domain of the regulatory subunit is sufficient for complete activation of acetohydroxyacid synthase Ⅲ from Escherichia coli. Journal of Molecular Biology,2003,325 (2):275-284.
    [108]牛聪伟.具有重要农学意义的乙酰羟基酸合成酶的化学生物学研究:[博士学位论文].天津:南开大学,2005.
    [109]Mendel S, Elkayam T, Sella C, et al., Acetohydroxyacid synthase: A proposed structure for regulatory subunits supported by evidence from mutagenesis. Journal of Molecular Biology, 2001,307(1):465-477.
    [110]Weinstock O, Sella C, Chipman D M, et al., Properties of subcloned subunits of bacterial acetohydroxy acid synthases. Journal of Bacteriology,1992,174 (17):5560-5566.
    [111]Mitra A and Sarma S P, Escherichia coli ilvN interacts with the FAD binding domain of ilvB and activates the AHAS I enzyme. Biochemistry,2008,47 (6):1518-1531.
    [112]Karanth N M, Mitra A and Sarma S P, Solution NMR studies of acetohydroxy acid synthase Ⅰ: Identification of the sites of inter-subunit interactions using multidimensional NMR methods. Journal of Molecular Catalysis B-Enzymatic,2009,61 (1-2):7-13.
    [113]Kyselkova M, Janata J, Sagova-Mareckova M, et al., Subunit-subunit interactions are weakened in mutant forms of acetohydroxy acid synthase insensitive to valine inhibition. Archives of Microbiology,2010,192 (3):195-200.
    [114]Thompson J D, Higgins D G and Gibson T J, CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research,1994,22 (22):4673-4680.
    [115]Bairoch A. UniProtKB/Swiss-Prot: New and Future Developments. Springer,2008.
    [116]杨帆.乙酰羟基酸合成酶(AHAS)亚基间相互作用的计算机模拟研究:[硕士学位论文].天津:南开大学,2011.
    [117]Pang S S, Duggleby R G and Guddat L W, Crystal structure of yeast acetohydroxyacid synthase: A target for herbicidal inhibitors. Journal of Molecular Biology,2002,317 (2): 249-262.
    [118]Pang S S, Guddat L W and Duggleby R G, Molecular basis of sulfonylurea herbicide inhibition of acetohydroxyacid synthase. Journal of Biological Chemistry,2003,278 (9): 7639-7644.
    [119]Pang S S, Guddat L W and Duggleby R G, Crystallization of Arabidopsis thaliana acetohydroxyacid synthase in complex with the sulfonylurea herbicide chlorimuron ethyl. Acta Crystallographica Section D-Biological Crystallography,2004,60:153-155.
    [120]McCourt J A, Pang S S, King-Scott J, et al., Herbicide-binding sites revealed in the structure of plant acetohydroxyacid synthase. Proceedings of the National Academy of Sciences of the United States of America,2006,103 (3):569-573.
    [121]Niu X H, Liu X, Zhou Y F, et al., Preliminary X-ray crystallographic studies of the catalytic subunit of Escherichia coli AHAS II with its cofactors. Acta Crystallographica Section F-Structural Biology and Crystallization Communications,2011,67:659-661.
    [122]Pang S S, Guddat L W and Duggleby R G, Crystallization of the catalytic subunit of Saccharomyces cerevisiae acetohydroxyacid synthase. Acta Crystallographica Section D-Biological Crystallography,2001,57:1321-1323.
    [123]Burmeister W P, Structural changes in cryo-cooled protein crystals owing to radiation damage,. Acta Crystallogr,2000, D56:328-341.
    [124]Duggleby R G, McCourt J A and Guddat L W, Structure and mechanism of inhibition of plant acetohydroxyacid synthase. Plant Physiology and Biochemistry,2008,46:309-324.
    [125]Pang S S, Duggleby R G, Schowen R L, et al., The crystal structures of Klebsiella pneumoniae acetolactate synthase with enzyme-bound cofactor and with an unusual intermediate. Journal of Biological Chemistry,2004,279 (3):2242-2253.
    [126]Duggleby R G, Pang S S, Yu H, et al., Systematic characterization of mutations in yeast acetohydroxyacid synthase: interpretation of herbicide-resistance data. Eur. J. Biochem, 2003,270:2895-2904.
    [127]Kaplun A, Vyazmensky M, Zherdev Y, et al., Structure of the regulatory subunit of acetohydroxyacid synthase isozyme III from Escherichia coli. Journal of Molecular Biology, 2006,357 (3):951-963.
    [128]Petkowski J J, Chruszcz M, Zimmerman M D, et al., Crystal structures of TM0549 and NE1324-two orthologs of E-coli AHAS isozyme III small regulatory subunit. Protein Science,2007,16 (7):1360-1367.
    [129]Wang J G, Li Z M, Ma N, et al., Structure-activity relationships for a new family of sulfonylurea herbicides,. Journal of Computer-Aided Molecular,2005,19:801-820.
    [130]Choi K J, Noh K M, Kim D E, et al., Identification of the catalytic subunit of acetohydroxyacid synthase in Haemophilus influenzae and its potent inhibitors. Archives of Biochemistry and Biophysics,2007,466 (1):24-30.
    [131]Gedi V, Jayaraman K, Kalme S, et al., Evaluation of substituted triazol-1-yl-pyrimidines as inhibitors of Bacillus anthracis acetohydroxyacid synthase. Biochimica Et Biophysica Acta-Proteins and Proteomics,2010,1804 (6):1369-1375.
    [132]Lim W M, Baig I J, La I J, et al., Cloning, characterization and evaluation of potent inhibitors of Shigella sonnei acetohydroxyacid synthase catalytic subunit. Biochimica Et Biophysica Acta-Proteins and Proteomics,2011,1814(12):1825-1831.
    [133]Chien P N, Moon J Y, Cho J H, et al., Characterization of acetohydroxyacid synthase I from Escherichia coli K-12 and identification of its inhibitors. Bioscience, biotechnology, and biochemistry,2010,74 (11):2281-2286.
    [134]Gedi V, Moon J Y, Lim W M, et al., Identification and characterization of inhibitors of Haemophilus influenzae acetohydroxyacid synthase. Enzyme and Microbial Technology, 2011,49(1):1-5.
    [135]Ji F Q, Niu C W, Chen C N, et al., Computational design and discovery of conformationally flexible inhibitors of acetohydroxyacid synthase to overcome drug resistance associated with the W586L mutation. Chemmedchem,2008,3 (8):1203-1206.
    [136]Ban S R, Niu C W, Chen W B, et al., Interaction and CoMFA studies on A-thaliana acetohydroxyacid synthase by sulfonylureas. Chemical Journal of Chinese Universities-Chinese,2007,28 (3):543-547.
    [137]Richie D L, Thompson K V, Studer C, et al., Identification and Evaluation of Novel Acetolactate Synthase Inhibitors as Antifungal Agents. Antimicrobial Agents and Chemotherapy,2013, doi:10.1128/AAC.01809-12:
    [138]Lee Y-T, Cui C-J, Chow E W, et al., Sulfonylureas have antifungal activity and are potent inhibitors of Candida albicans acetohydroxyacid synthase. J Med Chem,2013,56 (1): 210-219.
    [139]Chen C N, Chen Q O, Liu Y C, et al., Syntheses and herbicidal activity of new triazolopyrimidine-2-sulfonamides as acetohydroxyacid synthase inhibitor. Bioorganic & Medicinal Chemistry,2010,18 (14):4897-4904.
    [140]Chen C N, Lv L L, Ji F Q, et al., Design and synthesis of N-2,6-difluorophenyl-5-methoxyl-1,2,4-triazolo-1,5-a -pyrimidine-2-sulfo namide as acetohydroxyacid synthase inhibitor. Bioorganic & Medicinal Chemistry,2009,17 (8):3011-3017.
    [141]He Y Z, Li Y X, Zhu X L, et al., Rational design based on bioactive conformation analysis of pyrimidinylbenzoates as acetohydroxyacid synthase inhibitors by integrating molecular docking, CoMFA, CoMSIA, and DFT calculations. Journal of Chemical Information and Modeling,2007,47 (6):2335-2344.
    [142]Tittmann K, Vyazmensky M, Hubner G, et al., The carboligation reaction of acetohydroxyacid synthase II:Steady-state intermediate distributions in wild type and mutants by NMR. Proceedings of the National Academy of Sciences of the United States of America,2005,102 (3):553-558.
    [143]Tranel P J and Wright T R, Resistance of weeds to ALS-inhibiting herbicides: what have we learned? Weed Science,2002,50 (6):700-712.
    [144]Newhouse K, Singh B, Shaner D, et al., Mutations in corn (Zea mays L.) conferring resistance to imidazolinone herbicides. TAG Theoretical and Applied Genetics,1991,83 (1): 65-70.
    [145]Mazur B J and Falco S C, The development of herbicide resistant crops. Annual Review of Plant Biology,1989,40 (1):441-470.
    [146]Bernasconi P, Woodworth A R, Rosen B A, et al., A naturally occurring point mutation confers broad range tolerance to herbicides that target acetolactate synthase. Journal of Biological Chemistry,1995,270 (29):17381-17385.
    [147]Mourad G, Williams D and King J, A double mutant allele, csrl-4, of Arabidopsis thaliana encodes an acetolactate synthase with altered kinetics. Planta,1995,196 (1):64-68.
    [148]Sibony M, Michel A, Haas H, et al., Sulfometuron-resistant Amaranthus retroflexus: cross - resistance and molecular basis for resistance to acetolactate synthase - inhibiting herbicides. Weed Research,2001,41 (6):509-522.
    [149]Hattori J, Brown D, Mourad G, et al., An acetohydroxy acid synthase mutant reveals a single site involved in multiple herbicide resistance. Molecular and General Genetics MGG, 1995,246 (4):419-425.
    [150]Mourad G and King J, Effect of four classes of herbicides on growth and acetolactate-synthase activity in several variants of Arabidopsis thaliana. Planta,1992,188 (4):491-497.
    [151]He Y, Niu C, Wen X, et al., Biomacromolecular 3D-QSAR to Decipher Molecular Herbicide Resistance in Acetohydroxyacid Synthases. Mol Inform,2013,32 (2):139-144.
    [152]He Y, Niu C, Li H, et al., Experimental and computational correlation and prediction on herbicide resistance for acetohydroxyacid synthase mutants to Bispyribac. Science China Chemistry,2013,56 (3):286-295.
    [153]Singhl B K and Shaner D L, Biosynthesis of Branched Chain Amino Acids: From Test Tube to Field. The Plant Cell,1995,7:935-944.
    [154]Eoyang L and Silverman P M, Purification and subunit composition of acetohydroxyacid synthase I from Escherichia coli K-12. Journal of Bacteriology,1984,157 (1):184-189.
    [155]Hill C M, Pang S S and Duggleby R G, Purification of Escherichia coli acetohydroxyacid synthase isoenzyme II and reconstitution of active enzyme from its individual pure subunits. Biochemical Journal,1997,327 (3):891-898.
    [156]Davis E J, Blatt J M, Henderson E K, et al., Valine-sensitive acetohydroxy acid synthases in Escherichia coli K-12:unique regulation modulated by multiple genetic sites. Molecular & general genetics:MGG,1977,156 (3):239-249.
    [157]Favre R, Wiater A, Puppo S, et al., Expression of a valine-resistant acetolactate synthase activity mediated by the ilv O and ilv G genes of Escherichia coli K.-12. Molecular & general genetics:MGG,1976,143 (3):243-252.
    [158]Vyazmensky M, Engel S, Kryukov O, et al., Construction of an active acetohydroxyacid synthase I with a flexible linker connecting the catalytic and the regulatory subunits. Biochimica Et Biophysica Acta-Proteins and Proteomics,2006,1764 (5):955-960.
    [159]Weiss G A, Watanabe C K, Zhong A, et al., Rapid mapping of protein functional epitopes by combinatorial alanine scanning. Proc. Natl. Acad. Sci. U. S. A.,2000,97 (16):8950.
    [160]Drescher M, Huber M and Subramaniam V, Hunting the Chameleon:Structural Conformations of the Intrinsically Disordered Protein Alpha - Synuclein. ChemBioChem, 2012,13 (6):761-768.
    [161]Berman H M, Westbrook J, Feng Z, et al., The Protein Data Bank. Nucleic Acids Res,2000, 28 (1):235-242.
    [162]Creighton T H. Proteins: structures and molecular properties. San Francisco:W. H. Freeman,1993.
    [163]Nelder J A and Mead R, A simplex-method for function minimazition. Comput. J.,1965,7 (4):308-313.
    [164]Dave R, Protein Docking Using Spherical Polar Fourier Correlations Hex 6.3 user manual
    [165]Ritchie D W and Kemp G J L, Protein docking using spherical polar Fourier correlations. Proteins-Structure Function and Genetics,2000,39 (2):178-194.
    [166]Kim J, Beak D G, Kim Y T, et al., Effects of deletions at the C-terminus of tobacco acetohydroxyacid synthase on the enzyme activity and cofactor binding. Biochemical Journal,2004,384:59-68.
    [167]Steinmetz A, Vyazmensky M, Meyer D, et al., Valine 375 and Phenylalanine 109 Confer Affinity and Specificity for Pyruvate as Donor Substrate in Acetohydroxy Acid Synthase Isozyme II from Escherichia coli. Biochemistry,2010,49 (25):5188-5199.
    [168]Duggleby R G, Pang S S, Yu H Q, et al., Systematic characterization of mutations in yeast acetohydroxyacid synthase-Interpretation of herbicide-resistance data. European Journal of Biochemistry,2003,270 (13):2895-2904.
    [169]Ibdah M, Bar-Ilan A, Livnah O, et al., Homology modeling of the structure of bacterial acetohydroxy acid synthase and examination of the active site by site-directed mutagenesis. Biochemistry,1996,35 (50):16282-16291.
    [170]Thompson J R, Bell J K, Bratt J, et al., V max regulation through domain and subunit changes. The active form of phosphoglycerate dehydrogenase. Biochemistry,2005,44 (15): 5763-5773.
    [171]Hershey H P, Schwartz L J, Gale J P, et al., Cloning and functional expression of the small subunit of acetolactate synthase from Nicotiana plumbaginifolia. Plant mol. biol.,1999,40 (5):795-806.
    [172]Baker B M and Murphy K P, Dissecting the energetics of a protein-protein interaction:the binding of ovomucoid third domain to elastasel. Journal of Molecular Biology,1997,268 (2):557-569.
    [173]Lee Y T and Duggleby R G, Regulatory interactions in Arabidopsis thaliana acetohydroxyacid synthase. Febs Letters,2002,512 (1-3):180-184.
    [174]Choi K J, Pham C N, Jung H, et al., Expression of acetohydroxyacid synthase from Bacillus anthracis and its potent inhibitors. Bulletin of the Korean Chemical Society,2007, 28(7):1109-1113.
    [175]Slutzker A, Vyazmensky M, Chipman D M, et al., Role of the C-terminal domain of the regulatory subunit of AHAS isozyme Ⅲ:Use of random mutagenesis with in vivo reconstitution (REM-ivrs). Biochimica Et Biophysica Acta-Proteins and Proteomics,2011, 1814 (3):449-455.
    [176]Jerabek-Willemsen M, Wienken C J, Braun D, et al., Molecular interaction studies using microscale thermophoresis. Assay and drug development technologies,2011,9 (4): 342-353.
    [177]Wienken C J, Baaske P, Rothbauer U, et al., Protein-binding assays in biological liquids using microscale thermophoresis. Nature communications,2010,1:100.
    [178]Aravind L and Koonin E V, Gleaning non-trivial structural, functional and evolutionary information about proteins by iterative database searches. Journal of Molecular Biology, 1999,287 (5):1023-1040.
    [179]Chipman D M and Shaanan B, The ACT domain family. Current opinion in structural biology,2001,11 (6):694-700.