代谢综合征、血脂水平和脂联素基因多态性与脑白质病变关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:
     脑白质病变(WML),又称脑白质疏松,多见于老年人群。WML是脑白质区弥散性、融合性病变,边缘模糊,在头颅磁共振(MRI)的T1加权像呈低信号,在T2加权像和液体衰减反转恢复(FLAIR)序列呈高信号。因为在FLAIR中WML可以很好地区别于腔隙,所以FLAIR序列成为评估WML存在与否和严重程度最常用的影像学手段。WML是一种脑小血管病,存在一系列病理学改变,包括髓鞘脱失、血管壁通透性增高、血脑屏障破坏、脑血管自调节障碍、白质低灌注和胶质增生等。WML可分为脑室旁白质病变(PVWML)和深部白质病变(DWML),虽然它们常常共存,但是有证据表明这两者在病因和临床意义上不完全相同。人脑中的神经元之间存在多重联系网络,不仅掌控着运动和感觉系统,也与注意力、记忆、语言、视空间能力和情绪等神经行为功能密切相关,脑白质的病变会损害这些联系网络,从而影响到这些神经行为功能,特别对于处在生命末期的老年人群,这些影响尤为明显。经过30多年的研究,越来越多的证据表明WML与卒中、认知功能下降、痴呆、抑郁、残疾和全因死亡率有关,对老年人群的健康构成了巨大的威胁。年龄和高血压是公认的WML的危险因素,而其他危险因素尚未被充分研究。考虑到WML对老年人群身体健康的严重危害及对社会医疗体系造成的沉重负担,研究其他危险因素的作用,尤其是可干预的危险因素,具有重要意义。另外,环境危险因素并不能完全解释WML的发病情况,对双胞胎人群的研究和家系研究已经证实,WML具有很高的遗传倾向。研究WML的遗传学基础,对于WML和相关疾病(如卒中和痴呆)的早期诊断和个体化治疗有重要价值。
     因此,本研究的第一个目标是在中老年人群中探索代谢综合征和血脂水平与WML的关系,这一问题在既往研究中没有得到充分阐述,且充满争议;另一个目标是探索脂联素基因多态性和WML的关系,这在既往研究中从未涉及。
     第一部分代谢综合征与脑白质病变关系的研究
     背景:
     代谢综合征(MetS)是一系列可干预的血管危险因素的集合,包括腹型肥胖、血脂紊乱、高血压和高血糖等。既往研究报道其与脑静息性腔梗(SLI)有关,后者和WML同属脑小血管病,具有相似的发病机制,提示代谢综合征可能也与WML相关,既往研究对此少有报道。本部分的研究目的是在中老年人群中探索代谢综合征及其组分与WML患病风险间的关系。
     方法:
     前瞻性连续收集我科50岁或以上入院病人,用头颅MRI评估WML患病与否和严重程度,以改良的Fazekas四分法分级。以经过修订的美国国家胆固醇教育计划成人治疗专题小组III (NCEP-ATPIII)标准诊断MetS,腹围参考亚洲人群标准。采用二分类logistic回归分析MetS及其组分与WML的关系,并对男女性别进行分层分析,最后采用多分类logistic回归分析MetS与WML各个严重程度的关系。在PVWML和DWML中分别考察。
     结果:
     1.从2012年6月至2013年1月,共852名患者纳入本次研究。入组患者平均年龄为66.0±9.4岁,52.0%为女性,其中轻度PVWML有311名(36.5%),中度有77名(9.0%),重度有71名(8.3%);轻度DWML有298名(35.0%),中度有116名(13.6%),重度有66名(7.7%)。根据NCEP–ATPIII标准,MetS在总人群中患病率为38.4%,在女性中为43.8%,在男性中为32.5%。WML的严重程度随年龄增加而增加(Ptrend<0.001),亦随MetS组分的个数增加而增加(Ptrend<0.001)。
     2.调整了年龄和性别后,logistic回归表明MetS与PVWML和DWML风险升高均有关。进一步调整了吸烟、饮酒、冠心病和卒中史后,这种关系依然具有统计学意义(对PVWML,OR:3.21,95%CI:2.26-4.55;对DWML,OR:2.93,95%CI:2.09-4.09)。对性别进行分层分析,MetS在男性和女性中都是WML的独立危险因素。
     3. MetS组分个数越多,PVWML和DWML的患病风险也越高(Ptrend<0.001)。较之组分个数为0者,组分个数最多(4或5个)的患者,其患PVWML的风险增加6.5倍,患DWML的风险增加3.7倍。
     4.将MetS的5个组分同时进入回归方程,并调整年龄、性别、吸烟、饮酒、冠心病和卒中史,PVWML的独立危险因素是血压升高(OR:2.69,95%CI:1.91-3.78)、血糖升高(OR:1.55,95%CI:1.08-2.23)和高密度脂蛋白胆固醇(HDL-C)降低(OR:1.42,95%CI:1.01-2.00);而DWML的独立危险因素是血压升高(OR:2.59,95%CI:1.86-3.60)和HDL-C降低(OR:1.51,95%CI:1.09-2.09)。进一步对性别分层,血压升高在男性和女性中均为PVWML和DWML的危险因素,而血糖升高在男性中仍是PVWML的危险因素,HDL-C降低在女性中仍是DWML的危险因素。
     5.多分类logistic回归显示MetS与PVWML和DWML的严重程度有关。调整年龄、性别、吸烟、饮酒、冠心病和卒中史后,对轻、中、重度PVWML,OR值分别为2.97(95%CI:2.07-4.26)、4.14(95%CI:2.35-7.28)、5.44(95%CI:2.86-10.35);而对轻、中、重度DWML,OR值分别为2.44(95%CI:1.72-3.47)、5.09(95%CI:3.05-8.48)和6.31(95%CI:3.30-12.06)。可见,OR值随着WML严重程度增加而增加。
     结论:
     1. MetS是中老年人群罹患PVWML和DWML的独立危险因素,MetS患者患PVWML和DWML的风险是无MetS者的3倍左右,且这种效应在男性和女性中均存在。另外,年龄和既往卒中史也是PVWML和DWML的独立危险因素。
     2. MetS组分个数越多,PVWML和DWML的患病风险也越高。较之组分个数为0者,组分个数最多(4或5个)的患者,其患PVWML的风险增加6.5倍,患DWML的风险增加3.7倍。
     3.在MetS的组分中,血压升高、血糖升高和HDL-C降低与PVWML患病率上升有关,而血压升高和HDL-C降低与DWML患病率上升有关。
     4.多分类logistic回归显示,MetS与各个严重程度的WML均有关,但与重度WML的关系最为密切,MetS患者罹患重度PVWML和DWML的风险较无MetS者分别增加了5.4倍和6.3倍。
     第二部分血脂水平与脑白质病变关系的研究
     背景:
     血脂水平与WML的关系在既往研究中充满争议,且缺乏全面系统的研究。因此本部分的研究目的是在中老年人群中探索血脂水平与WML患病风险间的关系。
     方法:
     前瞻性连续收集我科50岁或以上入院病人,用头颅MRI评估WML患病与否和严重程度,以改良的Fazekas四分法分级。最后采用多因素logistic回归分析血浆各血脂指标与PVWML和DWML的关系。各血脂指标包括总胆固醇(TC)、甘油三酯(TG)、高密度脂蛋白胆固醇(HDL-C)、低密度脂蛋白胆固醇(LDL-C)、载脂蛋白A-I(ApoA-I)、载脂蛋白B(ApoB)以及ApoB与ApoA-I的比值(ApoB/ApoA-I)。各血脂指标以四分位数法分为4个浓度等级,以最高浓度等级为参照行回归分析。
     结果:
     1.从2012年6月至2013年6月,共1282名患者(606名男性,676名女性,平均年龄65.9±9.4岁)纳入研究。轻度PVWML有469名(36.6%),中度有110名(8.6%),重度有99名(7.7%);轻度DWML有486名(37.9%),中度有147名(11.5%),重度有91名(7.1%)。PVWML和DWML的患病率和严重程度随年龄增加而增加(Ptrend<0.001)。
     2.患PVWML者较未患者年龄更大(70.0±8.9VS61.3±7.5,P <0.001),男性比例更高(50.9%VS43.2%,P=0.006),冠心病、卒中史、高血压和糖尿病的患病率更高(P <0.05),收缩压、舒张压和血浆FBG浓度更高(P <0.05)。两组间的吸烟、饮酒情况和体重指数(BMI)无统计学差异(P>0.05)。DWML组和无DWML组的比较与PVWML类似,不同的是,两组间血浆FBG浓度无差异(P=0.386)。
     3. TC、HDL-C、LDL-C、ApoA-I和ApoB的血浆浓度在PVWML各级间的分布存在统计学差异(P <0.05)。TC、HDL-C和ApoA-I的血浆浓度在DWML各级间的分布存在统计学差异(P <0.05)。
     4.当调整了年龄、性别、既往卒中史、冠心病史、高血压和糖尿病后,二分类logistic回归显示,HDL-C(Ptrend=0.044)和ApoA-I(Ptrend=0.019)血浆浓度降低可增加PVWML的患病风险,与最高浓度等级比较,最低浓度等级的患病风险均增加约1.5倍。同样,HDL-C和ApoA-I浓度降低也与DWML有关,最低浓度等级的患病风险分别增加约1.5倍和1.8倍。未发现其他血脂指标与WML有关。
     5.调整年龄、性别、既往卒中史、冠心病史、高血压和糖尿病后,有序多分类logistic回归显示HDL-C(OR:1.39,95%CI:1.01-1.93)和ApoA-I(OR:1.50,95%CI:1.09-2.07)的最低浓度等级与PVWML的严重程度有关,而ApoA-I(OR:1.49,95%CI:1.09-2.05)的最低浓度等级与DWML的严重程度有关。
     6.对不同性别进行分层分析,多因素logistic回归显示最低浓度等级HDL-C(Ptrend=0.006)和ApoA-I(Ptrend=0.003)增加PVWML患病风险的效应只在女性中存在。同样,只在女性中,HDL-C(Ptrend<0.001)和ApoA-I(Ptrend<0.001)浓度降低可增加DWML的患病风险。
     结论:
     1.调整可能的混杂因素后,HDL-C和ApoA-I血浆浓度降低是PVWML和DWML的独立危险因素,未发现其他血脂指标与WML有关。
     2.有序多分类logistic回归显示,HDL-C和ApoA-I的浓度与PVWML的严重程度有关,最低浓度等级者罹患更严重PVWML的风险增加约1.4倍和1.5倍;ApoA-I的浓度与DWML的严重程度有关,最低浓度等级者罹患更严重DWML的风险增加约1.5倍。
     3.对不同性别进行分层分析,发现最低浓度等级HDL-C和ApoA-I增加PVWML和DWML患病风险的效应仅在女性中存在。
     第三部分脂联素基因多态性与脑白质病变关系的研究
     背景:
     脂联素有抗动脉粥样硬化、抗炎性反应等生物学效应,脂联素单核苷酸多态性(SNP)与代谢综合征、高血压、糖尿病、卒中和HDL-C浓度有关,但尚无研究关注其与WML的关系。本研究通过横断面研究的方法在中老年人群中探索脂联素SNP位点与WML的关系。
     方法:
     前瞻性连续收集我科50岁或以上同意抽血和MRI检查的入院病人,以头颅MRI评估WML患病与否和严重程度,以改良的Fazekas四分法分级,将PVWML和DWML的分数相加,0-1分为对照组,2-6分为WML病例组。用连接酶链反应进行基因分型。最后采用多因素logistic回归分析脂联素各SNP位点与WML的关系。
     结果:
     1.2012年6月至2013年1月,811名连续研究对象入组,平均年龄66.4±9.1岁,47.6%为男性,病例组419名,对照组392名。与对照相比,病例组平均年龄更大(P <0.05),冠心病、既往卒中、高血压和糖尿病的比例较高(P <0.05),血浆TC、HDL-C和ApoA-I浓度较低(P <0.05),收缩压、舒张压和FBG浓度较高(P <0.05)。
     2.所有SNP位点的基因分型成功率均高于97%。各SNP位点病例组和对照组分别进行HWE检验,所有研究组均符合HWE,具有群体代表性(P>0.05)。
     3.脂联素基因rs7649121位点的AA、AT、TT基因型频率在病例组分别为50.6%、41.7%,7.7%,在对照组分别为61.5%、35.2%、3.3%,在两组间的分布有统计学差异(χ2=13.407,P=0.001),等位基因A、T的频率在病例组为71.5%和28.5%,在对照组为79.1%和20.9%,在两组间的分布有统计学差异(χ2=12.562,P <0.001)。rs1063539、rs2241767、rs1501299、rs16861194、rs12495941、rs182052、rs266729的基因型和等位基因频率在病例组和对照组间均无差异(P>0.05)。
     4.调整了年龄、性别、既往卒中史、冠心病、高血压、糖尿病和HDL-C后,AT基因型(OR:1.59,95%CI:1.01-2.50)和TT基因型(OR:3.44,95%CI:1.18-10.03)仍是WML的独立危险因素,在显性模型中,AT/TT基因型患WML的风险是AA基因型的1.7倍。
     结论:
     1.在中国中老年人群中首次发现,脂联素基因的rs7649121位点与WML有关,T等位基因是WML发生的易感基因。
     2.未发现脂联素基因的rs1063539、rs2241767、rs1501299、rs16861194、rs12495941、rs182052和rs266729位点与WML有关。
Background:
     Cerebral white matter lesions (WMLs), also known as leukoaraiosis, are frequentlyobserved on neuroimaging in the brains of elderly patients. They are defined as diffuse,confluent white matter abnormalities, often with irregular margins. On magnetic resonanceimaging (MRI), they are seen as hypointensities on T1-weighted imaging andhyperintensities on T2-weighted imaging and fluid-attenuated inversion recovery sequences(FLAIR). FLAIR is now the preferred imaging modality to assess the presence and severityof WMLs because of clear distinction between WMLs and lacunes. WMLs aremanifestation of cerebral small vessel disease and reflect multiple pathologic changes,including loss and deformation of myelin sheath, changes in vessel wall permeability,disruption of the blood-brain barrier, hypoperfusion attributable to altered cerebrovascularautoregulation and gliosis. WMLs are often divided into two categories: periventricularWMLs (PVWMLs) and deep WMLs (DWMLs), with a possible dissimilarity in pathogenicmechanisms and clinical relevance. The human brain contains multiple networks of neuronsthat serve not only motor and sensation but also neurobehavioral functions such as attention,memory, language, visuospatial ability, and emotion. Damage to white matter might disrupthigher cortical functions and be related to various neurobehavioral syndromes, especially inelderly people. The clinical and pathologic significance of WMLs has been investigated byseveral studies over the last30years. Although considered as benign changes at first,WMLs have been proven by accumulated evidence to predict an increased risk of stroke,cognitive decline, dementia, depression, disability, and all-cause mortality. Whereasadvanced age and hypertension are the most widely accepted risk factors for WMLs, thecurrent understanding of other risk factors for WMLs remains less clear. Given thedetrimental impact of WMLs on individuals and healthcare systems, knowledge of the risk factors for WMLs, especially modifiable ones, is becoming more important. Furthermore,environmental risk factors account for only a part of the variance in the formation of WMLs,and twins and family studies have shown that genetic factors are contributory. Studying thegenetics of WMLs may be very helpful in early diagnosis and individual treatment ofWMLs and related diseases, such as stroke or dementia.
     Therefore, the aim of the present study was to investigate the associations of WMLswith metabolic syndrome and serum lipids in middle aged and elderly patients, which havenot fully elucidated in former studies. And the other aim was to explore the relationshipbetween WMLs and single nucleotide polymorphisms (SNPs) of adiponectin gene, whichhas never been investigated before.
     Section One Assotiation between WMLs and metabolic syndrome
     Backgroud:
     Metabolic syndrome (MetS) is a constellation of modifiable vascular risk factorsincluding abdominal obesity, dyslipidemia, hypertension, and hyperglycemia. It has beenrelated to silent lacunar infarction, which is another manifestation of cerebral small vesseldisease and has similar pathogenesis to WMLs. However, little is known about therelationship between MetS and the prevalence of WMLs. The aim of the study was toinvestigate the association between MetS, its components and WMLs in middle-aged andelderly patients.
     Methods:
     Consecutive inpatients aged50years and older were prospectively enrolled in thisstudy. All participants underwent MRI scans to assess the presence and severity ofPVWMLs and DWMLs using the4-point modified Fazekas’method. The MetS was definedaccording to the updated National Cholesterol Education Program’s Adult Treatment PanelIII criteria. Multivariate logistic regression analyses were performed to examine therelationship between MetS, its components, and WMLs. Further sex-specific analyses wereconducted. Finally, a multinomial logistic regression model was performed to evaluate theassociation between MetS and the severity of PVWMLs and DWMLs.
     Results:
     1. From June2012to January2013, a total of852consecutive patients were enrolledin the study. The mean age was66.0±9.4years;52.0%were female. Mild periventricular WMLs (PVWMLs) was found in311(36.5%), moderate in77(9.0%), and severe in71(8.3%), while mild deep WMLs (DWMLs) was found in298(35.0%), moderate in116(13.6%) and severe in66(7.7%). According to the updated NCEP-ATP III criteria, MetSwas present in38.4%of the total population,43.8%of females and32.5%of males. Theprevalence of PVWMLs and DWMLs increased with increasing age and number of MetScomponents ((Ptrend<0.001).
     2. In logistic regression model adjusted for age and sex, MetS was associated with anincreased risk of PVWMLs and DWMLs. Further adjustment for current smoking, dailydrinking, coronary heart disease (CHD), and prior stroke attenuated the ORs slightly, butthe association remained significant (OR:3.21,95%CI:2.26-4.55for PVWMLs; OR:2.93,95%CI:2.09-4.09for DWMLs). Moreover, in sex-stratified analyses, the results remainedsignificant in both men and women.
     3. There was a clear trend towards an increased prevalence of PVWMLs and DWMLswith increasing number of MetS components ((Ptrend<0.001). Compared to patients withoutany MetS components, those having4or5components were almost6.5times more likelyto have PVWMLs and3.7times to have DWMLs.
     4. When all the five components were entered simultaneously into the logistic model,with multivariable adjustment for age, sex, current smoking, daily drinking, CHD and priorstroke, the independent risk factor of PVWMLs were elevated blood pressure (BP)(OR:2.69,95%CI:1.91-3.78), elevated fasting blood glucose (FBG)(OR:1.55,95%CI:1.08-2.23) and low high-density lipoprotein cholesterol (HDL-C)(OR:1.42,95%CI:1.01-2.00), while elevated BP (OR:2.59,95%CI:1.86-3.60) and low HDL-C (OR:1.51,95%CI:1.09-2.09) showed an increased risk of DWMLs. In the sex-stratified analyses,elevated BP was an independent risk factor of PVWMLs and DWMLs in both sexes.However, the association between elevated FBG and PVWMLs was observed only in menand the impact of low HDL-C on DWMLs was observed only in women.
     5. A multinomial logistic regression was performed with adjustment for age, sex,current smoking, daily drinking, CHD and prior stroke to evaluate the association of MetSwith the severity of PVWMLs and DWMLs. The adjusted ORs were2.97(95%CI:2.07-4.26) for mild,4.14(95%CI:2.35-7.28) for moderate and5.44(95%CI:2.86-10.35)for severe PVWMLs, while the adjusted ORs for increasing grades of DWMLs were2.44 (95%CI:1.72-3.47) for mild,5.09(95%CI:3.05-8.48) for moderate, and6.31(95%CI:3.30-12.06) for severe, respectively. The ORs increased with the advancing grades ofPVWMLs and DWMLs, showing a dose effect.
     Conclusions:
     1. The presence of MetS was associated with an approximate3times increased risk ofPVWMLs and DWMLs in middle-aged and elderly patients, after adjustment forconfounding factors. This effect was observed in both sexes. Apart from MetS, age andprior stroke were independent risk factors of PVWMLs and DWMLs as well.
     2. The number of MetS components was associated with the presence of PVWMLsand DWMLs. Those having4or5components were almost6.5times more likely to havePVWMLs and3.7times to have DWMLs.
     3. the independent risk factor of PVWMLs were elevated BP, elevated FBG and lowHDL-C, while elevated BP and low HDL-C showed an increased risk of DWMLs.
     4. The presence of MetS was associated with the severity of PVWMLs and DWMLs inmultinomial logistic regression models. Patients with MetS were almost5.4times morelikely to have severe PVWMLs and6.3times more likely to have severe DWMLs,compared with those without MetS..
     Section Two Assotiation between WMLs and levels of serum lipids
     Background:
     The relationship between WMLs and levels of serum lipids is controversial in formerstudies. Thus, the aim of this study was to investigate the association of serum lipids withthe presence of PVWMLs and DWMLs in middle-aged and elderly subjects.
     Methods:
     Consecutive inpatients aged50years and older of our department were prospectivelyenrolled in this study. All participants underwent MRI scans to assess the presence andseverity of PVWMLs and DWMLs using the4-point modified Fazekas’ method.Multivariate logistic regression analyses were performed to examine the association ofWMLs with serum lipids including total cholesterol (TC), triglyceride (TG), HDL-C,low-density lipoprotein cholesterol (LDL-C), apolipoprotein A-I (ApoA-I), apolipoproteinB (ApoB) and ApoB/ApoA-I. The levels of the lipid profile were divided into four quartilesand the highest quartile was used as the reference.
     Results:
     1. From June2012to June2013, a total of1282consecutive patients (606men and676women,65.9±9.4years) were enrolled in the study. Mild PVWMLs was found in469(36.6%), moderate in110(8.6%), and severe in99(7.7%), while mild DWMLs was foundin486(37.9%), moderate in147(11.5%) and severe in91(7.1%). The prevalence ofPVWMLs and DWMLs increased with advancing age ((Ptrend<0.001).
     2. Patients with PVWMLs were older (70.0±8.9VS61.3±7.5,P <0.001) andshowed significantly higher proportion of male sex, hypertension, diabetes mellitus, priorstroke, and CHD, and higher levels of systolic/diastolic BP and FBG (P <0.05). Thesmoking and drinking status and body mass index (BMI) were not different between groups(P>0.05). The differences between patients with DWMLs and without DWMLs weresimilar to those with and without PVWMLs, except for levels of FBG (P=0.386).
     3. The distribution of serum TC, HDL-C, LDL-C, ApoA-I and ApoB levels weresignificantly different between four grades of PVWMLs (P <0.05). The distribution ofserum TC, HDL-C and ApoA-I levels were significantly different between four grades ofDWMLs (P <0.05)
     4. After adjustment for age, sex, prior stroke, CHD, hypertension, and diabetes,patients with the lowest HDL-C (Ptrend=0.044) or apoA-I (Ptrend=0.019) quartile wereapproximately1.5times more likely to have PVWMLs, compared with those with thehighest quartile. Likewise, patients with the lowest HDL-C (Ptrend=0.013) or apoA-I (Ptrend=0.002) quartile were approximately1.5or1.8times more likely to have DWMLs. Noneof other lipids were related to WMLs.
     5. After adjustment for age, sex, prior stroke, CHD, hypertension, and diabetes, thelowest HDL-C (OR:1.39,95%CI:1.01-1.93) or apoA-I (OR:1.50,95%CI:1.09-2.07)quartile were related to the severity of PVWMLs in ordinal regression models, while thelowest apoA-I (OR:1.49,95%CI:1.09-2.05) quartile was related to the severity ofDWMLs.
     6. In sex-specific analyses, the lower levels of HDL-C and ApoA-I predicted higherrisk of PVWMLs and DWMLs only in women.
     Conclusions:
     1. Decreased serum levels of HDL-C and ApoA-I were associated with an increased risk of PVWMLs and DWMLs independent of other risk factors.
     2. In odinal logistic regression models, serum levels of HDL-C and ApoA-I wererelated to the severity of PVWML, while levels of ApoA-I were related to the severity ofDWML.
     3. In sex-specific analyses, the lower levels of HDL-C and ApoA-I were associatedwith higher risk of PVWMLs and DWMLs only in women.
     Section Three Assotiation between WMLs and adiponectin gene polymorphisms
     Background:
     Adiponectin manifests anti-atherosclerosis and anti-inflammatory effects. Singlenucleotide polymorphisms (SNPs) in adiponectin gene have been related to MetS,hypertension, diabetes, stroke and levels of HDL-C. However, the association of SNPs inadiponectin gene with WMLs has never been studied before. Therefore, the aim of thisstudy was to investigate the association between adiponectin gene SNPs and WML inmiddle aged and elderly subjects, using the cross-sectional design method.
     Methods:
     Consecutive inpatients aged50years and older of our department were prospectivelyenrolled in this study. All participants underwent MRI scans to assess the presence andseverity of WMLs using the4-point modified Fazekas’ method. For statistical analyses,WMLs severity, defined as the sum of the scores of PVWMLs and DWMLs, wasdichotomized into scores0-1(controls) versus2-6(cases). Multivariate logistic regressionanalyses were performed to examine the association of WMLs with SNPs.
     Results:
     1. From June2012to January2013, a total of811consecutive subjects were enrolledin the study. The mean age was66.4±9.1,47.6%were males. Among the participants,419were cases and392were controls. The cases were older (P <0.05), and showedsignificantly higher proportion of hypertension, diabetes mellitus, prior stroke, and CHD (P<0.05), and higher levels of systolic/diastolic BP and FBG (P <0.05) whereas lower levelsof TC, HDL-C and ApoA-I (P <0.05).
     2. More than97%samples were genotyped successfully for each SNP. Every groupconformed to the Hardy-Weinberg equilibrium (P>0.05).
     3. As for rs7649121, the AA, AT and TT genotype frequency were50.6%,41.7%and 7.7%in the case group respectively, whereas61.5%,35.2%and3.3%in the control group.The distribution of genotypes was different between the two groups significantly (χ2=13.407,P=0.001). The A and T allele frequency were71.5%and28.5%in cases whereas79.1%and20.9%in controls, showing significant difference (χ2=12.562,P <0.001). Nodifferences in genotype or allele frequency were observed in rs1063539, rs2241767,rs1501299, rs16861194, rs12495941, rs182052and rs266729between cases and controls.
     4. After adjustment for age, sex, prior stroke, CHD, hypertension, diabetes and HDL-Clevels, AT (OR:1.59,95%CI:1.01-2.50) and TT (OR:3.44,95%CI:1.18-10.03) wereassociated with higher risk of WMLs independently. In dominant model, AT/TT genotypewas1.7times more likely to have WMLs than AA genotype.
     Conclusions:
     1. Among the middle aged and elderly subjects, the present study firstly found thatrs7649121in adiponectin gene might be associated with WMLs, and T allele was probablya susceptible allele of WMLs.
     2. We failed to found any association between WMLs and other SNPs in adiponectingene including rs1063539, rs2241767, rs1501299, rs16861194, rs12495941, rs182052andrs266729.
引文
[1] Wen W, Sachdev PS, Li JJ, Chen X, Anstey KJ. White matter hyperintensities inthe forties: their prevalence and topography in an epidemiological sample aged44-48[J]. Hum Brain Mapp,2009,30(4):1155-1167.
    [2] Launer LJ, Berger K, Breteler MM, et al. Regional variability in the prevalence ofcerebral white matter lesions: an MRI study in9European countries(CASCADE)[J]. Neuroepidemiology,2006,26(1):23-29.
    [3] Poggesi A, Pantoni L, Inzitari D, et al.2001-2011: A Decade of the LADIS(Leukoaraiosis And DISability) Study: What Have We Learned about White MatterChanges and Small-Vessel Disease?[J]. Cerebrovasc Dis,2011,32(6):577-588.
    [4] Debette S, Markus HS. The clinical importance of white matter hyperintensities onbrain magnetic resonance imaging: systematic review and meta-analysis[J]. BMJ,2010,341c3666.
    [5] Pantoni L. Cerebral small vessel disease: from pathogenesis and clinicalcharacteristics to therapeutic challenges[J]. Lancet Neurol,2010,9(7):689-701.
    [6] Gouw AA, Seewann A, van der Flier WM, et al. Heterogeneity of small vesseldisease: a systematic review of MRI and histopathology correlations[J]. J NeurolNeurosurg Psychiatry,2011,82(2):126-135.
    [7] Wardlaw JM, Smith C, Dichgans M. Mechanisms of sporadic cerebral small vesseldisease: insights from neuroimaging[J]. Lancet Neurol,2013,12(5):483-497.
    [8] Kim KW, MacFall JR, Payne ME. Classification of white matter lesions onmagnetic resonance imaging in elderly persons[J]. Biol Psychiatry,2008,64(4):273-280.
    [9] Basile AM, Pantoni L, Pracucci G, et al. Age, hypertension, and lacunar stroke arethe major determinants of the severity of age-related white matter changes. TheLADIS (Leukoaraiosis and Disability in the Elderly) Study[J]. Cerebrovasc Dis,2006,21(5-6):315-322.
    [10] Alberti KGMM, Zimmet P, Shaw J. The metabolic syndrome—a new worldwidedefinition[J]. The Lancet,2005,366(9491):1059-1062.
    [11] Cornier MA, Dabelea D, Hernandez TL, et al. The metabolic syndrome[J]. EndocrRev,2008,29(7):777-822.
    [12] Gu D, Reynolds K, Wu X, et al. Prevalence of the metabolic syndrome andoverweight among adults in China[J]. Lancet,2005,365(9468):1398-1405.
    [13] Ford ES, Li C, Sattar N. Metabolic syndrome and incident diabetes: current state ofthe evidence[J]. Diabetes Care,2008,31(9):1898-1904.
    [14] Gami AS, Witt BJ, Howard DE, et al. Metabolic syndrome and risk of incidentcardiovascular events and death: a systematic review and meta-analysis oflongitudinal studies[J]. J Am Coll Cardiol,2007,49(4):403-414.
    [15] Mottillo S, Filion KB, Genest J, et al. The metabolic syndrome and cardiovascularrisk a systematic review and meta-analysis[J]. J Am Coll Cardiol,2010,56(14):1113-1132.
    [16] Boden-Albala B, Sacco RL, Lee HS, et al. Metabolic syndrome and ischemicstroke risk: Northern Manhattan Study[J]. Stroke,2008,39(1):30-35.
    [17] Rodriguez-Colon SM, Mo J, Duan Y, et al. Metabolic syndrome clusters and therisk of incident stroke: the atherosclerosis risk in communities (ARIC) study[J].Stroke,2009,40(1):200-205.
    [18] Kwon HM, Kim BJ, Lee SH, Choi SH, Oh BH, Yoon BW. Metabolic syndrome asan independent risk factor of silent brain infarction in healthy people[J]. Stroke,2006,37(2):466-470.
    [19] Bokura H, Yamaguchi S, Iijima K, Nagai A, Oguro H. Metabolic syndrome isassociated with silent ischemic brain lesions[J]. Stroke,2008,39(5):1607-1609.
    [20] Park K, Yasuda N, Toyonaga S, et al. Significant association between leukoaraiosisand metabolic syndrome in healthy subjects[J]. Neurology,2007,69(10):974-978.
    [21] Grundy SM, Cleeman JI, Daniels SR, et al. Diagnosis and management of themetabolic syndrome: an American Heart Association/National Heart, Lung, andBlood Institute Scientific Statement[J]. Circulation,2005,112(17):2735-2752.
    [22] Fazekas F, Chawluk JB, Alavi A, Hurtig HI, Zimmerman RA. MR signalabnormalities at1.5T in Alzheimer's dementia and normal aging[J]. AJR Am JRoentgenol,1987,149(2):351-356.
    [23] Pantoni L, Basile AM, Pracucci G, et al. Impact of age-related cerebral whitematter changes on the transition to disability--the LADIS study: rationale, designand methodology[J]. Neuroepidemiology,2005,24(1-2):51-62.
    [24] Chobanian AV, Bakris GL, Black HR, et al. The Seventh Report of the JointNational Committee on Prevention, Detection, Evaluation, and Treatment of HighBlood Pressure: the JNC7report[J]. JAMA,2003,289(19):2560-2572.
    [25] Alberti KG, Zimmet PZ. Definition, diagnosis and classification of diabetesmellitus and its complications. Part1: diagnosis and classification of diabetesmellitus provisional report of a WHO consultation[J]. Diabet Med,1998,15(7):539-553.
    [26] Wang J, Li H, Franco OH, Yu Z, Liu Y, Lin X. Adiponectin and metabolicsyndrome in middle-aged and elderly Chinese[J]. Obesity (Silver Spring),2008,16(1):172-178.
    [27] Park K, Yasuda N, Toyonaga S, Tsubosaki E, Nakabayashi H, Shimizu K.Significant associations of metabolic syndrome and its components with silentlacunar infarction in middle aged subjects[J]. J Neurol Neurosurg Psychiatry,2008,79(6):719-721.
    [28] King KS, Peshock RM, Rossetti HC, et al. Effect of normal aging versushypertension, abnormal body mass index, and diabetes mellitus on white matterhyperintensity volume[J]. Stroke,2014,45(1):255-257.
    [29] Farkas E, de Vos RA, Donka G, Jansen Steur EN, Mihaly A, Luiten PG. Age-relatedmicrovascular degeneration in the human cerebral periventricular white matter[J].Acta Neuropathol,2006,111(2):150-157.
    [30] Romero JR, Beiser A, Seshadri S, et al. Carotid artery atherosclerosis, MRI indicesof brain ischemia, aging, and cognitive impairment: the Framingham study[J].Stroke,2009,40(5):1590-1596.
    [31] Brisset M, Boutouyrie P, Pico F, et al. Large-vessel correlates of cerebralsmall-vessel disease[J]. Neurology,2013,80(7):662-669.
    [32] Gregor MF, Hotamisligil GS. Inflammatory mechanisms in obesity[J]. Annu RevImmunol,2011,29(415-445.
    [33] Purkayastha S, Cai D. Neuroinflammatory basis of metabolic syndrome[J]. MolMetab,2013,2(4):356-363.
    [34] Fornage M, Chiang YA, O'Meara ES, et al. Biomarkers of Inflammation andMRI-Defined Small Vessel Disease of the Brain: The Cardiovascular HealthStudy[J]. Stroke,2008,39(7):1952-1959.
    [35] van Dijk EJ, Breteler MM, Schmidt R, et al. The association between bloodpressure, hypertension, and cerebral white matter lesions: cardiovasculardeterminants of dementia study[J]. Hypertension,2004,44(5):625-630.
    [36] Brickman AM, Reitz C, Luchsinger JA, et al. Long-term blood pressure fluctuationand cerebrovascular disease in an elderly cohort[J]. Arch Neurol,2010,67(5):564-569.
    [37] van Dijk EJ, Prins ND, Vrooman HA, Hofman A, Koudstaal PJ, Breteler MM.Progression of cerebral small vessel disease in relation to risk factors and cognitiveconsequences: Rotterdam Scan study[J]. Stroke,2008,39(10):2712-2719.
    [38] Gouw AA, van der Flier WM, Fazekas F, et al. Progression of white matterhyperintensities and incidence of new lacunes over a3-year period: theLeukoaraiosis and Disability study[J]. Stroke,2008,39(5):1414-1420.
    [39] Godin O, Tzourio C, Maillard P, Mazoyer B, Dufouil C. Antihypertensivetreatment and change in blood pressure are associated with the progression ofwhite matter lesion volumes: the Three-City (3C)-Dijon Magnetic ResonanceImaging Study[J]. Circulation,2011,123(3):266-273.
    [40] Weber R, Weimar C, Blatchford J, et al. Telmisartan on top of antihypertensivetreatment does not prevent progression of cerebral white matter lesions in theprevention regimen for effectively avoiding second strokes (PRoFESS) MRIsubstudy[J]. Stroke,2012,43(9):2336-2342.
    [41] Manschot SM, Brands AM, van der Grond J, et al. Brain magnetic resonanceimaging correlates of impaired cognition in patients with type2diabetes[J].Diabetes,2006,55(4):1106-1113.
    [42] van Elderen SG, de Roos A, de Craen AJ, et al. Progression of brain atrophy andcognitive decline in diabetes mellitus: a3-year follow-up[J]. Neurology,2010,75(11):997-1002.
    [43] de Bresser J, Tiehuis AM, van den Berg E, et al. Progression of cerebral atrophyand white matter hyperintensities in patients with type2diabetes[J]. Diabetes Care,2010,33(6):1309-1314.
    [44] Falvey CM, Rosano C, Simonsick EM, et al. Macro-and microstructural magneticresonance imaging indices associated with diabetes among community-dwellingolder adults[J]. Diabetes Care,2013,36(3):677-682.
    [45] de Leeuw FE, De Groot JC, Oudkerk M, et al. Aortic atherosclerosis at middle agepredicts cerebral white matter lesions in the elderly[J]. Stroke,2000,31(2):425-429.
    [46] ten Dam VH, van den Heuvel DM, de Craen AJ, et al. Decline in total cerebralblood flow is linked with increase in periventricular but not deep white matterhyperintensities[J]. Radiology,2007,243(1):198-203.
    [47] Mutsaerts HJ, Palm-Meinders IH, de Craen AJ, et al. Diastolic carotid artery wallshear stress is associated with cerebral infarcts and periventricular white matterlesions[J]. Stroke,2011,42(12):3497-3501.
    [48] Jimenez-Conde J, Biffi A, Rahman R, et al. Hyperlipidemia and reduced whitematter hyperintensity volume in patients with ischemic stroke[J]. Stroke,2010,41(3):437-442.
    [49] Smith EE. Leukoaraiosis and stroke[J]. Stroke,2010,41(10Suppl):S139-143.
    [50] van den Heuvel DM, Admiraal-Behloul F, ten Dam VH, et al. Different progressionrates for deep white matter hyperintensities in elderly men and women[J].Neurology,2004,63(9):1699-1701.
    [51] Simoni M, Li L, Paul NL, et al. Age-and sex-specific rates of leukoaraiosis in TIAand stroke patients: population-based study[J]. Neurology,2012,79(12):1215-1222.
    [52] ten Dam VH, van den Heuvel DM, van Buchem MA, et al. Effect of pravastatin oncerebral infarcts and white matter lesions[J]. Neurology,2005,64(10):1807-1809.
    [53] Mok VC, Lam WW, Fan YH, et al. Effects of statins on the progression of cerebralwhite matter lesion: Post hoc analysis of the ROCAS (Regression of CerebralArtery Stenosis) study[J]. J Neurol,2009,256(5):750-757.
    [54] Yamada K, Sakai K, Owada K, Mineura K, Nishimura T. Cerebral white matterlesions may be partially reversible in patients with carotid artery stenosis[J]. AJNRAm J Neuroradiol,2010,31(7):1350-1352.
    [55] Bayturan O, Tuzcu EM, Lavoie A, et al. The metabolic syndrome, its componentrisk factors, and progression of coronary atherosclerosis[J]. Arch Intern Med,2010,170(5):478-484.
    [56] World Health Organization. Quantifying selected major risks to health. In: TheWorld Health Report2002—Reducing Risks, Promoting Healthy Life. Chapter4:Geneva: World Health Organization;2002:47-97.
    [57] American Heart Association. Cholesterol Statistics. Available at:www.americanheart.org/presenter.jhtml?identifier=536. Accessed November20,2006.
    [58]赵文华,张坚,由悦,等.中国18岁及以上人群血脂异常流行特点研究[J].中华预防医学杂志,2005,39(5):306-310.
    [59] Amarenco P, Labreuche J, Touboul PJ. High-density lipoprotein-cholesterol andrisk of stroke and carotid atherosclerosis: a systematic review[J]. Atherosclerosis,2008,196(2):489-496.
    [60] Amarenco P, Goldstein LB, Callahan A,3rd, et al. Baseline blood pressure, low-and high-density lipoproteins, and triglycerides and the risk of vascular events inthe Stroke Prevention by Aggressive Reduction in Cholesterol Levels (SPARCL)trial[J]. Atherosclerosis,2009,204(2):515-520.
    [61] Athyros VG, Kakafika AI, Tziomalos K, Papageorgiou AA, Karagiannis A. Statinsfor the prevention of first or recurrent stroke[J]. Curr Vasc Pharmacol,2008,6(2):124-133.
    [62] Amarenco P, Labreuche J. Lipid management in the prevention of stroke: reviewand updated meta-analysis of statins for stroke prevention[J]. Lancet Neurol,2009,8(5):453-463.
    [63] Murray AD, Staff RT, Shenkin SD, Deary IJ, Starr JM, Whalley LJ. Brain whitematter hyperintensities: relative importance of vascular risk factors innondemented elderly people[J]. Radiology,2005,237(1):251-257.
    [64] Jickling G, Salam A, Mohammad A, et al. Circulating endothelial progenitor cellsand age-related white matter changes[J]. Stroke,2009,40(10):3191-3196.
    [65] European Association for Cardiovascular P, Rehabilitation, Reiner Z, et al.ESC/EAS Guidelines for the management of dyslipidaemias: the Task Force for themanagement of dyslipidaemias of the European Society of Cardiology (ESC) andthe European Atherosclerosis Society (EAS). Eur Heart J,2011,32(14):1769-1818.
    [66] Alvarez-Sabin J, Huertas R, Quintana M, et al. Prior statin use may be associatedwith improved stroke outcome after tissue plasminogen activator[J]. Stroke,2007,38(3):1076-1078.
    [67] Breteler MM, van Swieten JC, Bots ML, et al. Cerebral white matter lesions,vascular risk factors, and cognitive function in a population-based study: theRotterdam Study[J]. Neurology,1994,44(7):1246-1252.
    [68] Ohwaki K, Yano E, Tamura A, Inoue T, Saito I. Hypercholesterolemia is associatedwith a lower risk of cerebral ischemic small vessel disease detected on braincheckups[J]. Clin Neurol Neurosurg,2013,115(6):669-672.
    [69] Jagust W, Harvey D, Mungas D, Haan M. Central obesity and the aging brain[J].Arch Neurol,2005,62(10):1545-1548.Seo SK, Jung I, Lee SM, et al. Relationshipbetween leukoaraiosis and menopause in healthy middle-aged women[J]. FertilSteril,2013,100(2):500-504.
    [70] Saji N, Shimizu H, Kawarai T, Tadano M, Kita Y, Yokono K. Increasedbrachial-ankle pulse wave velocity is independently associated with white matterhyperintensities[J]. Neuroepidemiology,2011,36(4):252-257.
    [71] Seo SK, Jung I, Lee SM, et al. Relationship between leukoaraiosis and menopausein healthy middle-aged women[J]. Fertil Steril,2013,100(2):500-504.
    [72] Choi HS, Cho YM, Kang JH, Shin CS, Park KS, Lee HK. Cerebral white matterhyperintensity is mainly associated with hypertension among the components ofmetabolic syndrome in Koreans[J]. Clin Endocrinol (Oxf),2009,71(2):184-188.
    [73] Crisby M, Bronge L, Wahlund LO. Low levels of high density lipoprotein increasethe severity of cerebral white matter changes: implications for prevention andtreatment of cerebrovascular diseases[J]. Curr Alzheimer Res,2010,7(6):534-539.
    [74] Kuo HK, Chen CY, Liu HM, et al. Metabolic risks, white matter hyperintensities,and arterial stiffness in high-functioning healthy adults[J]. Int J Cardiol,2010,143(2):184-191.
    [75] Raz N, Yang Y, Dahle CL, Land S. Volume of white matter hyperintensities inhealthy adults: contribution of age, vascular risk factors, and inflammation-relatedgenetic variants[J]. Biochim Biophys Acta,2012,1822(3):361-369.
    [76] Sniderman AD, Furberg CD, Keech A, et al. Apolipoproteins versus lipids asindices of coronary risk and as targets for statin treatment[J]. Lancet,2003,361(9359):777-780.
    [77] Walldius G, Jungner I. The apoB/apoA-I ratio: a strong, new risk factor forcardiovascular disease and a target for lipid-lowering therapy--a review of theevidence[J]. J Intern Med,2006,259(5):493-519.
    [78] Holme I, Aastveit AH, Hammar N, Jungner I, Walldius G. Relationships betweenlipoprotein components and risk of ischaemic and haemorrhagic stroke in theApolipoprotein MOrtality RISk study (AMORIS)[J]. J Intern Med,2009,265(2):275-287.
    [79] Walldius G, Aastveit AH, Jungner I. Stroke mortality and the apoB/apoA-I ratio:results of the AMORIS prospective study[J]. J Intern Med,2006,259(3):259-266.
    [80] Schmidt R, Fazekas F, Hayn M, et al. Risk factors for microangiopathy-relatedcerebral damage in the Austrian stroke prevention study[J]. J Neurol Sci,1997,152(1):15-21.
    [81] Park JH, Hong KS, Lee J, Kim YJ, Song P. Deep subcortical infarct burden inrelation to apolipoprotein B/AI ratio in patients with intracranial atheroscleroticstenosis[J]. Eur J Neurol,2013,20(4):671-680.
    [82] Saczynski JS, White L, Peila RL, Rodriguez BL, Launer LJ. The relation betweenapolipoprotein A-I and dementia: the Honolulu-Asia aging study[J]. Am JEpidemiol,2007,165(9):985-992.
    [83] Marcovina S, Packard CJ. Measurement and meaning of apolipoprotein AI andapolipoprotein B plasma levels[J]. J Intern Med,2006,259(5):437-446.
    [84] Zhu X, Parks JS. New roles of HDL in inflammation and hematopoiesis[J]. AnnuRev Nutr,2012,32(161-182.
    [85] Tang C, Liu Y, Kessler PS, Vaughan AM, Oram JF. The macrophage cholesterolexporter ABCA1functions as an anti-inflammatory receptor[J]. J Biol Chem,2009,284(47):32336-32343.
    [86] Satizabal CL, Zhu YC, Mazoyer B, Dufouil C, Tzourio C. Circulating IL-6andCRP are associated with MRI findings in the elderly: the3C-Dijon Study[J].Neurology,2012,78(10):720-727.
    [87] Jalal FY, Yang Y, Thompson J, Lopez AC, Rosenberg GA. Myelin loss associatedwith neuroinflammation in hypertensive rats[J]. Stroke,2012,43(4):1115-1122.
    [88] Paula-Lima AC, Tricerri MA, Brito-Moreira J, et al. Human apolipoprotein A-Ibinds amyloid-beta and prevents Abeta-induced neurotoxicity[J]. Int J BiochemCell Biol,2009,41(6):1361-1370.
    [89] Lefterov I, Fitz NF, Cronican AA, et al. Apolipoprotein A-I deficiency increasescerebral amyloid angiopathy and cognitive deficits in APP/PS1DeltaE9mice[J]. JBiol Chem,2010,285(47):36945-36957.
    [90] Viswanathan A, Greenberg SM. Cerebral amyloid angiopathy in the elderly[J]. AnnNeurol,2011,70(6):871-880.
    [91] Gurol ME, Viswanathan A, Gidicsin C, et al. Cerebral amyloid angiopathy burdenassociated with leukoaraiosis: A positron emission tomography/magnetic resonanceimaging study[J]. Ann Neurol,2013,73(4):529-536.
    [92] Reynolds CA, Gatz M, Prince JA, Berg S, Pedersen NL. Serum lipid levels andcognitive change in late life[J]. J Am Geriatr Soc,2010,58(3):501-509.
    [93] Zheng JJ, Delbaere K, Close JC, Sachdev PS, Lord SR. Impact of white matterlesions on physical functioning and fall risk in older people: a systematic review[J].Stroke,2011,42(7):2086-2090.
    [94] Farrall AJ, Wardlaw JM. Blood-brain barrier: ageing and microvasculardisease--systematic review and meta-analysis[J]. Neurobiol Aging,2009,30(3):337-352.
    [95] de Leeuw FE, Richard F, de Groot JC, et al. Interaction between hypertension,apoE, and cerebral white matter lesions[J]. Stroke,2004,35(5):1057-1060.
    [96] van Rijn MJ, Bos MJ, Isaacs A, et al. Polymorphisms of the renin-angiotensinsystem are associated with blood pressure, atherosclerosis and cerebral whitematter pathology[J]. J Neurol Neurosurg Psychiatry,2007,78(10):1083-1087.
    [97] Szolnoki Z, Somogyvari F, Kondacs A, Szabo M, Fodor L. Evaluation of the rolesof common genetic mutations in leukoaraiosis[J]. Acta Neurol Scand,2001,104(5):281-287.
    [98] Turer AT, Scherer PE. Adiponectin: mechanistic insights and clinicalimplications[J]. Diabetologia,2012,55(9):2319-2326.
    [99] Breitfeld J, Stumvoll M, Kovacs P. Genetics of adiponectin[J]. Biochimie,2012,94(10):2157-2163.
    [100] Masaki T, Anan F, Yoshimatsu H. Decreased high molecular weight adiponectin insera is associated with white matter lesions in Japanese men with type2diabetes[J].Diabetes Care,2011,34(8):e132.
    [101] Lemmens R, Gorner A, Schrooten M, Thijs V. Association of apolipoprotein Eepsilon2with white matter disease but not with microbleeds[J]. Stroke,2007,38(4):1185-1188.
    [102] Carmelli D, DeCarli C, Swan GE, et al. Evidence for genetic variance in whitematter hyperintensity volume in normal elderly male twins[J]. Stroke,1998,29(6):1177-1181.
    [103] Reed T, Kirkwood SC, DeCarli C, et al. Relationship of family history scores forstroke and hypertension to quantitative measures of white-matter hyperintensitiesand stroke volume in elderly males[J]. Neuroepidemiology,2000,19(2):76-86.
    [104] Atwood LD, Wolf PA, Heard-Costa NL, et al. Genetic variation in white matterhyperintensity volume in the Framingham Study[J]. Stroke,2004,35(7):1609-1613.
    [105] Kochunov P, Glahn D, Winkler A, et al. Analysis of genetic variability and wholegenome linkage of whole-brain, subcortical, and ependymal hyperintense whitematter volume[J]. Stroke,2009,40(12):3685-3690.
    [106] Katsuya T, Koike G, Yee TW, et al. Association of angiotensinogen gene T235variant with increased risk of coronary heart disease[J]. Lancet,1995,345(8965):1600-1603.
    [107] Schmidt R, Schmidt H, Fazekas F, et al. Angiotensinogen polymorphism M235T,carotid atherosclerosis, and small-vessel disease-related cerebral abnormalities[J].Hypertension,2001,38(1):110-115.
    [108] Schmidt R, Schmidt H, Kapeller P, Lechner A, Fazekas F. Evolution of whitematter lesions[J]. Cerebrovasc Dis,2002,13Suppl2(16-20.
    [109] Sierra C, Coca A, Gomez-Angelats E, Poch E, Sobrino J, de la Sierra A.Renin-angiotensin system genetic polymorphisms and cerebral white matter lesionsin essential hypertension[J]. Hypertension,2002,39(2Pt2):343-347.
    [110] Henskens LH, Kroon AA, van Boxtel MP, Hofman PA, de Leeuw PW. Associationsof the angiotensin II type1receptor A1166C and the endothelial NO synthaseG894T gene polymorphisms with silent subcortical white matter lesions inessential hypertension[J]. Stroke,2005,36(9):1869-1873.
    [111] Jeunemaitre X. Genetics of the human renin angiotensin system[J]. J Mol Med(Berl),2008,86(6):637-641.
    [112] Takami S, Imai Y, Katsuya T, et al. Gene polymorphism of the renin-angiotensinsystem associates with risk for lacunar infarction. The Ohasama study[J]. Am JHypertens,2000,13(2):121-127.
    [113] Brenner D, Labreuche J, Pico F, et al. The renin-angiotensin-aldosterone system incerebral small vessel disease[J]. J Neurol,2008,255(7):993-1000.
    [114] Verpillat P, Alperovitch A, Cambien F, Besancon V, Desal H, Tzourio C.Aldosterone synthase (CYP11B2) gene polymorphism and cerebral white matterhyperintensities[J]. Neurology,2001,56(5):673-675.
    [115] Bigler ED, Lowry CM, Kerr B, et al. Role of white matter lesions, cerebral atrophy,and APOE on cognition in older persons with and without dementia: the CacheCounty, Utah, study of memory and aging[J]. Neuropsychology,2003,17(3):339-352.
    [116] Sawada H, Udaka F, Izumi Y, et al. Cerebral white matter lesions are not associatedwith apoE genotype but with age and female sex in Alzheimer's disease[J]. JNeurol Neurosurg Psychiatry,2000,68(5):653-656.
    [117] Godin O, Tzourio C, Maillard P, Alperovitch A, Mazoyer B, Dufouil C.Apolipoprotein E genotype is related to progression of white matter lesion load[J].Stroke,2009,40(10):3186-3190.
    [118] Schilling S, Destefano AL, Sachdev PS, et al. APOE genotype and MRI markers ofcerebrovascular disease: Systematic review and meta-analysis[J]. Neurology,2013,81(3):292-300.
    [119] Schmidt R, Schmidt H, Fazekas F, et al. MRI cerebral white matter lesions andparaoxonase PON1polymorphisms: three-year follow-up of the austrian strokeprevention study[J]. Arterioscler Thromb Vasc Biol,2000,20(7):1811-1816.
    [120] Hadjigeorgiou GM, Malizos K, Dardiotis E, et al. Paraoxonase1genepolymorphisms in patients with osteonecrosis of the femoral head with and withoutcerebral white matter lesions[J]. J Orthop Res,2007,25(8):1087-1093.
    [121] Hong ED, Taylor WD, McQuoid DR, et al. Influence of the MTHFR C677Tpolymorphism on magnetic resonance imaging hyperintensity volume andcognition in geriatric depression[J]. Am J Geriatr Psychiatry,2009,17(10):847-855.
    [122] Taylor WD, Zuchner S, McQuoid DR, et al. The brain-derived neurotrophic factorVAL66MET polymorphism and cerebral white matter hyperintensities in late-lifedepression[J]. Am J Geriatr Psychiatry,2008,16(4):263-271.
    [123] Paternoster L, Chen W, Sudlow CL. Genetic determinants of white matterhyperintensities on brain scans: a systematic assessment of19candidate genepolymorphisms in46studies in19,000subjects[J]. Stroke,2009,40(6):2020-2026.
    [124] Fornage M, Debette S, Bis JC, et al. Genome-wide association studies of cerebralwhite matter lesion burden: the CHARGE consortium[J]. Ann Neurol,2011,69(6):928-939.
    [125] Hwang JY, Park JE, Choi YJ, Huh KB, Chang N, Kim WY. Carbohydrate intakeinteracts with SNP276G>T polymorphism in the adiponectin gene to affect fastingblood glucose, HbA1C, and HDL cholesterol in Korean patients with type2diabetes[J]. J Am Coll Nutr,2013,32(3):143-150.
    [126] Enns JE, Taylor CG, Zahradka P. Variations in Adipokine Genes AdipoQ, Lep, andLepR are Associated with Risk for Obesity-Related Metabolic Disease: TheModulatory Role of Gene-Nutrient Interactions[J]. J Obes,2011,2011(168659.
    [127] Yang M, Qiu CC, Chen W, Xu LL, Yu M, Xiang HD. Identification of a regulatorysingle nucleotide polymorphism in the adiponectin (APM1) gene associated withtype2diabetes in Han nationality[J]. Biomed Environ Sci,2008,21(6):454-459.
    [128] Gao M, Ding D, Huang J, Qu Y, Wang Y, Huang Q. Association of genetic variantsin the adiponectin gene with metabolic syndrome: a case-control study and asystematic meta-analysis in the Chinese population[J]. PLoS One,2013,8(4):e58412.
    [129] Gui MH, Li X, Jiang SF, Gao J, Lu DR, Gao X. Association of the adiponectingene rs1501299G>T variant, serum adiponectin levels, and the risk of coronaryartery disease in a Chinese population[J]. Diabetes Res Clin Pract,2012,97(3):499-504.
    [130] Sanghera DK, Demirci FY, Been L, et al. PPARG and ADIPOQ genepolymorphisms increase type2diabetes mellitus risk in Asian Indian Sikhs:
    Pro12Ala still remains as the strongest predictor[J]. Metabolism,
    2010,59(4):492-501.
    [1] Pantoni L. Cerebral small vessel disease: from pathogenesis and clinicalcharacteristics to therapeutic challenges[J]. Lancet Neurol,2010,9(7):689-701.
    [2] Debette S, Markus HS. The clinical importance of white matter hyperintensities onbrain magnetic resonance imaging: systematic review and meta-analysis[J]. BMJ,2010,341(c3666.
    [3] Poggesi A, Pantoni L, Inzitari D, et al.2001-2011: A Decade of the LADIS(Leukoaraiosis And DISability) Study: What Have We Learned about White MatterChanges and Small-Vessel Disease?[J]. Cerebrovasc Dis,2011,32(6):577-588.
    [4] Moran C, Phan TG, Srikanth VK. Cerebral small vessel disease: a review ofclinical, radiological, and histopathological phenotypes[J]. Int J Stroke,2012,7(1):36-46.
    [5] Bailey EL, Smith C, Sudlow CL, Wardlaw JM. Pathology of lacunar ischemicstroke in humans--a systematic review[J]. Brain Pathol,2012,22(5):583-591.
    [6] Lindley RI, Wang JJ, Wong MC, et al. Retinal microvasculature in acute lacunarstroke: a cross-sectional study[J]. Lancet Neurol,2009,8(7):628-634.
    [7] Doubal FN, MacGillivray TJ, Hokke PE, Dhillon B, Dennis MS, Wardlaw JM.Differences in retinal vessels support a distinct vasculopathy causing lacunarstroke[J]. Neurology,2009,72(20):1773-1778.
    [8] Viswanathan A, Greenberg SM. Cerebral amyloid angiopathy in the elderly[J]. AnnNeurol,2011,70(6):871-880.
    [9] Greenberg SM, Salman RA, Biessels GJ, et al. Outcome markers for clinical trialsin cerebral amyloid angiopathy[J]. Lancet Neurol,2014,13(4):419-428.
    [10] Haglund M, Sjobeck M, Englund E. Severe cerebral amyloid angiopathycharacterizes an underestimated variant of vascular dementia[J]. Dement GeriatrCogn Disord,2004,18(2):132-137.
    [11] McCarron MO, Nicoll JA. Cerebral amyloid angiopathy and thrombolysis-relatedintracerebral haemorrhage[J]. Lancet Neurol,2004,3(8):484-492.
    [12] Samarasekera N, Smith C, Al-Shahi Salman R. The association between cerebralamyloid angiopathy and intracerebral haemorrhage: systematic review andmeta-analysis[J]. J Neurol Neurosurg Psychiatry,2012,83(3):275-281.
    [13] Kimberly WT, Gilson A, Rost NS, et al. Silent ischemic infarcts are associated withhemorrhage burden in cerebral amyloid angiopathy[J]. Neurology,2009,72(14):1230-1235.
    [14] Gurol ME, Viswanathan A, Gidicsin C, et al. Cerebral amyloid angiopathy burdenassociated with leukoaraiosis: A positron emission tomography/magnetic resonanceimaging study[J]. Ann Neurol,2012.
    [15] Wardlaw JM, Doubal F, Armitage P, et al. Lacunar stroke is associated with diffuseblood-brain barrier dysfunction[J]. Ann Neurol,2009,65(2):194-202.
    [16] Fazekas F, Kleinert R, Offenbacher H, et al. Pathologic correlates of incidentalMRI white matter signal hyperintensities[J]. Neurology,1993,43(9):1683-1689.
    [17] Gouw AA, Seewann A, van der Flier WM, et al. Heterogeneity of small vesseldisease: a systematic review of MRI and histopathology correlations[J]. J NeurolNeurosurg Psychiatry,2011,82(2):126-135.
    [18] Pantoni L, Garcia JH, Gutierrez JA. Cerebral white matter is highly vulnerable toischemia[J]. Stroke,1996,27(9):1641-1646; discussion1647.
    [19] Schrag M, McAuley G, Pomakian J, et al. Correlation of hypointensities insusceptibility-weighted images to tissue histology in dementia patients withcerebral amyloid angiopathy: a postmortem MRI study[J]. Acta Neuropathol,2010,119(3):291-302.
    [20] Grinberg LT, Thal DR. Vascular pathology in the aged human brain[J]. ActaNeuropathol,2010,119(3):277-290.
    [21] Wardlaw JM, Smith C, Dichgans M. Mechanisms of sporadic cerebral small vesseldisease: insights from neuroimaging[J]. Lancet Neurol,2013,12(5):483-497.
    [22] Farrall AJ, Wardlaw JM. Blood-brain barrier: ageing and microvasculardisease--systematic review and meta-analysis[J]. Neurobiol Aging,2009,30(3):337-352.
    [23] Doubal FN, MacLullich AM, Ferguson KJ, Dennis MS, Wardlaw JM. Enlargedperivascular spaces on MRI are a feature of cerebral small vessel disease[J]. Stroke,2010,41(3):450-454.
    [24] Biron KE, Dickstein DL, Gopaul R, Jefferies WA. Amyloid triggers extensivecerebral angiogenesis causing blood brain barrier permeability andhypervascularity in Alzheimer's disease[J]. PLoS One,2011,6(8):e23789.
    [25] Abbott NJ. Inflammatory mediators and modulation of blood-brain barrierpermeability[J]. Cell Mol Neurobiol,2000,20(2):131-147.
    [26] Fornage M, Chiang YA, O'Meara ES, et al. Biomarkers of Inflammation andMRI-Defined Small Vessel Disease of the Brain: The Cardiovascular HealthStudy[J]. Stroke,2008,39(7):1952-1959.
    [27] Umemura T, Kawamura T, Umegaki H, et al. Endothelial and inflammatorymarkers in relation to progression of ischaemic cerebral small-vessel disease andcognitive impairment: a6-year longitudinal study in patients with type2diabetesmellitus[J]. J Neurol Neurosurg Psychiatry,2011,82(11):1186-1194.
    [28] Zlokovic BV. The blood-brain barrier in health and chronic neurodegenerativedisorders[J]. Neuron,2008,57(2):178-201.
    [29] Hainsworth AH, Markus HS. Do in vivo experimental models reflect humancerebral small vessel disease? A systematic review[J]. J Cereb Blood Flow Metab,2008,28(12):1877-1891.
    [30] Bailey EL, Wardlaw JM, Graham D, Dominiczak AF, Sudlow CL, Smith C.Cerebral small vessel endothelial structural changes predate hypertension instroke-prone spontaneously hypertensive rats: a blinded, controlledimmunohistochemical study of5-to21-week-old rats[J]. Neuropathol ApplNeurobiol,2011,37(7):711-726.
    [31] Fisher CM. Lacunes: Small, deep cerebral infarcts[J]. Neurology,2011,77(24):2104.
    [32] Bang OY, Joo SY, Lee PH, et al. The course of patients with lacunar infarcts and aparent arterial lesion: similarities to large artery vs small artery disease[J]. ArchNeurol,2004,61(4):514-519.
    [33] Patel B, Markus HS. Magnetic resonance imaging in cerebral small vessel diseaseand its use as a surrogate disease marker[J]. Int J Stroke,2011,6(1):47-59.
    [34] Doubal FN, Dennis MS, Wardlaw JM. Characteristics of patients with minorischaemic strokes and negative MRI: a cross-sectional study[J]. J NeurolNeurosurg Psychiatry,2011,82(5):540-542.
    [35] Potter GM, Doubal FN, Jackson CA, et al. Counting cavitating lacunesunderestimates the burden of lacunar infarction[J]. Stroke,2010,41(2):267-272.
    [36] Moreau F, Patel S, Lauzon ML, et al. Cavitation after acute symptomatic lacunarstroke depends on time, location, and MRI sequence[J]. Stroke,2012,43(7):1837-1842.
    [37] Bokura H, Kobayashi S, Yamaguchi S. Distinguishing silent lacunar infarctionfrom enlarged Virchow-Robin spaces: a magnetic resonance imaging andpathological study[J]. J Neurol,1998,245(2):116-122.
    [38] Sudlow CL, Warlow CP. Comparable studies of the incidence of stroke and itspathological types: results from an international collaboration. International StrokeIncidence Collaboration[J]. Stroke,1997,28(3):491-499.
    [39] Vermeer SE, Longstreth WT, Jr., Koudstaal PJ. Silent brain infarcts: a systematicreview[J]. Lancet Neurol,2007,6(7):611-619.
    [40] Das RR, Seshadri S, Beiser AS, et al. Prevalence and correlates of silent cerebralinfarcts in the Framingham offspring study[J]. Stroke,2008,39(11):2929-2935.
    [41] Jackson CA, Hutchison A, Dennis MS, et al. Differing risk factor profiles ofischemic stroke subtypes: evidence for a distinct lacunar arteriopathy?[J]. Stroke,2010,41(4):624-629.
    [42] de Jong G, Kessels F, Lodder J. Two types of lacunar infarcts: further argumentsfrom a study on prognosis[J]. Stroke,2002,33(8):2072-2076.
    [43] Del Bene A, Palumbo V, Lamassa M, Saia V, Piccardi B, Inzitari D. Progressivelacunar stroke: review of mechanisms, prognostic features, and putativetreatments[J]. Int J Stroke,2012,7(4):321-329.
    [44] Rost NS, Rahman RM, Biffi A, et al. White matter hyperintensity volume isincreased in small vessel stroke subtypes[J]. Neurology,2010,75(19):1670-1677.
    [45] Hachinski VC, Potter P, Merskey H. Leuko-araiosis[J]. Arch Neurol,1987,44(1):21-23.
    [46] Fazekas F, Chawluk JB, Alavi A, Hurtig HI, Zimmerman RA. MR signalabnormalities at1.5T in Alzheimer's dementia and normal aging[J]. AJR Am JRoentgenol,1987,149(2):351-356.
    [47] Beare R, Srikanth V, Chen J, et al. Development and validation of morphologicalsegmentation of age-related cerebral white matter hyperintensities[J]. NeuroImage,2009,47(1):199-203.
    [48] Bastin ME, Clayden JD, Pattie A, Gerrish IF, Wardlaw JM, Deary IJ. Diffusiontensor and magnetization transfer MRI measurements of periventricular whitematter hyperintensities in old age[J]. Neurobiol Aging,2009,30(1):125-136.
    [49] de Leeuw FE, de Groot JC, Achten E, et al. Prevalence of cerebral white matterlesions in elderly people: a population based magnetic resonance imaging study.The Rotterdam Scan Study[J]. J Neurol Neurosurg Psychiatry,2001,70(1):9-14.
    [50] Launer LJ, Berger K, Breteler MM, et al. Regional variability in the prevalence ofcerebral white matter lesions: an MRI study in9European countries(CASCADE)[J]. Neuroepidemiology,2006,26(1):23-29.
    [51] Steingart A, Hachinski VC, Lau C, et al. Cognitive and neurologic findings indemented patients with diffuse white matter lucencies on computed tomographicscan (leuko-araiosis)[J]. Arch Neurol,1987,44(1):36-39.
    [52] Greenberg SM, Vernooij MW, Cordonnier C, et al. Cerebral microbleeds: a guideto detection and interpretation[J]. Lancet Neurol,2009,8(2):165-174.
    [53] Cordonnier C, Al-Shahi Salman R, Wardlaw J. Spontaneous brain microbleeds:systematic review, subgroup analyses and standards for study design andreporting[J]. Brain,2007,130(Pt8):1988-2003.
    [54] Poels MM, Vernooij MW, Ikram MA, et al. Prevalence and risk factors of cerebralmicrobleeds: an update of the Rotterdam scan study[J]. Stroke,2010,41(10Suppl):S103-106.
    [55] Park JH, Seo SW, Kim C, et al. Pathogenesis of cerebral microbleeds: In vivoimaging of amyloid and subcortical ischemic small vessel disease in226individuals with cognitive impairment[J]. Ann Neurol,2013,73(5):584-593.
    [56] Zhu YC, Dufouil C, Mazoyer B, et al. Frequency and location of dilatedVirchow-Robin spaces in elderly people: a population-based3D MR imagingstudy[J]. AJNR Am J Neuroradiol,2011,32(4):709-713.
    [57] Weber R, Weimar C, Blatchford J, et al. Telmisartan on top of antihypertensivetreatment does not prevent progression of cerebral white matter lesions in theprevention regimen for effectively avoiding second strokes (PRoFESS) MRIsubstudy[J]. Stroke,2012,43(9):2336-2342.
    [58] Kochunov P, Glahn D, Lancaster J, et al. Whole brain and regional hyperintensewhite matter volume and blood pressure: overlap of genetic loci produced bybivariate, whole-genome linkage analyses[J]. Stroke,2010,41(10):2137-2142.
    [59] Kochunov P, Glahn DC, Lancaster J, et al. Blood pressure and cerebral whitematter share common genetic factors in Mexican Americans[J]. Hypertension,2011,57(2):330-335.
    [60] Arboix A, Marti-Vilalta JL. Lacunar stroke[J]. Expert Rev Neurother,2009,9(2):179-196.
    [61] Grueter BE, Schulz UG. Age-related cerebral white matter disease (leukoaraiosis):a review[J]. Postgrad Med J,2012,88(1036):79-87.
    [62] Mast H, Thompson JL, Lee SH, Mohr JP, Sacco RL. Hypertension and diabetesmellitus as determinants of multiple lacunar infarcts[J]. Stroke,1995,26(1):30-33.
    [63] Park K, Yasuda N, Toyonaga S, et al. Significant association between leukoaraiosisand metabolic syndrome in healthy subjects[J]. Neurology,2007,69(10):974-978.
    [64] Falvey CM, Rosano C, Simonsick EM, et al. Macro-and microstructural magneticresonance imaging indices associated with diabetes among community-dwellingolder adults[J]. Diabetes Care,2013,36(3):677-682.
    [65] Crisby M, Bronge L, Wahlund LO. Low levels of high density lipoprotein increasethe severity of cerebral white matter changes: implications for prevention andtreatment of cerebrovascular diseases[J]. Curr Alzheimer Res,2010,7(6):534-539.
    [66] Jickling G, Salam A, Mohammad A, et al. Circulating endothelial progenitor cellsand age-related white matter changes[J]. Stroke,2009,40(10):3191-3196.
    [67] Kuo HK, Chen CY, Liu HM, et al. Metabolic risks, white matter hyperintensities,and arterial stiffness in high-functioning healthy adults[J]. Int J Cardiol,2010,143(2):184-191.
    [68] Cavalieri M, Schmidt R, Chen C, et al. B vitamins and magnetic resonanceimaging-detected ischemic brain lesions in patients with recent transient ischemicattack or stroke: the VITAmins TO Prevent Stroke (VITATOPS) MRI-substudy[J].Stroke,2012,43(12):3266-3270.
    [69] Donnan GA, Norrving B. Lacunes and lacunar syndromes[J]. Handb Clin Neurol,2009,93(559-575.
    [70] Potter G, Doubal F, Jackson C, Sudlow C, Dennis M, Wardlaw J. Associations ofclinical stroke misclassification ('clinical-imaging dissociation') in acute ischemicstroke[J]. Cerebrovasc Dis,2010,29(4):395-402.
    [71] Arboix A, Massons J, Garcia-Eroles L, Targa C, Comes E, Parra O. Clinicalpredictors of lacunar syndrome not due to lacunar infarction[J]. BMC Neurol,2010,1031.
    [72] Yamamoto Y, Akiguchi I, Oiwa K, Hayashi M, Kasai T, Ozasa K.Twenty-four-hour blood pressure and MRI as predictive factors for differentoutcomes in patients with lacunar infarct[J]. Stroke,2002,33(1):297-305.
    [73] Benisty S, Gouw AA, Porcher R, et al. Location of lacunar infarcts correlates withcognition in a sample of non-disabled subjects with age-related white-matterchanges: the LADIS study[J]. J Neurol Neurosurg Psychiatry,2009,80(5):478-483.
    [74] Vermeer SE, Prins ND, den Heijer T, Hofman A, Koudstaal PJ, Breteler MM.Silent brain infarcts and the risk of dementia and cognitive decline[J]. N Engl JMed,2003,348(13):1215-1222.
    [75] Pantoni L. Leukoaraiosis: from an ancient term to an actual marker of poorprognosis[J]. Stroke,2008,39(5):1401-1403.
    [76] Ferro JM, Madureira S. Age-related white matter changes and cognitiveimpairment[J]. J Neurol Sci,2002,203-204(221-225.
    [77] Sun X, Liang Y, Wang J, et al. Early frontal structural and functional changes inmild white matter lesions relevant to cognitive decline[J]. J Alzheimers Dis,2014,40(1):123-134.
    [78] Inzitari D, Pracucci G, Poggesi A, et al. Changes in white matter as determinant ofglobal functional decline in older independent outpatients: three year follow-up ofLADIS (leukoaraiosis and disability) study cohort[J]. BMJ,2009,339(b2477.
    [79] Lee SH, Bae HJ, Kwon SJ, et al. Cerebral microbleeds are regionally associatedwith intracerebral hemorrhage[J]. Neurology,2004,62(1):72-76.
    [80] Werring DJ, Frazer DW, Coward LJ, et al. Cognitive dysfunction in patients withcerebral microbleeds on T2*-weighted gradient-echo MRI[J]. Brain,2004,127(Pt10):2265-2275.
    [81] Patel B, Lawrence AJ, Chung AW, et al. Cerebral microbleeds and cognition inpatients with symptomatic small vessel disease[J]. Stroke,2013,44(2):356-361.
    [82] Charidimou A, Meegahage R, Fox Z, et al. Enlarged perivascular spaces as amarker of underlying arteriopathy in intracerebral haemorrhage: a multicentre MRIcohort study[J]. J Neurol Neurosurg Psychiatry,2013,84(6):624-629.
    [83] Palumbo V, Boulanger JM, Hill MD, Inzitari D, Buchan AM. Leukoaraiosis andintracerebral hemorrhage after thrombolysis in acute stroke[J]. Neurology,2007,68(13):1020-1024.
    [84] Shinoda-Tagawa T, Yamasaki Y, Yoshida S, et al. A phosphodiesterase inhibitor,cilostazol, prevents the onset of silent brain infarction in Japanese subjects withType II diabetes[J]. Diabetologia,2002,45(2):188-194.
    [85] Nakamura T, Kawagoe Y, Matsuda T, Ueda Y, Ebihara I, Koide H. Silent cerebralinfarction in patients with type2diabetic nephropathy. Effects of antiplatelet drugdilazep dihydrochloride[J]. Diabetes Metab Res Rev,2005,21(1):39-43.
    [86] Lavallee PC, Labreuche J, Gongora-Rivera F, et al. Placebo-controlled trial ofhigh-dose atorvastatin in patients with severe cerebral small vessel disease[J].Stroke,2009,40(5):1721-1728.
    [87] Godin O, Tzourio C, Maillard P, Mazoyer B, Dufouil C. Antihypertensivetreatment and change in blood pressure are associated with the progression ofwhite matter lesion volumes: the Three-City (3C)-Dijon Magnetic ResonanceImaging Study[J]. Circulation,2011,123(3):266-273.
    [88] de Leeuw FE, de Groot JC, Oudkerk M, et al. Hypertension and cerebral whitematter lesions in a prospective cohort study[J]. Brain,2002,125(Pt4):765-772.
    [89] Mok VC, Lam WW, Fan YH, et al. Effects of statins on the progression of cerebralwhite matter lesion: Post hoc analysis of the ROCAS (Regression of CerebralArtery Stenosis) study[J]. J Neurol,2009,256(5):750-757.
    [90] ten Dam VH, van den Heuvel DM, van Buchem MA, et al. Effect of pravastatin oncerebral infarcts and white matter lesions[J]. Neurology,2005,64(10):1807-1809.
    [91] Gorter JW. Major bleeding during anticoagulation after cerebral ischemia: patternsand risk factors. Stroke Prevention In Reversible Ischemia Trial (SPIRIT).European Atrial Fibrillation Trial (EAFT) study groups[J]. Neurology,1999,53(6):1319-1327.
    [92] Smith EE, Rosand J, Knudsen KA, Hylek EM, Greenberg SM. Leukoaraiosis isassociated with warfarin-related hemorrhage following ischemic stroke[J].Neurology,2002,59(2):193-197.
    [1] Pantoni L. Cerebral small vessel disease: from pathogenesis and clinicalcharacteristics to therapeutic challenges[J]. Lancet Neurol,2010,9(7):689-701.
    [2] Debette S, Markus HS. The clinical importance of white matter hyperintensities onbrain magnetic resonance imaging: systematic review and meta-analysis[J]. BMJ,2010,341(c3666.
    [3] Wardlaw JM, Smith C, Dichgans M. Mechanisms of sporadic cerebral small vesseldisease: insights from neuroimaging[J]. Lancet Neurol,2013,12(5):483-497.
    [4] Carmelli D, DeCarli C, Swan GE, et al. Evidence for genetic variance in whitematter hyperintensity volume in normal elderly male twins[J]. Stroke,1998,29(6):1177-1181.
    [5] Jerrard-Dunne P, Cloud G, Hassan A, Markus HS. Evaluating the geneticcomponent of ischemic stroke subtypes: a family history study[J]. Stroke,2003,34(6):1364-1369.
    [6] Markus HS, Barley J, Lunt R, et al. Angiotensin-converting enzyme gene deletionpolymorphism. A new risk factor for lacunar stroke but not carotid atheroma[J].Stroke,1995,26(8):1329-1333.
    [7] Hong SH, Park HM, Ahn JY, et al. ACE I/D polymorphism in Korean patients withischemic stroke and silent brain infarction[J]. Acta Neurol Scand,2008,117(4):244-249.
    [8] Pera J, Slowik A, Dziedzic T, Wloch D, Szczudlik A. ACE I/D polymorphism indifferent etiologies of ischemic stroke[J]. Acta Neurol Scand,2006,114(5):320-322.
    [9] Kokubo Y, Chowdhury AH, Date C, Yokoyama T, Sobue H, Tanaka H.Age-dependent association of apolipoprotein E genotypes with stroke subtypes in aJapanese rural population[J]. Stroke,2000,31(6):1299-1306.
    [10] Sudlow C, Martinez Gonzalez NA, Kim J, Clark C. Does apolipoprotein Egenotype influence the risk of ischemic stroke, intracerebral hemorrhage, orsubarachnoid hemorrhage? Systematic review and meta-analyses of31studiesamong5961cases and17,965controls[J]. Stroke,2006,37(2):364-370.
    [11] Bevan S, Dichgans M, Wiechmann HE, Gschwendtner A, Meitinger T, Markus HS.Genetic variation in members of the leukotriene biosynthesis pathway confer anincreased risk of ischemic stroke: a replication study in two independentpopulations[J]. Stroke,2008,39(4):1109-1114.
    [12] Satizabal CL, Zhu YC, Mazoyer B, Dufouil C, Tzourio C. Circulating IL-6andCRP are associated with MRI findings in the elderly: the3C-Dijon Study[J].Neurology,2012,78(10):720-727.
    [13] Revilla M, Obach V, Cervera A, Davalos A, Castillo J, Chamorro A. A-174G/Cpolymorphism of the interleukin-6gene in patients with lacunar infarction[J].Neurosci Lett,2002,324(1):29-32.
    [14] Greisenegger S, Endler G, Haering D, et al. The (-174) G/C polymorphism in theinterleukin-6gene is associated with the severity of acute cerebrovascular events[J].Thromb Res,2003,110(4):181-186.
    [15] Hou L, Osei-Hyiaman D, Yu H, et al. Association of a27-bp repeat polymorphismin ecNOS gene with ischemic stroke in Chinese patients[J]. Neurology,2001,56(4):490-496.
    [16] Harcos P, Laki J, Kiszel P, et al. Decreased frequency of the TNF2allele ofTNF-alpha-308promoter polymorphism is associated with lacunar infarction[J].Cytokine,2006,33(2):100-105.
    [17] Dikmen M, Ozbabalik D, Gunes HV, et al. Acute stroke in relation to homocysteineand methylenetetrahydrofolate reductase gene polymorphisms[J]. Acta NeurolScand,2006,113(5):307-314.
    [18] Gretarsdottir S, Thorleifsson G, Manolescu A, et al. Risk variants for atrialfibrillation on chromosome4q25associate with ischemic stroke[J]. Ann Neurol,2008,64(4):402-409.
    [19] Debette S, Bis JC, Fornage M, et al. Genome-wide association studies ofMRI-defined brain infarcts: meta-analysis from the CHARGE Consortium[J].Stroke,2010,41(2):210-217.
    [20] van Rijn MJ, Bos MJ, Isaacs A, et al. Polymorphisms of the renin-angiotensinsystem are associated with blood pressure, atherosclerosis and cerebral whitematter pathology[J]. J Neurol Neurosurg Psychiatry,2007,78(10):1083-1087.
    [21] Sierra C, Coca A, Gomez-Angelats E, Poch E, Sobrino J, de la Sierra A.Renin-angiotensin system genetic polymorphisms and cerebral white matter lesionsin essential hypertension[J]. Hypertension,2002,39(2Pt2):343-347.
    [22] Henskens LH, Kroon AA, van Boxtel MP, Hofman PA, de Leeuw PW. Associationsof the angiotensin II type1receptor A1166C and the endothelial NO synthaseG894T gene polymorphisms with silent subcortical white matter lesions inessential hypertension[J]. Stroke,2005,36(9):1869-1873.
    [23] Assareh A, Mather KA, Schofield PR, Kwok JB, Sachdev PS. The genetics ofwhite matter lesions[J]. CNS Neurosci Ther,2011,17(5):525-540.
    [24] de Leeuw FE, Richard F, de Groot JC, et al. Interaction between hypertension,apoE, and cerebral white matter lesions[J]. Stroke,2004,35(5):1057-1060.
    [25] Bigler ED, Lowry CM, Kerr B, et al. Role of white matter lesions, cerebral atrophy,and APOE on cognition in older persons with and without dementia: the CacheCounty, Utah, study of memory and aging[J]. Neuropsychology,2003,17(3):339-352.
    [26] Sawada H, Udaka F, Izumi Y, et al. Cerebral white matter lesions are not associatedwith apoE genotype but with age and female sex in Alzheimer's disease[J]. JNeurol Neurosurg Psychiatry,2000,68(5):653-656.
    [27] Lemmens R, Gorner A, Schrooten M, Thijs V. Association of apolipoprotein Eepsilon2with white matter disease but not with microbleeds[J]. Stroke,2007,38(4):1185-1188.
    [28] Godin O, Tzourio C, Maillard P, Alperovitch A, Mazoyer B, Dufouil C.Apolipoprotein E genotype is related to progression of white matter lesion load[J].Stroke,2009,40(10):3186-3190.
    [29] Paternoster L, Chen W, Sudlow CL. Genetic determinants of white matterhyperintensities on brain scans: a systematic assessment of19candidate genepolymorphisms in46studies in19,000subjects[J]. Stroke,2009,40(6):2020-2026.
    [30] Schmidt R, Schmidt H, Fazekas F, et al. MRI cerebral white matter lesions andparaoxonase PON1polymorphisms: three-year follow-up of the austrian strokeprevention study[J]. Arterioscler Thromb Vasc Biol,2000,20(7):1811-1816.
    [31] DeStefano AL, Atwood LD, Massaro JM, et al. Genome-wide scan for white matterhyperintensity: the Framingham Heart Study[J]. Stroke,2006,37(1):77-81.
    [32] Kochunov P, Glahn D, Winkler A, et al. Analysis of genetic variability and wholegenome linkage of whole-brain, subcortical, and ependymal hyperintense whitematter volume[J]. Stroke,2009,40(12):3685-3690.
    [33] Turner ST, Fornage M, Jack CR, Jr., et al. Genomic susceptibility loci for brainatrophy in hypertensive sibships from the GENOA study[J]. Hypertension,2005,45(4):793-798.
    [34] Turner ST, Fornage M, Jack CR, Jr., et al. Genomic susceptibility Loci for brainatrophy, ventricular volume, and leukoaraiosis in hypertensive sibships[J]. ArchNeurol,2009,66(7):847-857.
    [35] Fornage M, Debette S, Bis JC, et al. Genome-wide association studies of cerebralwhite matter lesion burden: the CHARGE consortium[J]. Ann Neurol,2011,69(6):928-939.
    [36] Poels MM, Vernooij MW, Ikram MA, et al. Prevalence and risk factors of cerebralmicrobleeds: an update of the Rotterdam scan study[J]. Stroke,2010,41(10Suppl):S103-106.
    [37] Maxwell SS, Jackson CA, Paternoster L, et al. Genetic associations with brainmicrobleeds: Systematic review and meta-analyses[J]. Neurology,2011,77(2):158-167.
    [38] Yamada M. Cerebral amyloid angiopathy and gene polymorphisms[J]. J Neurol Sci,2004,226(1-2):41-44.
    [39] Biffi A, Shulman JM, Jagiella JM, et al. Genetic variation at CR1increases risk ofcerebral amyloid angiopathy[J]. Neurology,2012,78(5):334-341.
    [40] Bersano A, Debette S, Zanier ER, et al. The genetics of small-vessel disease[J].Curr Med Chem,2012,19(24):4124-4141.