高血压表观遗传学调控机制研究及高血压并发症—脑卒中的遗传危险因素研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:心脑血管病是人类健康的最主要威胁之一,高血压是心脑血管病的最大危险因素,并已成为我国沉重社会负担。因此阐明高血压的发生、发展和转归规律仍是高血压防治的关键。研究表明,高血压是一种遗传和环境因素相互作用的复杂疾病。候选基因策略和全基因组关联研究获得的所有易感位点均未显示出与高血压的较强关联性,高血压的病因问题仍然没有确定解释。近年来,高血压表观遗传学研究已经找到一些线索,可能在环境因素与核基因组间起到沟通桥梁作用,在没有发生基因组变异的情况下影响基因表达水平,从而影响疾病的易感性。DNA甲基化是4个表观遗传调控的重要方式之一。但是在高血压领域,DNA甲基化的研究还有很多问题亟待解答,关于人类高血压全基因组的甲基化研究还鲜有报道。本论文的第一分题从全基因组水平在极端高血压和完美对照组之间,高血压前期未转化和转化组之间比较了外周血DNA甲基化谱的差异,并从两者的交集中找到了两个可能与高血压发病机制相关的DNA甲基化差异位点,并做了初步功能研究。同时,选取与中国人群高血压相关的GWAS阳性位点,初步探索了DNA甲基化修饰作用对表型的影响。
     方法:选取来自于山东省日照社区的44例完美对照,44例极端高血压患者,44例前期高血压样本,采用Illumina450K BeadChip甲基化芯片检测所有个体的外周血DNA甲基化状态。采用焦磷酸测序技术重复第一人群芯片结果,随后在扩大的70例完美对照和133例高血压病例中验证阳性的CpG甲基化位点。经两阶段的筛选找出与高血压相关的OVGP1基因。ELISA检测高血压与对照组间的血浆OVGP1蛋白水平。实时荧光定量PCR、Western-blot和免疫荧光实验用于检测OVGP1在内皮细胞的表达。进一步用pull-down实验捕获与OVGP1相互作用的蛋白,并用慢病毒转染HUVEC和THP1细胞,高表达OVGP1,检测高血压相关分子的mRNA水平变化。另一方面,用SNPshot法对第一阶段的高血压和对照人群分析rs1842896和rs7136259两个位点的基因型,结合DNA甲基化数据,分析表观遗传、遗传变异和表型的关系。
     结果:在全基因组DNA甲基化筛选阶段共有14个甲基化差异位点在完美对照和极端高血压、高血压前期未转化和转化两个病例对照中均有显著差异,并且甲基化升高或降低的趋势相同。在焦磷酸测序验证后,分别位于OVGP1和CPO基因启动子区的cg20823859和cg17600943位点的甲基化水平在高血压病例中均显著降低,平均甲基化差异分别为-0.11和-0.10,校正年龄、性别和BMI后仍具有显著性(P=0.02和P=0.001)。血浆中OVGP1蛋白水平在高血压人群中也显著高于对照组。OVGP1基因的功能初探结果显示,OVGP1在HUVEC胞浆中表达,通过pull-down捕获到25个可能与OVGP1相互作用的蛋白,其中4个蛋白与高血压的病理过程显著相关。进一步研究发现OVGP1表达升高可使HUVEC和THP1中TGF-β1和GF-β2的mRNA水平分别升高。
     基因分型结果显示,已知的中国高血压人群易感位点rs1842896在88例高血压病人和对照中的分布频率具有显著性差异(P<0.05)。携带有TT基因型的个体中,极端高血压患者在cg21176026位点的甲基化程度也显著低于完美对照(P<0.05),而TG+GG基因型的个体中两组无差异(P=0.39)。进一步我们发现,以DNA甲基化程度β=0.75为临界点,TT基因型携带者并伴随低甲基化状态发生高血压的几率增高,提示cg21176026位点的甲基化修饰可影响高血压危险等位基因rs1842896-T的作用。
     结论:本研究采用全基因组甲基化研究策略,初步证明表观遗传调控可能参与高血压的发生发展,并找到两个与高血压发病相关的新靶基因OVGP1和CPO。本研究也探索了遗传变异、表观遗传修饰和高血压的关系,并推断了可能的相互作用模型。但是深入的分子机制仍需进一步研究。
     目的:尿酸是嘌呤的代谢终产物。过多的摄取富含嘌呤和果糖的食物已成为目前尿酸水平升高,继而出现高尿酸血症的重要原因。高尿酸血症除了引起痛风,还被认为是高血压、心脏病、肾病和脑卒中的重要危险因素之一。尿酸水平的升高常常先于高血压出现,提示尿酸作为独立的内源性环境因素,直接参与了导致高血压的病理生理过程。本研究采用全基因组DNA甲基化差异筛选策略,研究高尿酸导致高血压的表观遗传机制。
     方法:选取来自于山东省日照社区的12例高尿酸血症患者,44例完美对照,44例极端高血压患者,采用Illumina450K BeadChip甲基化芯片检测所有外周血DNA甲基化状态。首先从高尿酸血症患者和完美对照外周血DNA中寻找与高尿酸血症相关的DNA甲基化差异位点,进一步与极端高血压和完美对照间的DNA甲基化差异位点取交集,获得7个在两组比较中DNA甲基化变化一致的位点。随后,在体外用尿酸刺激细胞,检测与差异甲基化位点临近基因的mRNA表达水平的改变。
     结果:获得7个可能参与高尿酸导致高血压发病机制相关的DNA甲基化差异位点。其中cg15711973、 cg23812489、 cg02157463和cg23947654位点在高尿酸血症和极端高血压患者中甲基化程度均降低,eg12252547、 cg06827234和cg16051083也在两个病例组中均升高。体外实验显示,尿酸的刺激可以使THP1和Jurkat两种免疫细胞内FLG2的mRNA表达水平显著升高。这与甲基化芯片中,位于FLG2上游TSS1500区CpG位点cg23812489的甲基化水平降低的结果是相符的。位于MAL2启动子区的cg12252547位点在芯片结果中病例组的甲基化水平高于对照组,在体外尿酸刺激下,能使THP1细胞中MAL2的mRNA水平降低,但Jurkat细胞中MAL2的表达水平没有显著改变。cg02157463位点处于JPH3基因的基因体区,在病人体内甲基化程度升高,相对应地,当尿酸刺激THP1和Jurkat细胞时,JPH3的mRNA水平显著降低。但是,我们并没有检测到其它的候选基因(TANC1, PCDHA, ZDHHC14) mRNA表达水平的改变。
     结论:本研究采用全基因组DNA甲基化差异位点筛选研究策略,获得了6个可能与高尿酸导致高血压发病相关联的候选基因。这些基因多与钙离子相关通路和神经信号传递有关,提示尿酸升高有可能通过改变基因组中这些基因的DNA甲基化程度,调节基因表达水平,继而参与高尿酸导致高血压的致病过程。
     本论文的第一部分研究了高血压发生发展过程中表观遗传学调控机制,在本部分将探讨高血压引起的最为主要的并发症之一——脑卒中的遗传危险因素。由于高血压可直接引起颅内动脉瘤或血管畸形的破裂而发生出血性脑卒,且颅内动脉瘤的病因中遗传因素占据了更主导的地位,因此本部分将以颅内动脉瘤为模型,研究高血压并发症的遗传危险因素。
     颅内动脉瘤的破裂能够导致严重的致死性后果。多项全基因组关联研究(genome-wide association studies, GWAS)已经在欧洲人群完成,但是迄今还没有在中国汉族人群开展颅内动脉瘤GWAS研究的报道。为验证欧洲颅内动脉瘤GWAS关联研究发现的新易感位点,本研究在大样本的中国汉人群中调查了10个单核苷酸多态性(single nucleotide polymorphism, SNP)位点与颅内动脉瘤的关联性。
     选取649例中国汉族散发颅内动脉瘤患者和1682名正常人,对GWAS研究中已报道的10个候选易感位点采用时间飞行质谱生物芯片系统(Sequenom MassArray)进行基因分型。采用X2检验、logistic回归分析对SNP位点的基因型、等位基因进行相关性分析。结果显示,携带rs12413409-G和rs1980781-C等位基因的个体在病例和对照组中的频率具有显著差异(均为P=0.002),并使患颅内动脉瘤的风险分别增加1.27和1.26倍,并达到Bonferroni校正的检验水准。在加性遗传模式下,rs12413409和rs1980781也与颅内动脉瘤显著相关(分别为OR=1.27,95%CI1.09-1.48, P=0.002和OR=1.26,95%CI1.09-1.45, P=0.002)。进一步按照年龄、破裂与未破裂、动脉瘤的数量分层后发现,在小于60岁的个体中上述两个易感位点与颅内动脉瘤的关联性增强。在等位基因和加性遗传模型的关联分析中,rs12413409和rs1980781可使颅内动脉瘤的破裂风险分别增加1.25倍和1.24倍(P<0.005)。携带rs12413409-G和rs1980781-C的个体也更倾向于罹患单发的颅内动脉瘤。而之前GWAS研究报道的其它8个易感基因在本研究中并未显示与中国汉人群颅内动脉瘤具有关联性。
     本研究验证了欧洲人群GWAS研究获得的rs12413409和rs1980781两个易感位点,提示它们可能是中国汉人群颅内动脉瘤的遗传风险因素之一。
Object:Cardiovascular and cerebrovascular diseases are significant healthcare issues around the world. Hypertension is leading risk factor for the diseases It has long been known that hypertension is a multifactorial disease caused by environmental and genetic risk factors. Lots of susceptibility loci associated with blood pressure have been identified using candidate gene approach and genome-wide association studies(GWAS), but only accounted for10%of the heritability in population levels. Hypertension has been estimated to be40%-60%contributed by genetic factors, but for which responsible are still unknown. GWAS studies told us that there maybe the mishersitability could explain why GWAS can only discover10%of the susceptible genetic factors in common diseases such as hypertension. One of the reason for misheristablility is epigenetics referning to hentable changes in gene expression float occur without a change in DNA sequence. To date, the best understood epigenetic mechanisms are CpG DNA methylation, histone modifications and microRNA. It has been known that epigenetic mechanism, such as DNA methylation can be modified by environment factors such highsalt diet, smoking, alcohol, methylation could change the DNA expression. DNA methylation in patients has been the subject of inheres interest because of its recently recognized role in disease as well as in the development in normal function of organisms. From1958to now the hypertension prevalence was increased from5.88%to22%. What we changed mostly are our lifestyle and environment not our gene mutations. Therefore we hypothesized that changes in lifestyle and environmental factors as through epigenetic mechanism such as DNA methylation to change gene expression, therefore disease such as hypertension susceptibility. Our hypothesis was tested in two cohorts perfect control(age>50years old; BP<120/80mmHg; no other major CVD nor major risk factors). The aim of present studies was designed to explore the DNA methylation difference in two case-controls (hypertensive vs. perfect control and prehyertensive untransform vs. transform). As well the preliminary functional research about novel target were performed. We also confirmed the rs1842896reported by pervious GWAS in our case-control. Further, the relation among epigenetic, genetic variation and hypertension was analyzed.
     Method:we conducted a genome-wide methylation analysis on44severe hypertensive cases,44pre-hypertensive cases and44perfect controls using Illumina450K BeadChip. Pyrosequence was performed on136cases and70controls to validate the most significant CpG sites. The serum level of OVGP1were detected in hypertensives and normotensives by ELISA method, and the expression of OVGP1in endothelial cell(HUVEC) were investigated by real-time PCR, western blot and immunoflourence techniques. Further, pull-down technique was employed in order to capture the proteins interacted possibly with OVGP1from HUVEC. HUVEC was tranfected with lentivirus with OVGP1gene to detect expression changes of genes related with hypertension. In addition, two variants previously reported by GWAS among Chinese hypertensives were genotyped in44server hypertension cases and44perfect controls. We analyzed the relativeship between genotype and epigenetic modification.
     Results:In discovery step,14CpG sites were significant difference either between sever hypertension and perfect controls or between pre-hypertensive untransform and transform. cg20823859and cg17600943, in the promoter of OVGP1and CPO respectively, were confirmed in an independent sample of136hypertensives and70normotensives. The two CpG sites showed lower methylation levels in case than in controls, indicating beta value difference were-0.11and-0.10, respectively.(adjusted P=0.02and0.001respectively) The serum level of OVGP1was significantly increased in hypertensives. Our results showed that OVGP1was expressed in the cytoplasm of HUVEC. Twenty five proteins potentially interacted with OVGP1were captured by pull-down method, four of which were associated with the mechanism of hypertension in reported studies. Further, the mRNA levels of TGF-fil and TGF-β2were increased when OVGP1was overexpressed in HUVEC and THP1, respectively.
     Comparied44hypertensives well as that of44normotensives, rs1842896was significantly associated with hypertension in allelic and additive genetic models.(P<0.05) By integrating the genetic and genome-wide DNA methylation data, we found the subjects who were carrying rsl842896TT genotype and showed a value of beta less than0.75on cg21176026sites were prone to hypertension.
     Conclusion:Two difference sites identified in peripheral blood genome DNA were associated with hypertension, supporting that changes in DNA methylation may play roles in the pathogenesis of hypertension.
     Object:Uric acid is the end product of nucleic acid metabolism. Diets heavy in purine or fructose, or exposure to lead can also contribute to high uric acid levels, which is defined as hyperuricemia. Hyperuricemia is not only the major etiological factor of gout, but also the independent risk factor of hypertension, nephrosis, cardiovascular and cerebrovascular disease. Although it seems possible that high uric acid levels are a mere consequence of disease, high uric acid levels always precede the development of hypertension. It is speculated that uric acid, as endogenous environmental risk factor, participants in the pathogenesis of essential hypertension. In this present study, the genome-wide DNA methylation difference was investigated on hyperuricemic hypertension.
     Method:Here we describe the genome-wide pattern of DNA methylation change in human peripheral blood leucocyte from12hyeruricemia patients and44perfect control using Illumina450K BeadChip. We also investigated the differences of DNA methylation between44sever hypertensive patients and44perfect control. Seven DNA methylation difference loci were associated with both hyperuricemia and hypertension. Further, in vitro we detected the expression change of mRNA level of adjacent genes after THP1and Jurkat cell lines were treated with uric acid.
     Results:Four significant CpG low methylation sites, including cg15711973、 cg23812489、 cg02157463and cg23947654, were identified in both hyperuricemia and hypertensive cases than in control. The increasing DNA methylation level were observed in cg12252547、 cg06827234and cg16051083. A simultaneous change in mRNA expression was seen for3of those adjacent genes in THP1and Jurkat cell lines treated with uric acid.
     Conclusion:Six DNA methylation sites identified were associated with both hyperuricemic and hypertension suggesting that changes in DNA methylation may play an important role in the pathogenesis of hyperuricemic hypertension.
     Intracranial aneurysms (IAs) cause a catastrophic consequence when ruptured. Several genome-wide association studies have been performed in European, but these susceptibility loci to IAs have not been validated in Chinese Han patients. To further investigate the roles of these newly identified variants, we replicated individually the previous association of single nucleotide polymorphism(SNP) with the risk of IAs in a large sample size of the Chinese Han race.
     Using the Sequenom MassARRAY system, we replicated ten susceptible loci reported in previous genome-wide investigations in649sporadic patients with IAs and1682controls of Chinese. The significant association of rs12413409and rs1980781with sporadic IAs were replicated and shown by allelic association (P=0.002and P=0.002, respectively), as well as by the additive model (adjusted P=0.002and P=0.003, respectively). In younger subgroup, these two variants showed an even stronger association with IAs. Based on the analysis of allele and genotype, rsl2413409-G of CNNM2and rs1980781-C of STARD13increased the risk of IA rupture (adjusted OR=1.25and OR=1.24, respectively). Furthermore, the genotype distributions of rs12413409and rs1980781were marked difference between patients with single IAs and controls (adjusted P=0.001for rs12413409and P=0.001for rs1980781, respectively) after adjustment of modifiable risk factors.
     In sporadic IAs, two variants of ten loci identified in previous genome-wide association studies are associated with increased risk of IAs among Chinese Han population.
引文
1. Geneva WHO. Global status report on noncommunicable disaeses 2010.2011
    2.卫生部心血管病防治研究中心.中国心血管病报告.2012
    3. He J, Gu D, Wu X, Reynolds K, Duan X, Yao C, et al. Major causes of death among men and women in china. The New England journal of medicine.2005;353:1124-1134
    4. Gu D, Wildman RP, Wu X, Reynolds K, Huang J, Chen CS, et al. Incidence and predictors of hypertension over 8 years among chinese men and women. Journal of hypertension. 2007;25:517-523
    5. Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions,1990-2010:A systematic analysis for the global burden of disease study 2010. Lancet. 2012;380:2224-2260
    6. Sega R, Trocino G, Lanzarotti A, Carugo S, Cesana G, Schiavina R, et al. Alterations of cardiac structure in patients with isolated office, ambulatory, or home hypertension:Data from the general population (pressione arteriose monitorate e loro associazioni [pamela] study). Circulation. 2001;104:1385-1392
    7.陈捷赵,武峰,崔艳丽,胡大一.我国14省市中老年人肥胖超重流行现状及其与高血压患病率的关系.中华医学杂志.2005;40:2830-2834
    8. Levy D, DeStefano AL, Larson MG, O'Donnell CJ, Lifton RP, Gavras H, et al. Evidence for a gene influencing blood pressure on chromosome 17. Genome scan linkage results for longitudinal blood pressure phenotypes in subjects from the framingham heart study. Hypertension.2000;36:477-483
    9. Pilia G, Chen WM, Scuteri A, Orru M, Albai G, Dei M, et al. Heritability of cardiovascular and personality traits in 6,148 sardinians. PLoS genetics.2006;2:el32
    10. Cowley AW, Jr. The genetic dissection of essential hypertension. Nature reviews. Genetics. 2006;7:829-840
    11. Padmanabhan S, Newton-Cheh C, Dominiczak AF. Genetic basis of blood pressure and hypertension. Trends in genetics:TIG.2012
    12. Kraja AT, Hunt SC, Rao DC, Davila-Roman VG, Arnett DK, Province MA. Genetics of hypertension and cardiovascular disease and their interconnected pathways:Lessons from large studies. Current hypertension reports.2011;13:46-54
    13. Kato N, Takeuchi F, Tabara Y, Kelly TN, Go MJ, Sim X, et al. Meta-analysis of genome-wide association studies identifies common variants associated with blood pressure variation in east asians. Nature genetics.2011;43:531-538
    14. Johnson T, Gaunt TR, Newhouse SJ, Padmanabhan S, Tomaszewski M, Kumari M, et al. Blood pressure loci identified with a gene-centric array. American journal of human genetics. 2011;89:688-700
    15. Hong KW, Lim JE, Oh B. A regulatory snp in akap13 is associated with blood pressure in koreans. Journal of human genetics.2011;56:205-210
    16. Fox ER, Young JH, Li Y, Dreisbach AW, Keating BJ, Musani SK, et al. Association of genetic variation with systolic and diastolic blood pressure among african americans:The candidate gene association resource study. Human molecular genetics.2011;20:2273-2284
    17. Ehret GB, Munroe PB, Rice KM, Bochud M, Johnson AD, Chasman DI, et al. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature. 2011;478:103-109
    18. Wang X, Snieder H. Genome-wide association studies and beyond:What's next in blood pressure genetics? Hypertension.2010;56:1035-1037
    19. Takeuchi F, Isono M, Katsuya T, Yamamoto K, Yokota M, Sugiyama T, et al. Blood pressure and hypertension are associated with 7 loci in the japanese population. Circulation. 2010;121:2302-2309
    20. Tabara Y, Kohara K, Kita Y, Hirawa N, Katsuya T, Ohkubo T, et al. Common variants in the atp2b1 gene are associated with susceptibility to hypertension:The japanese millennium genome project. Hypertension.2010;56:973-980
    21. Rafiq S, Anand S, Roberts R. Genome-wide association studies of hypertension:Have they been fruitful? Journal of cardiovascular translational research.2010;3:189-196
    22. Padmanabhan S, Melander O, Johnson T, Di Blasio AM, Lee WK, Gentilini D, et al. Genome-wide association study of blood pressure extremes identifies variant near umod associated with hypertension. PLoSgenetics.2010;6:e1001177
    23. Niu W, Zhang Y, Ji K, Gu M, Gao P, Zhu D. Confirmation of top polymorphisms in hypertension genome wide association study among han Chinese. Clinica chimica acta; international journal of clinical chemistry.2010;411:1491-1495
    24. Hunt SC. Genetic architecture of complex traits predisposing to nephropathy:Hypertension. Seminars in nephrology.2010;30:150-163
    25. Hunt SC. Strategies to improve detection of hypertension genes. World review of nutrition and dietetics.2010;101:46-55
    26. Yang HC, Liang YJ, Wu YL, Chung CM, Chiang KM, Ho HY, et al. Genome-wide association study of young-onset hypertension in the han Chinese population of taiwan. PloS one. 2009;4:e5459
    27. Wang Y, O'Connell JR, McArdle PF, Wade JB, Dorff SE, Shah SJ, et al. From the cover: Whole-genome association study identifies stk39 as a hypertension susceptibility gene. Proceedings of the National Academy of Sciences of the United States of America. 2009; 106:226-231
    28. Sabatti C, Service SK, Hartikainen AL, Pouta A, Ripatti S, Brodsky J, et al. Genome-wide association analysis of metabolic traits in a birth cohort from a founder population. Nature genetics. 2009;41:35-46
    29. Org E, Eyheramendy S, Juhanson P, Gieger C, Lichtner P, Klopp N, et al. Genome-wide scan identifies cdh13 as a novel susceptibility locus contributing to blood pressure determination in two european populations. Human molecular genetics.2009;18:2288-2296
    30. Newton-Cheh C, Johnson T, Gateva V, Tobin MD, Bochud M, Coin L, et al. Genome-wide association study identifies eight loci associated with blood pressure. Nature genetics. 2009;41:666-676
    31. Levy D, Ehret GB, Rice K, Verwoert GC, Launer LJ, Dehghan A, et al. Genome-wide association study of blood pressure and hypertension. Nature genetics.2009;41:677-687
    32. Dmitrieva RI, Hinojos CA, Grove ML, Bell RJ, Boerwinkle E, Fornage M, et al. Genome-wide identification of allelic expression in hypertensive rats. Circulation. Cardiovascular genetics. 2009;2:106-115
    33. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature.2007;447:661-678
    34. Dominiczak AF, Munroe PB. Genome-wide association studies will unlock the genetic basis of hypertension:Pro side of the argument. Hypertension.2010;56:1017-1020; discussion 1025
    35. Eichler EE, Flint J, Gibson G, Kong A, Leal SM, Moore JH, et al. Missing heritability and strategies for finding the underlying causes of complex disease. Nature reviews. Genetics. 2010:11:446-450
    36. Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, et al. Finding the missing heritability of complex diseases. Nature.2009;461:747-753
    37. Marian AJ. Elements of'missing heritability'. Current opinion in cardiology.2012;27:197-201
    38. Vasan RS, Beiser A, Seshadri S, Larson MG, Kannel WB, D'Agostino RB, et al. Residual lifetime risk for developing hypertension in middle-aged women and men:The framingham heart study. JAMA:the journal of the American Medical Association.2002;287:1003-1010
    39. Friso S, Pizzolo F, Choi SW, Guarini P, Castagna A, Ravagnani V, et al. Epigenetic control of 11 beta-hydroxysteroid dehydrogenase 2 gene promoter is related to human hypertension. Atherosclerosis.2008;199:323-327
    40. Alikhani-Koopaei R, Fouladkou F, Frey FJ, Frey BM. Epigenetic regulation of 11 beta-hydroxysteroid dehydrogenase type 2 expression. The Journal of clinical investigation. 2004;114:1146-1157
    41. Ding Y, Lv J, Mao C, Zhang H, Wang A, Zhu L, et al. High-salt diet during pregnancy and angiotensin-related cardiac changes. Journal of hypertension.2010;28:1290-1297
    42. Bogdarina I, Haase A, Langley-Evans S, Clark AJ. Glucocorticoid effects on the programming of atlb angiotensin receptor gene methylation and expression in the rat. PloS one.2010;5:e9237
    43. De S, Michor F. DNA secondary structures and epigenetic determinants of cancer genome evolution. Nature structural & molecular biology.2011;18:950-955
    44. Lee HA, Baek I, Seok YM, Yang E, Cho HM, Lee DY, et al. Promoter hypomethylation upregulates na+-k+-2cl-cotransporter 1 in spontaneously hypertensive rats. Biochemical and biophysical research communications.2010;396:252-257
    45. Mu S, Shimosawa T, Ogura S, Wang H, Uetake Y, Kawakami-Mori F, et al.. Epigenetic modulation of the renal beta-adrenergic-wnk4 pathway in salt-sensitive hypertension. Nature medicine. 2011;17:573-580
    46. Duarte JD, Zineh I, Burkley B, Gong Y, Langaee TY, Turner ST, et al. Effects of genetic variation in h3k79 methylation regulatory genes on clinical blood pressure and blood pressure response to hydrochlorothiazide. Journal of translational medicine.2012;10:56
    47. Batkai S, Thum T. Micrornas in hypertension:Mechanisms and therapeutic targets. Current hypertension reports.2012;14:79-87
    48. Li S, Zhu J, Zhang W, Chen Y, Zhang K, Popescu LM, et al. Signature microrna expression profile of essential hypertension and its novel link to human cytomegalovirus infection. Circulation. 2011;124:175-184
    49. Smolarek I, Wyszko E, Barciszewska AM, Nowak S, Gawronska I, Jablecka A, et al. Global DNA methylation changes in blood of patients with essential hypertension. Medical science monitor: international medical journal of experimental and clinical research.2010;16:CR149-155
    50. Wang X, Falkner B, Zhu H, Shi H, Su S, Xu X, et al. A genome-wide methylation study on essential hypertension in young african american males. PloS one.2013;8:e53938
    51. Vasan RS, Larson MG, Leip EP, Kannel WB, Levy D. Assessment of frequency of progression to hypertension in non-hypertensive participants in the framingham heart study:A cohort study. Lancet.2001;358:1682-1686
    52. Carretero OA, Oparil S. Essential hypertension. Part i:Definition and etiology. Circulation. 2000;101:329-335
    53. Yoda Y, Takeshima H, Niwa T, Kim JG, Ando T, Kushima R, et al. Integrated analysis of cancer-related pathways affected by genetic and epigenetic alterations in gastric cancer. Gastric cancer:official journal of the International Gastric Cancer Association and the Japanese Gastric Cancer Association.2014
    54. Figueroa ME, Chen SC, Andersson AK, Phillips LA, Li Y, Sotzen J, et al. Integrated genetic and epigenetic analysis of childhood acute lymphoblastic leukemia. The Journal of clinical investigation.2013;123:3099-3111
    55. Shinjo K, Okamoto Y, An B, Yokoyama T, Takeuchi I, Fujii M, et al. Integrated analysis of genetic and epigenetic alterations reveals cpg island methylator phenotype associated with distinct clinical characters of lung adenocarcinoma. Carcinogenesis.2012;33:1277-1285
    56. Androulakis E, Tousoulis D, Papageorgiou N, Latsios G, Siasos G, Tsioufis C, et al. Inflammation in hypertension:Current therapeutic approaches. Current pharmaceutical design. 2011;17:4121-4131
    57. Harrison DG, Guzik TJ, Lob HE, Madhur MS, Marvar PJ, Thabet SR, et al. Inflammation, immunity, and hypertension. Hypertension.2011;57:132-140
    58. Montecucco F, Pende A, Quercioli A, Mach F. Inflammation in the pathophysiology of essential hypertension. Journal of nephrology.2011;24:23-34
    59. Pedrinelli R, Dell'Omo G, Di Bello V, Pellegrini G, Pucci L, Del Prato S, et al. Low-grade inflammation and microalbuminuria in hypertension. Arteriosclerosis, thrombosis, and vascular biology.2004;24:2414-2419
    60. Herrera J, Ferrebuz A, MacGregor EG, Rodriguez-Iturbe B. Mycophenolate mofetil treatment improves hypertension in patients with psoriasis and rheumatoid arthritis. Journal of the American Society of Nephrology:JASN.2006; 17:S218-225
    61. Hilgers KF. Monocytes/macrophages in hypertension. Journal of hypertension.2002;20:593-596
    62. Guzik TJ, Hoch NE, Brown KA, McCann LA, Rahman A, Dikalov S, et al. Role of the t cell in the genesis of angiotensin ii induced hypertension and vascular dysfunction. The Journal of experimental medicine.2007;204:2449-2460
    63. Crowley SD, Frey CW, Gould SK, Griffiths R, Ruiz P, Burchette JL, et al. Stimulation of lymphocyte responses by angiotensin ii promotes kidney injury in hypertension. American journal of physiology. Renal physiology.2008;295:F515-524
    64. Cheng X, Yu X, Ding YJ, Fu QQ, Xie JJ, Tang TT, et al. The th17/treg imbalance in patients with acute coronary syndrome. Clinical immunology.2008; 127:89-97
    65. Mahajan D, Wang Y, Qin X, Wang Y, Zheng G, Wang YM, et al. Cd4+cd25+regulatory t cells protect against injury in an innate murine model of chronic kidney disease. Journal of the American Society ofNephrology:JASN.2006;17:2731-2741
    66. Wang YM, Zhang GY, Wang Y, Hu M, Wu H, Watson D, et al. Foxp3-transduced polyclonal regulatory t cells protect against chronic renal injury from adriamycin. Journal of the American Society of Nephrology:JASN.2006; 17:697-706
    67. Koestler DC, Christensen B, Karagas MR, Marsit CJ, Langevin SM, Kelsey KT, et al. Blood-based profiles of DNA methylation predict the underlying distribution of cell types:A validation analysis. Epigenetics:official journal of the DNA Methylation Society.2013;8
    68. Buhi WC. Characterization and biological roles of oviduct-specific, oestrogen-dependent glycoprotein. Reproduction.2002;123:355-362
    69. White WM, Brost B, Sun Z, Rose C, Craici I, Wagner SJ, et al. Genome-wide methylation profiling demonstrates hypermethylation in maternal leukocyte DNA in preeclamptic compared to normotensive pregnancies. Hypertension in pregnancy:official journal of the International Society for the Study of Hypertension in Pregnancy.2013;32:257-269
    70. Dedeurwaerder S, Defrance M, Calonne E, Denis H, Sotiriou C, Fuks F. Evaluation of the infinium methylation 450k technology. Epigenomics.2011;3:771-784
    71. Bibikova M, Barnes B, Tsan C, Ho V, Klotzle B, Le JM, et al. High density DNA methylation array with single cpg site resolution. Genomics.2011;98:288-295
    72. Bibikova M, Le J, Barnes B, Saedinia-Melnyk S, Zhou L, Shen R, et al. Genome-wide DNA methylation profiling using infinium(r) assay. Epigenomics.2009;1:177-200
    73. Lagow E, DeSouza MM, Carson DD. Mammalian reproductive tract mucins. Human reproduction update.1999;5:280-292
    74. Lapensee L, Paquette Y, Bleau G. Allelic polymorphism and chromosomal localization of the human oviductin gene (muc9). Fertility and sterility.1997;68:702-708
    75. ODay-Bowman MB, Mavrogianis PA, Reuter LM, Johnson DE, Fazleabas AT, Verhage HG. Association of oviduct-specific glycoproteins with human and baboon (papio anubis) ovarian oocytes and enhancement of human sperm binding to human hemizonae following in vitro incubation. Biology of reproduction.1996;54:60-69
    76. Malette B, Paquette Y, Merlen Y, Bleau G. Oviductins possess chitinase-and mucin-like domains: A lead in the search for the biological function of these oviduct-specific zp-associating glycoproteins. Molecular reproduction and development.1995;41:384-397
    77. Jiang M, Ding Y, Su Y, Hu X, Li J, Zhang Z. Arginase-flotillin interaction brings arginase to red blood cell membrane. FEBS letters.2006;580:6561-6564
    78. Santhanam L, Lim HK, Lim HK, Miriel V, Brown T, Patel M, et al. Inducible no synthase dependent s-nitrosylation and activation of arginasel contribute to age-related endothelial dysfunction. Circulation research.2007; 101:692-702
    79. Coffman TM. Under pressure:The search for the essential mechanisms of hypertension. Nature medicine.2011;17:1402-1409
    80. Mueller CF, Wassmann K, Berger A, Holz S, Wassmann S, Nickenig G. Differential phosphorylation of calreticulin affects atl receptor mrna stability in vsmc. Biochemical and biophysical research communications.2008;370:669-674
    81. Sugahara T, Koga T, Ueno-Shuto K, Shuto T, Watanabe E, Maekawa A, et al. Calreticulin positively regulates the expression and function of epithelial sodium channel. Experimental cell research.2009;315:3294-3300
    82. Zegarska J, Paczek L, Pawlowska M, Wyczalkowska A, Michalska W, Ziolkowski J, et al. Increased mrna expression of transforming growth factor beta in the arterial wall of chronically rejected renal allografts in humans. Transplantation proceedings.2006;38:115-118
    83. Grainger DJ. Transforming growth factor beta and atherosclerosis:So far, so good for the protective cytokine hypothesis. Arteriosclerosis, thrombosis, and vascular biology. 2004;24:399-404
    84. Yamada KM. Fibronectin peptides in cell migration and wound repair. The Journal of clinical investigation.2000;105:1507-1509
    85. Litteri G, Carnevale D, D'Urso A, Cifelli G, Braghetta P, Damato A, et al. Vascular smooth muscle emilin-1 is a regulator of arteriolar myogenic response and blood pressure. Arteriosclerosis, thrombosis, and vascular biology.2012;32:2178-2184
    86. Wei S, Segura S, Vendrell J, Aviles FX, Lanoue E, Day R, et al. Identification and characterization of three members of the human metallocarboxypeptidase gene family. The Journal of biological chemistry.2002;277:14954-14964
    87. Lyons PJ, Fricker LD. Carboxypeptidase o is a glycosylphosphatidylinositol-anchored intestinal peptidase with acidic amino acid specificity. The Journal of biological chemistry. 2011;286:39023-39032
    88. Riordan JF. Angiotensin-i-converting enzyme and its relatives. Genome biology.2003;4:225
    89. Allen RK. A review of angiotensin converting enzyme in health and disease. Sarcoidosis. 1991;8:95-100
    90. Skidgel RA, Erdos EG. The broad substrate specificity of human angiotensin i converting enzyme. Clinical and experimental hypertension. Part A, Theory and practice.1987;9:243-259
    91. Schadt EE, Lamb J, Yang X, Zhu J, Edwards S, Guhathakurta D, et al. An integrative genomics approach to infer causal associations between gene expression and disease. Nature genetics. 2005;37:710-717
    92. Wang Y, Wang Y, Wang Y, Zheng G, Tan TK, Lee S, et al. Regulatory t cells require renal antigen recognition through the tor to protect against injury in nephritis. International journal of clinical and experimental pathology.2014;7:38-47
    93. Lacolley P, Regnault V, Nicoletti A, Li Z, Michel JB. The vascular smooth muscle cell in arterial pathology:A cell that can take on multiple roles. Cardiovascular research.2012;95:194-204
    94. Harwani SC, Chapleau MW, Legge KL, Ballas ZK, Abboud FM. Neurohormonal modulation of the innate immune system is proinflammatory in the prehypertensive spontaneously hypertensive rat, a genetic model of essential hypertension. Circulation research.2012;111:1190-1197
    95. Haghikia A, Hoch M, Stapel B, Hilfiker-Kleiner D. Stat3 regulation of and by micrornas in development and disease. Jak-Stat.2012;1:143-150
    96. Saleh MA, Pollock DM. Endothelin in renal inflammation and hypertension. Contributions to nephrology.2011;172:160-170
    97. Marvar PJ, Lob H, Vinh A, Zarreen F, Harrison DG. The central nervous system and inflammation in hypertension. Current opinion in pharmacology.2011;11:156-161
    98. Huang Y, Li Z, van Rooijen N, Wang N, Pang CP, Cui Q. Different responses of macrophages in retinal ganglion cell survival after acute ocular hypertension in rats with different autoimmune backgrounds. Experimental eye research.2007;85:659-666
    99. Pinto RF, Higuchi Mde L, Aiello VD. Decreased numbers of t-lymphocytes and predominance of recently recruited macrophages in the walls of peripheral pulmonary arteries from 26 patients with pulmonary hypertension secondary to congenital cardiac shunts. Cardiovascular pathology:the official journal of the Society for Cardiovascular Pathology.2004; 13:268-275
    100. Novak P, Stampfer MR, Munoz-Rodriguez JL, Garbe JC, Ehrich M, Futscher BW, et al. Cell-type specific DNA methylation patterns define human breast cellular identity. PloS one.2012;7:e52299
    101. Nishioka M, Shimada T, Bundo M, Ukai W, Hashimoto E, Saito T, et al. Neuronal cell-type specific DNA methylation patterns of the cacnalc gene. International journal of developmental neuroscience:the official journal of the International Society for Developmental Neuroscience. 2013;31:89-95
    102. Bloushtain-Qimron N, Yao J, Snyder EL, Shipitsin M, Campbell LL, Mani SA, et al. Cell type-specific DNA methylation patterns in the human breast. Proceedings of the National Academy of Sciences of the United States of America.2008;105:14076-14081
    103. Koestler DC, Marsit CJ, Christensen BC, Accomando W, Langevin SM, Houseman EA, et al. Peripheral blood immune cell methylation profiles are associated with nonhematopoietic cancers. Cancer epidemiology, biomarkers & prevention:a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology. 2012;21:1293-1302
    104. Wu XW, Muzny DM, Lee CC, Caskey CT. Two independent mutational events in the loss of urate oxidase during hominoid evolution. Journal of molecular evolution.1992;34:78-84
    105. Johnson RJ, Titte S, Cade JR, Rideout BA, Oliver WJ. Uric acid, evolution and primitive cultures. Seminars in nephrology.2005;25:3-8
    106. Jin M, Yang F, Yang I, Yin Y, Luo JJ, Wang H, et al. Uric acid, hyperuricemia and vascular diseases. Frontiers in bioscience:a journal and virtual library.2012;17:656-669
    107. Feig DI. Uric acid and hypertension. Seminars in nephrology.2011;31:441-446
    108. Sundstrom J, Sullivan L, D'Agostino RB, Levy D, Kannel WB, Vasan RS. Relations of serum uric acid to longitudinal blood pressure tracking and hypertension incidence. Hypertension. 2005;45:28-33
    109. Feig DI, Soletsky B, Johnson RJ. Effect of allopurinol on blood pressure of adolescents with newly diagnosed essential hypertension:A randomized trial. JAMA:the journal of the American Medical Association.2008;300:924-932
    110. Zhang W, Sun K, Yang Y, Zhang H, Hu FB, Hui R. Plasma uric acid and hypertension in a chinese community:Prospective study and metaanalysis. Clinical chemistry.2009;55:2026-2034
    111. Syamala S, Li J, Shankar A. Association between serum uric acid and prehypertension among us adults. Journal of hypertension.2007;25:1583-1589
    112. Lu Z, Dong B, Wu H, Chen T, Zhang Y, Wu J, et al. Serum uric acid level in primary hypertension among chinese nonagenarians/centenarians. Journal of human hypertension.2009;23:113-121
    113. Kanellis J, Watanabe S, Li JH, Kang DH, Li P, Nakagawa T, et al. Uric acid stimulates monocyte chemoattractant protein-1 production in vascular smooth muscle cells via mitogen-activated protein kinase and cyclooxygenase-2. Hypertension.2003;41:1287-1293
    114. Hong Q, Qi K, Feng Z, Huang Z, Cui S, Wang L, et al. Hyperuricemia induces endothelial dysfunction via mitochondrial na(+)/ca(2+) exchanger-mediated mitochondrial calcium overload. Cell calcium.2012;51:402-410
    115. Khosla UM, Zharikov S, Finch JL, Nakagawa T, Roncal C, Mu W, et al. Hyperuricemia induces endothelial dysfunction. Kidney international.2005;67:1739-1742
    116. Johnson RJ, Kang DH, Feig D, Kivlighn S, Kanellis J, Watanabe S, et al. Is there a pathogenetic role for uric acid in hypertension and cardiovascular and renal disease? Hypertension. 2003;41:1183-1190
    117. Reed DR, Price RA. X-linkage does not account for the absence of father-son similarity in plasma uric acid concentrations. American journal of medical genetics.2000;92:142-146
    118. Wilk JB, Djousse L, Borecki I, Atwood LD, Hunt SC, Rich SS, et al. Segregation analysis of serum uric acid in the nhlbi family heart study. Human genetics.2000;106:355-359
    119. Emmerson BT, Nagel SL, Duffy DL, Martin NG. Genetic control of the renal clearance of urate:A study of twins. Annals of the rheumatic diseases.1992;51:375-377
    120. Yamada Y, Nomura N, Yamada K, Wakamatsu N, Kaneko K, Fujimori S. Molecular analysis of hypoxanthine guanine phosphoribosyltransferase (hprt) deficiencies:Novel mutations and the spectrum of japanese mutations. Nucleosides, nucleotides & nucleic acids.2008;27:570-574
    121. Kudo E, Itakura M. [uromodulin mutation and hyperuricemia]. Nihon rinsho. Japanese journal of clinical medicine.2008;66:778-783
    122. Mineo I, Kono N, Hara N, Shimizu T, Yamada Y, Kawachi M, et al. Myogenic hyperuricemia. A common pathophysiologic feature of glycogenosis types iii, v, and vii. The New England journal of medicine.1987;317:75-80
    123. Sulem P, Gudbjartsson DF, Walters GB, Helgadottir HT, Helgason A, Gudjonsson SA, et al. Identification of low-frequency variants associated with gout and serum uric acid levels. Nature genetics.2011;43:1127-1130
    124. Vora S, DiMauro S, Spear D, Harker D, Danon MJ. Characterization of the enzymatic defect in late-onset muscle phosphofructokinase deficiency. New subtype of glycogen storage disease type vii. The Journal of clinical investigation.1987;80:1479-1485
    125. Reginato AM, Mount DB, Yang I, Choi HK. The genetics of hyperuricaemia and gout. Nature reviews. Rheumatology.2012;8:610-621
    126. Zeilinger S, Kuhnel B, Klopp N, Baurecht H, Kleinschmidt A, Gieger C, et al. Tobacco smoking leads to extensive genome-wide changes in DNA methylation. PloS one.2013;8:e63812
    127. Breitling LP, Yang R, Korn B, Burwinkel B, Brenner H. Tobacco-smoking-related differential DNA methylation:27k discovery and replication. American journal of human genetics. 2011;88:450-457
    128. Kulis M, Heath S, Bibikova M, Queiros AC, Navarro A, Clot G, et al. Epigenomic analysis detects widespread gene-body DNAhypomethylation in chronic lymphocytic leukemia. Nature genetics. 2012;44:1236-1242
    129. Ball MP, Li JB, Gao Y, Lee JH, LeProust EM, Park IH, et al. Targeted and genome-scale strategies reveal gene-body methylation signatures in human cells. Nature biotechnology.2009;27:361-368
    130. Stevanin G, Camuzat A, Holmes SE, Julien C, Sahloul R, Dode C, et al. Cag/ctg repeat expansions at the huntington's disease-like 2 locus are rare in huntington's disease patients. Neurology. 2002;58:965-967
    131. Holmes SE, O'Hearn E, Rosenblatt A, Callahan C, Hwang HS, Ingersoll-Ashworth RG, et al. A repeat expansion in the gene encoding junctophilin-3 is associated with huntington disease-like 2. Nature genetics.2001;29:377-378
    132. Ewing RM, Chu P, Elisma F, Li H, Taylor P, Climie S, et al. Large-scale mapping of human protein-protein interactions by mass spectrometry. Molecular systems biology.2007;3:89
    133. Landstrom AP, Kellen CA, Dixit SS, van Oort RJ, Garbino A, Weisleder N, et al. Junctophilin-2 expression silencing causes cardiocyte hypertrophy and abnormal intracellular calcium-handling. Circulation. Heart failure.2011;4:214-223
    134. Wu Z, Hansmann B, Meyer-Hoffert U, Glaser R, Schroder JM. Molecular identification and expression analysis of filaggrin-2, a member of the s100 fused-type protein family. PloS one. 2009;4:e5227
    135. Hsu CY, Henry J, Raymond AA, Mechin MC, Pendaries V, Nassar D, et al. Deimination of human filaggrin-2 promotes its proteolysis by calpain 1. The Journal of biological chemistry. 2011;286:23222-23233
    136. Liu M, Wu B, Wang WZ, Lee LM, Zhang SH, Kong LZ. Stroke in china:Epidemiology, prevention, and management strategies. Lancet neurology.2007;6:456-464
    137. Rinkel GJ, Djibuti M, Algra A, van Gijn J. Prevalence and risk of rupture of intracranial aneurysms: A systematic review. Stroke; a journal of cerebral circulation.1998;29:251-256
    138. Yang QD, Niu Q, Zhou YH, Liu YH, Xu HW, Gu WP, et al. Incidence of cerebral hemorrhage in the changsha community. A prospective study from 1986 to 2000. Cerebrovascular diseases. 2004;17:303-313
    139. Ingall T, Asplund K, Mahonen M, Bonita R. A multinational comparison of subarachnoid hemorrhage epidemiology in the who monica stroke study. Stroke; a journal of cerebral circulation. 2000;31:1054-1061
    140. Zhang J, Liu G, Arima H, Li Y, Cheng G, Shiue I, et al. Incidence and risks of subarachnoid hemorrhage in china. Stroke; a journal of cerebral circulation.2013;44:2891-2893
    141. Gu YX, Chen XC, Song DL, Leng B, Zhao F. Risk factors for intracranial aneurysm in a chinese ethnic population. Chinese medical journal.2006;119:1359-1364
    142. Ronkainen A, Hemesniemi J, Ryynanen M, Puranen M, Kuivaniemi H. A ten percent prevalence of asymptomatic familial intracranial aneurysms:Preliminary report on 110 magnetic resonance angiography studies in members of 21 finnish familial intracranial aneurysm families. Neurosurgery.1994;35:208-212; discussion 212-203
    143. Schievink WI, Schaid DJ, Michels VV, Piepgras DG. Familial aneurysmal subarachnoid hemorrhage:A community-based study. Journal of neurosurgery.1995;83:426-429
    144. Xu HW, Yu SQ, Mei CL, Li MH. Screening for intracranial aneurysm in 355 patients with autosomal-dominant polycystic kidney disease. Stroke; a journal of cerebral circulation. 2011;42:204-206
    145. Pepin M, Schwarze U, Superti-Furga A, Byers PH. Clinical and genetic features of ehlers-danlos syndrome type iv, the vascular type. The New England journal of medicine.2000;342:673-680
    146. Helgadottir A, Thorleifsson G, Magnusson KP, Gretarsdottir S, Steinthorsdottir V, Manolescu A, et al. The same sequence variant on 9p21 associates with myocardial infarction, abdominal aortic aneurysm and intracranial aneurysm. Nature genetics.2008;40:217-224
    147. Bilguvar K, Yasuno K, Niemela M, Ruigrok YM, von Und Zu Fraunberg M, van Duijn CM, et al. Susceptibility loci for intracranial aneurysm in european and japanese populations. Nature genetics. 2008;40:1472-1477
    148. Yasuno K, Bilguvar K, Bijlenga P, Low SK, Krischek B, Auburger G, et al. Genome-wide association study of intracranial aneurysm identifies three new risk loci. Nature genetics. 2010;42:420-425
    149. Gretarsdottir S, Baas AF, Thorleifsson G, Holm H, den Heijer M, de Vries JP, et al. Genome-wide association study identifies a sequence variant within the dab2ip gene conferring susceptibility to abdominal aortic aneurysm. Nature genetics.2010;42:692-697
    150. Nieuwkamp DJ, Setz LE, Algra A, Linn FH, de Rooij NK, Rinkel GJ. Changes in case fatality of aneurysmal subarachnoid haemorrhage over time, according to age, sex, and region:A meta-analysis. Lancet neurology.2009;8:635-642
    151. Caranci F, Briganti F, Cirillo L, Leonardi M, Muto M. Epidemiology and genetics of intracranial aneurysms. European journal of radiology.2013;82:1598-1605
    152. Studies N-NWGoRiA, Chanock SJ, Manolio T, Boehnke M, Boerwinkle E, Hunter DJ, et al. Replicating genotype-phenotype associations. Nature.2007;447:655-660
    153. Bush WS, Moore JH. Chapter 11:Genome-wide association studies. PLoS computational biology. 2012;8:e1002822
    154. Low SK, Takahashi A, Cha PC, Zembutsu H, Kamatani N, Kubo M, et al. Genome-wide association study for intracranial aneurysm in the japanese population identifies three candidate susceptible loci and a functional genetic variant at ednra. Human molecular genetics. 2012;21:2102-2110
    155. Roberts R, Stewart AF.9p21 and the genetic revolution for coronary artery disease. Clinical chemistry.2012;58:104-112
    156. Stuiver M, Lainez S, Will C, Terryn S, Gunzel D, Debaix H, et al. Cnnm2, encoding a basolateral protein required for renal mg2+handling, is mutated in dominant hypomagnesemia. American journal of human genetics.2011;88:333-343
    157. Meyer TE, Verwoert GC, Hwang SJ, Glazer NL, Smith AV, van Rooij FJ, et al. Genome-wide association studies of serum magnesium, potassium, and sodium concentrations identify six loci influencing serum magnesium levels. PLoS genetics.2010;6
    158. Schunkert H, Konig IR, Kathiresan S, Reilly MP, Assimes TL, Holm H, et al. Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nature genetics.2011;43:333-338
    159. Lin Y, Chen NT, Shih YP, Liao YC, Xue L, Lo SH. Dlc2 modulates angiogenic responses in vascular endothelial cells by regulating cell attachment and migration. Oncogene. 2010;29:3010-3016
    160. Vijaynagar B, Bown MJ, Sayers RD, Choke E. Potential role for anti-angiogenic therapy in abdominal aortic aneurysms. European journal of clinical investigation.2013;43:758-765
    1. Kupper N, Willemsen G, Riese H, Posthuma D, Boomsma DI, de Geus EJ. Heritability of daytime ambulatory blood pressure in an extended twin design. Hypertension.2005;45:80-85
    2. Kreutz R, Hubner N, James MR, Bihoreau MT, Gauguier D, Lathrop GM, et al. Dissection of a quantitative trait locus for genetic hypertension on rat chromosome 10. Proceedings of the National Academy of Sciences of the United States of America.1995;92:8778-8782
    3. Ehret GB. Genome-wide association studies:Contribution of genomics to understanding blood pressure and essential hypertension. Current hypertension reports.2010; 12:17-25
    4. Gu D, Wildman RP, Wu X, Reynolds K, Huang J, Chen CS, et al. Incidence and predictors of hypertension over 8 years among chinese men and women. Journal of hypertension.2007;25:517-523
    5. Vasan RS, Beiser A, Seshadri S, Larson MG, Kannel WB, D'Agostino RB, et al. Residual lifetime risk for developing hypertension in middle-aged women and men:The framingham heart study. JAMA:the journal of the American Medical Association.2002;287:1003-1010
    6. Monk M. Variation in epigenetic inheritance. Trends in genetics:TIG.1990;6:110-114
    7. Waddington CH. Canalization of development and genetic assimilation of acquired characters. Nature.1959;183:1654-1655
    8. Holliday R, Pugh JE. DNA modification mechanisms and gene activity during development. Science.1975;187:226-232
    9. Turner BM. Histone acetylation as an epigenetic determinant of long-term transcriptional competence. Cellular and molecular life sciences:CMLS.1998;54:21-31
    10. Ghildiyal M, Zamore PD. Small silencing rnas:An expanding universe. Nature reviews. Genetics. 2009;10:94-108
    11. Bonasio R, Tu S, Reinberg D. Molecular signals of epigenetic states. Science.2010;330:612-616
    12. Halfmann R, Lindquist S. Epigenetics in the extreme:Prions and the inheritance of environmentally acquired traits. Science.2010;330:629-632
    13. Mehler MF. Epigenetic principles and mechanisms underlying nervous system functions in health and disease. Progress in neurobiology.2008;86:305-341
    14. Krebs JR. The gourmet ape:Evolution and human food preferences. The American journal of clinical nutrition.2009;90:707S-711S
    15. Stranger BE, Dermitzakis ET. The genetics of regulatory variation in the human genome. Human genomics.2005;2:126-131
    16. Kwiatkowski DP. How malaria has affected the human genome and what human genetics can teach us about malaria. American journal of human genetics.2005;77:171-192
    17. Neel JV. Diabetes mellitus:A "thrifty" genotype rendered detrimental by "progress"? 1962. Bulletin of the World Health Organization.1999;77:694-703; discussion 692-693
    18. Thrifty genotype rendered detrimental by progress? Lancet.1989;2:839-840
    19. Neel JV. Diabetes mellitus:A "thrifty" genotype rendered detrimental by "progress"? American journal of human genetics.1962;14:353-362
    20. Kunes J, Zicha J. The interaction of genetic and environmental factors in the etiology of hypertension. Physiological research/Academia Scientiarum Bohemoslovaca.2009;58 Suppl 2:S33-41
    21. Bodnar LM, Catov JM, Simhan HN, Holick MF, Powers RW, Roberts JM. Maternal vitamin d deficiency increases the risk of preeclampsia. The Journal of clinical endocrinology and metabolism. 2007;92:3517-3522
    22. Garovic VD, August P. Preeclampsia and the future risk of hypertension:The pregnant evidence. Current hypertension reports.2013;15:114-121
    23. Koleganova N, Piecha G, Ritz E. Prenatal causes of kidney disease. Blood purification. 2009;27:48-52
    24. Schulz WA, Steinhoff C, Florl AR. Methylation of endogenous human retroelements in health and disease. Current topics in microbiology and immunology.2006;310:211-250
    25. Ukai H, Ishii-Oba H, Ukai-Tadenuma M, Ogiu T, Tsuji H. Formation of an active form of the interleukin-2/15 receptor beta-chain by insertion of the intracisternal a particle in a radiation-induced mouse thymic lymphoma and its role in tumorigenesis. Molecular carcinogenesis.2003;37:110-119
    26. Bird A, Taggart M, Frommer M, Miller OJ, Macleod D. A fraction of the mouse genome that is derived from islands of nonmethylated, cpg-rich DNA. Cell.1985;40:91-99
    27. Illingworth RS, Gruenewald-Schneider U, Webb S, Kerr AR, James KD, Turner DJ, et al. Orphan cpg islands identify numerous conserved promoters in the mammalian genome. PLoS genetics. 2010;6:e1001134
    28. Choi JK. Contrasting chromatin organization of cpg islands and exons in the human genome. Genome biology.2010;11:R70
    29. Carninci P, Sandelin A, Lenhard B, Katayama S, Shimokawa K, Ponjavic J, et al. Genome-wide analysis of mammalian promoter architecture and evolution. Nature genetics.2006;38:626-635
    30. Mohn F, Weber M, Rebhan M, Roloff TC, Richter J, Stadler MB, et al. Lineage-specific polycomb targets and de novo DNA methylation define restriction and potential of neuronal progenitors. Molecular cell.2008;30:755-766
    31. Kantor B, Kaufman Y, Makedonski K, Razin A, Shemer R. Establishing the epigenetic status of the prader-willi/angelman imprinting center in the gametes and embryo. Human molecular genetics. 2004;13:2767-2779
    32. Choi JD, Underkoffler LA, Wood AJ, Collins JN, Williams PT, Golden JA, et al. A novel variant of inpp5f is imprinted in brain, and its expression is correlated with differential methylation of an internal cpg island. Molecular and cellular biology.2005;25:5514-5522
    33. Maunakea AK, Nagarajan RP, Bilenky M, Ballinger TJ, D'Souza C, Fouse SD, et al. Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature.2010;466:253-257
    34. Eckhardt F, Lewin J, Cortese R, Rakyan VK, Attwood J, Burger M, et al. DNA methylation profiling of human chromosomes 6,20 and 22. Nature genetics.2006;38:1378-1385
    35. Brenet F, Moh M, Funk P, Feierstein E, Viale AJ, Socci ND, et al. DNA methylation of the first exon is tightly linked to transcriptional silencing. PloS one.2011;6:e14524
    36. Aran D, Toperoff G, Rosenberg M, Hellman A. Replication timing-related and gene body-specific methylation of active human genes. Human molecular genetics.2011;20:670-680
    37. Ball MP, Li JB, Gao Y, Lee JH, LeProust EM, Park IH, et al. Targeted and genome-scale strategies reveal gene-body methylation signatures in human cells. Nature biotechnology. 2009;27:361-368
    38. Chelbi ST, Mondon F, Jammes H, Buffat C, Mignot TM, Tost J, et al. Expressional and epigenetic alterations of placental serine protease inhibitors:Serpina3 is a potential marker of preeclampsia. Hypertension.2007;49:76-83
    39. Friso S, Pizzolo F, Choi SW, Guarini P, Castagna A, Ravagnani V, et al. Epigenetic control of 11 beta-hydroxysteroid dehydrogenase 2 gene promoter is related to human hypertension. Atherosclerosis.2008; 199:323-327
    40. Alikhani-Koopaei R, Fouladkou F, Frey FJ, Frey BM. Epigenetic regulation of 11 beta-hydroxysteroid dehydrogenase type 2 expression. The Journal of clinical investigation. 2004;114:1146-1157
    41. Ding Y, Lv J, Mao C, Zhang H, Wang A, Zhu L, et al. High-salt diet during pregnancy and angiotensin-related cardiac changes. Journal of hypertension.2010;28:1290-1297
    42. Bogdarina I, Haase A, Langley-Evans S, Clark AJ. Glucocorticoid effects on the programming of atlb angiotensin receptor gene methylation and expression in the rat. PloS one.2010;5:e9237
    43. Zhang D, Yu ZY, Cruz P, Kong Q, Li S, Kone BC. Epigenetics and the control of epithelial sodium channel expression in collecting duct. Kidney international.2009;75:260-267
    44. Chan GC, Fish JE, Mawji IA, Leung DD, Rachlis AC, Marsden PA. Epigenetic basis for the transcriptional hyporesponsiveness of the human inducible nitric oxide synthase gene in vascular endothelial cells. Journal of immunology.2005;175:3846-3861
    45. Zhang X, Laubach VE, Alley EW, Edwards KA, Sherman PA, Russell SW, et al. Transcriptional basis for hyporesponsiveness of the human inducible nitric oxide synthase gene to lipopolysaccharide/interferon-gamma. Journal of leukocyte biology.1996;59:575-585
    46. Kang TJ, Yuzawa S, Suga H. Expression of histone h3 tails with combinatorial lysine modifications under the reprogrammed genetic code for the investigation on epigenetic markers. Chemistry & biology.2008;15:1166-1174
    47. Morimoto S, Sasaki S, Itoh H, Nakata T, Takeda K, Nakagawa M, et al. Sympathetic activation and contribution of genetic factors in hypertension with neurovascular compression of the rostral ventrolateral medulla. Journal of hypertension.1999;17:1577-1582
    48. Sharma R, Ottenhof T, Rzeczkowska PA, Niles LP. Epigenetic targets for melatonin:Induction of histone h3 hyperacetylation and gene expression in c17.2 neural stem cells. Journal of pineal research. 2008;45:277-284
    49. Viswanathan M, Laitinen JT, Saavedra JM. Differential expression of melatonin receptors in spontaneously hypertensive rats. Neuroendocrinology.1992;56:864-870
    50. Mu S, Shimosawa T, Ogura S, Wang H, Uetake Y, Kawakami-Mori F, et al. Epigenetic modulation of the renal beta-adrenergic-wnk4 pathway in salt-sensitive hypertension. Nature medicine. 2011;17:573-580
    51. Duarte JD, Zineh I, Burkley B, Gong Y, Langaee TY, Turner ST, et al. Effects of genetic variation in h3k79 methylation regulatory genes on clinical blood pressure and blood pressure response to hydrochlorothiazide. Journal of translational medicine.2012;10:56
    52. Esler M, Eikelis N, Schlaich M, Lambert G, Alvarenga M, Kaye D, et al. Human sympathetic nerve biology:Parallel influences of stress and epigenetics in essential hypertension and panic disorder. Annals of the New York Academy of Sciences.2008;1148:338-348
    53. Yu Z, Kong Q, Kone BC. Creb trans-activation of disruptor of telomeric silencing-1 mediates forskolin inhibition of ctgf transcription in mesangial cells. American journal of physiology. Renal physiology.2010;298:F617-624
    54. Wandji SA, Gadsby JE, Barber JA, Hammond JM. Messenger ribonucleic acids for mac25 and connective tissue growth factor (ctgf) are inversely regulated during folliculogenesis and early luteogenesis. Endocrinology.2000;141:2648-2657
    55. Gumz ML, Stow LR, Lynch IJ, Greenlee MM, Rudin A, Cain BD, et al. The circadian clock protein period 1 regulates expression of the renal epithelial sodium channel in mice. The Journal of clinical investigation.2009; 119:2423-2434
    56. Steger DJ, Lefterova MI, Ying L, Stonestrom AJ, Schupp M, Zhuo D, et al. Dotll/kmt4 recruitment and h3k79 methylation are ubiquitously coupled with gene transcription in mammalian cells. Molecular and cellular biology.2008;28:2825-2839
    57. Zhang Z, Rhinehart K, Solis G, Pittner J, Lee-Kwon W, Welch WJ, et al. Chronic ang ii infusion increases no generation by rat descending vasa recta. American journal of physiology. Heart and circulatory physiology.2005;288:H29-36
    58. Welch WJ, Chabrashvili T, Solis G, Chen Y, Gill PS, Aslam S, et al. Role of extracellular superoxide dismutase in the mouse angiotensin slow pressor response. Hypertension. 2006;48:934-941
    59. Guzik TJ, Sadowski J, Guzik B, Jopek A, Kapelak B, Przybylowski P, et al. Coronary artery superoxide production and nox isoform expression in human coronary artery disease. Arteriosclerosis, thrombosis, and vascular biology.2006;26:333-339
    60. Wang D, Chabrashvili T, Borrego L, Aslam S, Umans JG. Angiotensin ii infusion alters vascular function in mouse resistance vessels:Roles of o and endothelium. Journal of vascular research. 2006;43:109-119
    61. Modlinger P, Chabrashvili T, Gill PS, Mendonca M, Harrison DG, Griendling KK, et al. Rna silencing in vivo reveals role of p22phox in rat angiotensin slow pressor response. Hypertension. 2006;47:238-244
    62. Batkai S, Thum T. Micrornas in hypertension:Mechanisms and therapeutic targets. Current hypertension reports.2012;14:79-87
    63. Li S, Zhu J, Zhang W, Chen Y, Zhang K, Popescu LM, et al. Signature microrna expression profile of essential hypertension and its novel link to human cytomegalovirus infection. Circulation. 2011;124:175-184