大白×梅山猪杂交组合亲子代间脂肪组织差异表达基因的分离和功能初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来的研究表明,脂肪组织除对组织器官起保护作用、保持体温、保护内脏器官以及缓冲机械压力等作用外,它还具有重要的内分泌功能,主动参与能量代谢的平衡。长期以来,中外猪种由于遗传背景、长期所处的地理环境以及所接受的饲养方式和选育方式等的不同,从而形成了各自的种质特性,使其在脂肪相关性状方面存在很大的差异。而中外猪种杂交产生的杂种往往在脂肪相关性状等方面表现优于双亲的特点,产生杂种优势。这些差异以及杂种优势现象的产生应该与基因差异表达有关。因此,本研究以猪背膘组织为试验材料,利用mRNA差异显示技术分离大白×梅山猪正反向杂交组合亲子代间差异表达基因,并对这些基因的功能做了研究,取得了如下结果:
     1.利用mRNA差异显示技术分别对120日龄和180日龄大白猪×梅山猪杂交组合亲子代间基因表达情况进行了分析,发现杂种与亲本之间存在8类基因表达模式:P1,表达一致型;P2,单亲一致型;P3,正交或反交单亲一致型;P4,杂种特异型;P5,正交或反交特异型;P6,正交或反交沉默型;P7,双亲特异表达型;P8,单亲沉默型。试验中共检测了140对引物组合(7条锚定引物和20条随机引物)的差异显示结果,观察了近3000条EST条带,其中近2000条可在重复PCR中出现。此外,对120日龄和180日龄杂种与亲本间基因表达模式进行了比较,结果表明杂种与亲本间基因表达模式在不同的时期是变化的。
     2.共获得60条差异显示EST,其中120日龄组39条,180日龄组21条。通过BLAST比对发现,大部分EST与GenBank数据库中已知序列无同源性,采用半定量RT-PCR方法对这些EST进行验证,结果表明大部分表现差异,也有相当一部分为假阳性,将部分EST提交GenBank,获得登陆号CV507051-CV507087。
     3.结合电脑克隆和RACE技术,成功克隆了7个差异表达基因全长:(1)ACL,cDNA全长4378bp,编码1076个氨基酸;(2)SMPX,cDNA全长863bp,编码86个氨基酸;(3)ANGPTL4,cDNA全长1847bp,编码412个氨基酸;(4)IDH1,cDNA全长2264bp,编码402氨基酸;(5)IDH3β,共3个转录本,IDH3β_1cDNA全长1247bp,编码383个氨基酸;IDH3β_2 cDNA全长1540bp,编码385个氨基酸;IDH3β_3 cDNA全长1445bp,编码385个氨基酸;(6)IDH3γ,cDNA全长1346bp,编码392个氨基酸;(7)RPL28,cDNA全长513bp,编码137个氨基酸。
     4.利用DNAStar、CLUSTALW等软件对猪ACL、SMPX、ANGPTL4、IDH1、IDH3β、IDH3γ和RPL28基因结构、所编码蛋白质结构和功能等特征进行了预测和分析,并构建了分子系统进化树。
     5.采用Real-time PCR技术对这7个差异表达基因在大白猪×梅山猪杂交组合亲子代间基因表达情况进行了进一步的鉴定,结果表明与半定量RT-PCR的检测结果相比,差异表达的趋势是一致的,其中ACL、IDH3β以及RPL28基因在杂种大梅和梅大猪中增强表达;SMPX、ANGPTL4、IDH1以及IDH3γ基因普遍在大白猪中高表达,其中SMPX基因在杂种梅大猪中几乎不表达,IDH1基因在杂种大梅猪中表达量最低。并对这些基因在不同组织(心、肝、脾、肺、肾、胃、小肠、子宫、卵巢、背膘以及眼肌)的表达情况做了分析,结果显示它们在大多数组织中表达,且表现不同的表达特征。
     6.克隆了ANGPTL4、IDH1、IDH3β以及IDH3γ基因的全部内含子和其它基因的部分内含子序列,并分析了这4个基因的基因组结构以及序列在不同猪群中的多态性:(1)ANGPTL4基因包含7个外显子和6个内含子,仅发现2处发生突变,一处为第三内含子2737位G→A的转换突变,另一处为第六外显子203位C→T的转换突变;(2)IDH1基因包含10个外显子和9个内含子,共发现9处发生突变,分别为第二外显子1处(T1112C),第六内含子5处(G13194T、C13228T、C13336T、C13422T和A13477G),第十外显子3处(T20531A、G20543A和第20534bp处C插入突变);(3)利用猪IDH3β_1或IDH3β_2 cDNA序列对比发现,该基因的内含子和外显子组成与预测的一致,即12个外显子和11个内含子;利用猪IDH3β_3 cDNA序列与之对比,发现该基因包含13个外显子和12个内含子,前11个外显子和前10个内含子的组成和大小完全一致,共发现8处发生突变,分别为第一内含子1处(G63A),第二外显子1处(G187C),第二内含子2处(G287C和C336T),第六外显子1处(G2732A),第十一内含子2处,分别为A4277G和第4413bp处25个碱基的小卫星序列;(4)IDH3γ基因包含10个外显子和9个内含子,发现第二内含子存在一段微卫星序列(重复单位为“GT”)。
     7.对ACL、ANGPTL4、IDH3β以及IDH3γ基因共6个多态性位点在不同猪群中进行了基因分型,结果表明这些位点在这些猪群中具有丰富的多态性,并在2000年和2003年大白×梅山猪F2代资源家系中与重要生产性状进行了关联分析,结果表明:(1)猪ACL基因第24内含子插入突变所形成的不同基因型在瘦肉率、肥肉率、花油重、6-7胸椎间背膘厚、背最长肌pH、骨二头肌pH以及失水率性状存在显著(P<0.05)或极显著差异(P<0.01);(2)猪ACL XhoI-RFLP基因型不同时,皮率、骨率、屠宰率、板油重、花油重、背最长肌pH、骨二头肌pH、头半棘肌pH以及系水率性状存在显著(P<0.05)或极显著差异(P<0.01);(3)猪ANGPTL4基因第3内含子PCR-SSCP不同基因型在眼肌面积、肌内水分、肌内脂肪以及背最长肌大理石纹评分性状存在显著差异(P<0.05);(4)猪IDH3β基因小卫星不同基因型在骨率、眼肌面积、肌内水分、肌内脂肪以及头半棘肌pH值性状存在显著(P<0.05)或极显著(P<0.01)差异;(5)猪IDH3β基因5’侧翼区插入突变所形成的不同基因型在板油重、眼肌面积、骨二头肌pH值、肌内脂肪和肌内水分性状存在显著差异(P<0.05);(6)猪IDH3γ基因微卫星的不同基因型在屠宰率、肋骨数、平均皮厚以及肌内水分性状存在显著(P<0.05)或极显著差异(P<0.01)。
     8.采用TAIL-PCR技术分别扩增了ACL基因936bp和IDH3β基因2447bp的5’侧翼序列,序列分析发现,猪ACL基因的5’侧翼序列富含G+C,高达61.75%,未发现“TATA”盒;猪IDH3β基因的5’侧翼序列同样缺失“TATA”盒,也未发现“CAAT”盒,不同的是其A+T含量相对较高,达55.8%。
     9.采用5’端缺失策略,结合启动子预测结果,分别构建了8个ACL基因和19个IDH3β基因启动子区重组子,将其转染猪PK15细胞系,并利用荧光素酶双报告基因系统检测了它们的活性,结果表明:在所构建的猪ACL基因5侧翼序列的8个重组子中,除pGL-ACL27和pGL-ACL15外,其它重组子的荧光素酶活性与阴性对照均达到极显著水平(P<0.01),表明它们均具有启动子活性,pGL-ACL919活性最强,到pGL-ACL679活性下降了将近3倍,说明从-919bp到-679bp区域可能存在负的调控位点,从pGL-ACL621到pGL-ACL73活性有小幅度下降,到pGL-ACL27活性降到与阴性对照水平无显著差异,表明维持该启动子的基本活性区域位于-73bp到+77bp之间;IDH3β基因启动子活性开始于pGL-IB82,然后虽然有些波动,但是活性一直下降直到-164bp处,之后活性又开始升高,直到-279bp处活性达到最高,这些表明维持该启动子的基本活性区域位于-82bp到+16bp之间,从-82到-279之间的179bp区域具有最高的启动子活性。此外,我们还检测了IDH3β基因5’侧翼区插入突变对启动子活性的影响,结果显示携带该插入突变的启动子具有更高的启动子活性。
Fat tissue is not only the main location saving up fat, which can store energy, maintain animal heat, protect vital organisms, lighten physical pressure but also an endocrine organ.Due to the difference of origin, genetic background, local environment, feed manner and artificial selection between Chinese indigenous and foreign commercial pig breeds, they have different intrinsic features, and there is a large difference between their fattness traits.When these two breeds are hybridized, F1 hybrids tend to demonstrate hybrid vigor and produce heterosis. Further understanding on gene function and expression regulation has indicated that the difference traits performance and heterosis are in fact the external exhibition of differential genes expression and regulation. Thus, mRNA differential display technique was used to isolate and identify the differentially expressed genes between Large White and Meishan, and their F1 hybrids, Large White×Meishan and Meishan×Large White pigs in the present study, and the gene functions were also primarily analyzed. The results are as follows:
     1. The gene expression were analyzed between F1 hybrids, White×Meishan and Meishan×Large White, and their parents, Large White and Meishan pigs by mRNA differential display. Eight patterns of gene expression were observed at both four and six months old hybrids and their parents, which included: P1, bands detected in both hybrids and parents; P2, bands occurring in hybrids and one parent; P3, bands occurring in one hybrid and one parent; P4, bands visualized in only hybrids; P5, bands occurring in only one hybrid; P6, bands observed in parents and one hybrid; P7, bands occurring in only parents; and P8, bands occurring in only one parent. We also observed nearly 3000 bands in differentially displayed PAGE gel, and almost 2000 ones can be repreated in duplicate PCR. In addition, the comparison of gene expression patterns between 120 days old and 180 days old hybrids and their parents showed that the gene expression were varied.
     2. 60 differentially displayed ESTs in PAGE gel were cloned, including 39 ESTs at 120 days old and 21 at 180 days old, between hybrids and their parents. Most ESTs were not homologous to the sequences in GenBank database. The result of validation showed that a majority of ESTs were really differentially expressed, while a few of them weren't by semi-quantitative RT-PCR. Some ESTs were subsequently deposited in GenBank and the accession numbers were CV507051-CV507087.
     3. We cloned the full-length cDNA of seven genes by rapid amplification of cDNA ends (RACE) in combination with in silico cloning, which included: (1)ACL, which has 4378bp and encodes 1076 amino acids; (2) SMPX, which has 863bp and encodes 86 amino acids; (3)ANGPTL4, which has 1847bp and encodes 412 amino acids; (4) IDH1, which has 2264bp and encodes 402 amino acids; (5) IDH3β, which has three isoforms, IDH3β_1(1247bp), IDH3β_2(1540bp), and IDH3β_3(1445bp), and encode 383, 385 and 385 amino acids, respectively; (6) IDH3γ, which has 1346bp and encodes 392 amino acids; and (7) RPL28, which has 513bp and encodes 137 amino acids. 4. Using DNAStar, CLUSTAL W and some other related software, we analyzed the gene structure, protein structure and conserved motifs of these seven genes. In addition, the corresponding phylogenetic trees were constructed.
     5. The differential expression of these seven genes between F1 hybrids and their parents were further identification by real-time quantitative PCR. The result showed that the trend of differential gene expression was consonant with the result by semi-quantitative RT-PCR. The mRNA expression level of ACL, IDH3βand RPL28 was higher in F1 hybrids than in both Meishan and Large White pigs, whereas the mRNA of SMPX, ANPTL4, IDH1 and IDH3γwas more abundant in Large White than both two hybrids and Meishan pigs. The tissue distribution of these seven genes in heart, liver, spleen, lung, kidney, stomach, small intestine, uterus, ovary, backfat and longissmus drosi indicated that they were expressed in most tissues and displayed different expression patterns.
     6. We cloned all introns of four genes (ANGPTL4、IDH1、IDH3βand IDH3γ) and partial introns of other three genes among these seven genes, and analyzed the genomic structure and polymorphism of these 4 genes. The results are as follows: (1) ANGPTL4 gene contains seven exons and six introns. Only two mutations were found. One is G→A transversion in third intron and the other is C→T transversion in sixth intron; (2) IDH1 gene contains ten exons and nine introns. Nine mutations were found in total, including one in second exon (T1112C), five in sixth intron (G13194T, C13228T, C13336T, C13422T and A13477G), three in ten exon (T20531A, G20543A and C inserted mutation at 20534th bp); (3) The genomic structure of IDH3β_1 and IDH3β_2 is organized in twelve exons, while that of IDH3β_3 contains thirteen exons separated by twelve introns. Eight mutations were found in total, including one in first intron (G63A), one in second exon (G187C), two in second intron (G287C and C336T), one in sixth exon (G2732A) and two in eleventh exon (A4277G and 25bp mini-satellite); and (4) IDH3γgene contains ten exons and nine introns. Micro-satellite (GT dinucleotide repeats) was found in second intron.
     7. Genotyping of a total of six polymorphic locus showed that there are abundant polymorphisms in various pig breeds. Association analysis was performed between polymorphisms and important product traits in Large White×Meishan F2 offspring, and the results showed: (1) For insertion-mutated polymorphism in 24th intron of ACL gene, significant effects were observed on LMP, FMP, CFW, RFT, pH(LD), pH(BF) and WLR; (2) There are significant difference between ACL XhoI-RFLP genotypes and SP, BP, DP, LFW, CFW, pH(LD), pH(BF), pH(SC) and WHC; (3) Statistically significant association were found between ANGPTL4 PCR-SSCP in third intron and LEA, WM, IMF and MM1; (4) For minisatellite polymorphism of IDH3βgene, significant effects were observed on BP, LEA, WM, IMF and pH(SC); (5) For insertion-mutated polymorphism in 5'flanking region of IDH3βgene, significant effects were observed on LFW, LEA, pH(LD), IMF and WM; and (6) For microsatellite polymorphisms of IDH3γgene, significant effects were observed on DP, RNS, AST and WM.
     8. 936bp 5'flanking sequence ofACL gene and 2447bp 5'flanking sequence of IDH3βgene were obtained by using TAIL-PCR. The former lacks of TATA box and comprise high G+C content (61.75%), whereas the latter lacks both TATA box and CAAT box with a percentage of 55.8 % A+T content.
     9. To determine the location of the promoter activity of pig ACL and IDH3β, we constructed 8 and 19 recombinants of progressively 5'-deleted DNA fragment linked to the pGL3 reporter, respectively. These recombinants were transiently transfected into PK15 cells. Transcriptional activity of ACL recombinants normalized by Renilla was significant difference with pGL3-Basic expect for construct -27 and -15 (P<0.01). Construct -919 contains highest activity. 3 times reduction of transcriptional activity from-919 to -679bp indicated that negative regulation factors located probably in this region. The activity started on construct -73 suggested the basal promoter activity was located within the -73 to +77bp region; Transcriptional activity of IDHβrecombinants was not significantly different between the recombinant -58 and pGL3-Basic. The activity started on construct -82, decreasing with the length of the fragment up to -164 in despite of a bit of fluctuation, and kept increasing from construct -164 up to -279. Thus, the basal promoter activity was located within the -82 to +16bp region, whereas the upstream 197bp conferred maximal transcriptional activity. The extension of the 5'flanking sequence up to -2435 diminished the promoter activity. In addition, the IDH3βpromoter with the inserted-mutation possessed higher activity compared with the wild one.
引文
1.程宁辉,高燕萍等.水稻杂种一代与亲本幼苗基因表达差异的分析.植物学报,1997,39(4):379-382
    2.方进,翟文学,王文明,李素文,朱立煌.转基因水稻T2DNA侧翼序列的扩增与分析.遗传学报,2001,28(4):345-351
    3.格利克 (美),帕斯捷尔纳克 (美)主编.陈丽珊,任大明 主译.分子生物技术:重组DNA的原理与应用.北京:化学工业出版社,2005
    4.季海峰,张沅.猪脂肪代谢的研究进展.中国畜牧杂志,1993,29(3):59-61
    5.蒋必光.遗传学应用.北京:高等教育出版社,1996,123-137
    6.李子银,陈受宜.mRNA差异显示阳性cDNA克隆的快速筛选与鉴定.高技术通讯,1999,29:44-48
    7.孟凡荣,孙其信,倪中福,吴利民,窦秉德,王章奎.小麦杂交和自交种子发育前期MADS-box和Ser/Thr两类转录因子家族差异表达与杂种优势.农业生物技术学报,2002,10(3):220-226
    8.倪中福,孙其信,吴利民.普通小麦不同优势杂交种及其亲本之间基因表达差异比较研究.中国农业大学学报,2000,5(1):1-8
    9.孙其信,倪中福等.作物杂种优势机理研究进展.见:全国作物育种学术讨论会论文集,北京:中国农业科技出版社,1998,106-114
    10.孙东晓,王栋,张沅,徐桂云,俞英,李俊英.杂种鸡特异表达和增强表达基因及其与杂种优势关系的初步研究.见:中国畜牧兽医年会论文集.2003,87-89
    11.王栋,张沅,孙东晓,俞英,徐桂云,李俊英.纯种与杂种鸡之间肝脏组织基因差异表达及其与肉用性状杂种优势的关系.遗传学报,2004,31:258-264
    12.王慧,张沅,孙东晓,俞英.白来航蛋鸡与丝羽乌骨鸡及其杂交后代卵巢组织的基因表达差异研究.中国畜牧杂志,2005,41:9-11
    13.魏彩虹.猪脂肪沉积调控酶的研究进展.甘肃畜牧兽医,1997,27(4):29-32
    14.吴利民,倪中福,王章奎,林展,孙其信.小麦杂种亲子代间苗期叶片家族基因差异表达及其与杂种优势关系的初步研究.遗传学报,2001,28(3):256-266
    15.谢晓东,倪中福,孟凡荣,吴利民,王章奎,孙其信.小麦杂交种与亲本发育早期种子的基因表达差异及其与杂种优势关系的初步研究.遗传学报,2003,30(3):260-266
    16.熊远著,邓昌彦.种猪测定原理及方法.北京:中国农业出版社,1999a
    17.熊远著.猪的生化及分子遗传实验导论.北京:中国农业出版社,1999b
    18.应革,武威,何朝族.TAIL-PCR方法快速分离XCC致病相关基因序列.生物工程学报,2002,18(2):182-186
    19.张沅.现代动物育种原理与方法.北京:北京农业大学出版社,1989,310-311
    20.周顺伍.动物生物化学.北京:中国农业出版社,1999
    
    21. Abu-Elheiga L, Matzuk M M, Kordari P. Mutant mice lacking acetyl-CoA carboxylase 1 is embryonically lethal. Proc Natl Acad Sci U S A, 2005, 102(34): 12011-12016
    22. A H, O'Rahilly S, Savage D B, Chatterjee K, Weiss S, Larson P J, Gottesdiener K M, Gertz B J, Charron M J, Scherer P E, Moller D E. Induction of adipocyte complement-related protein of 30 kilodaltons by PPAR gamma agonists: a potential mechanism of insulin sensitization. Endocrinology, 2002,143 (3): 998-1007.
    23. Alberts B, Bray D, Lewis J Raff J, Roberts M, Watson J D K. Molecular biology of the cell, 3rd Ed. New York and London: Garland publishing, 1994
    24. Bai S, Liu W, Shi X, He L. Application of FLUPD-DD-PCR to the study of mRNA expression of glioma cells cultured under the condition of serum starvation. Chinese Sci Bull, 2000, 45(4): 369-371
    25. Bailey J M, Colman R F. 2-[(4-Bromo-2, 3-dioxobutyl) thio] and 2-[(3-bromo-2-oxopropyl) thio] adenosine 2'5'-bisphosphate: new nucleotide analogues that act as affinity labels of nicotinamide adenine dinucleotide phosphate specific isocitrate dehydrogenase. Biochemistry, 1987, 26: 6858-6869
    26. Bauer D, Muller H, Reich J, Reich H, Ahrenkiel V, Warthoe P, Strauss M. Identification of differentially expressed mRNA specials by an improved display technique (DDRT-PCR). Nucleic Acids Res, 1993, 21: 4272-4280
    27. Benderdour M, Charron G, DeBlois D, Comte B, Des Rosiers C. Cardiac mitochondrial NADP~+-isocitrate dehydrogenase is inactivated through 4-hydroxynonenal adduct formation: an event that precedes hypertrophy development. J Biol Chem, 2003, 278: 45154-45159
    28. Berg A H, Combs T P, Du X, Brownlee M, Scherer P E. The adipocyte secreted protein Acrp30 enhances hepatic insulin action. Nat Med, 2001(7): 947-953
    29. Blakew L, Clarke S D. Suppression of rat hepatic fatty acid synthase and S14 gene transcription by dietary polyunsaturated fat. Nutrition, 1990,120(12): 1727-1729
    30. Breathnach R, Benoist C, O'Hare K, Gannon F. Chambon P Ovalbumin gene: evidence for a leader sequence in mRNA and DNA sequences at the exon-intron boundaries. Proc Natl Acad Sci U S A, 1978,10: 4853-4857
    31. Buratowski S. The basics of basal transcription by RNA polyrnerase II. Cell, 1994, 77(1): 1-3
    32. Burke P S, Lium E, Lin C S, Wolgemuth D J. Sequence and expression of a cDNA encoding the mouse homologue of the rat ribosomal protein L28. Gene, 1994,142(2): 315-6
    33. Camacho M L, Brown R A, Bonete M J, Danson M J, Hough D W. Isocitrate dehydrogenases from Haloferax volcanii and Sulfolobus solfataricus: enzyme purification, characterisation and N-terminal sequence. FEMS Microbiol Lett, 1995, 134: 85-90
    34. Ceccarelli C, Grodsky N B, Ariyaratne N, Colman R F, Bahnson B J. Crystal structure of porcine mitochondrial NADP+-dependent isocitrate dehydrogenase complexed with Mn~(2+) and isocitrate. Insights into the enzyme mechanism. J Biol Chem, 2002, 277: 43454-43462
    35. Chapman B, Morganl M, Murphym C. Maternal and early dietary fatty acid intake: changes in lipid metabolism and liver enzymes in adult rats. Nutrition, 2000, 130: 146-51
    36. Chamberlain J C, Thorn J A, Oka K. DNA polymorphism at the lipoprotein lipase gene: association in normal and hypertriglyceridaemic subjects. Atheroscilerosis, 1989,79(3): 85-91
    37. Chen S S. Redox electrode for monitoring dehydrogenase-catalyzed reactions. Clin Chim Acta, 1990,190(3): 129-37
    38. Chin H G, Choe M S, Lee S H, Park S H, Koo J C, Kim N Y, Lee J J, Oh B G, Yi G H, Kim S C, Choi H C, Cho M J, Han C D. Molecular analysis of rice plants harboring an Ac/ Ds transposable element-mediated gene trapping system. Plant J, 1999, 9(5): 615-623
    39. Clarke S D, Gasper Ikova D, Nelson C, Lapillonne A, Heird A C. Fatty Acid Regulation of Gene Expression: A Genomic Explanation for the Benefits of the Mediterranean Diet Ann NY Acad Sci, 2002, 967: 283-298
    40. Clarke S D, Hembree J. Inhibition of Triiodothyronine's induction of rat liver lipogenic enzymes by dietary fat. J Nutr, 1990,120: 625-630
    41. Clarke S D. Regulation of fatty acid synthase gene expression: An approachfor reducing fat accumulation. J Anim Sci, 1993,71:1957-1965
    42. Clouscard-Martinato C, Mulsant P, Robic A, Bonnet A, Gasser F, Hatey F. Characterization of FSH-regulated genes isolated by mRNA differential display from pig ovarian granulose cells. Animal Genet, 1998, 29: 98-106
    43. Combs T P, Wagner J A, Berger J, Doebber T, Wang W J, Zhang B B, Tanen M, Berg A H, O'Rahilly S, Savage D B, Chatterjee K, Weiss S, Larson P J, Gottesdiener K M, Gertz B J, Charron M J, Scherer P E, Moller D E. Induction of adipocyte complement-related protein of 30 kilodaltons by PPAR gamma agonists: a potential mechanism of insulin sensitization. Endocrinology, 2002,143(3): 998-1007
    44. Conklin D, Gilbertson D, Taft D W, Maurer M F, Whitmore T E, Smith D L, Walker K M, Chen L H, Wattler S, Nehls M, Lewis K B. Identification of Mammalian angiopoietin-related protein expressed specifically in liver. Geromics, 1999, 62(3): 477-482
    45. Conover C A. A unique receptor-independent mechanism by which insulinlike growth factor I regulates the availability of insulinlike growth factor binding proteins in normal and transformed human fibroblasts. J Clin Invest, 1991, 88: 1354-1361
    46. Couch F J, Abel K J, Brody L C, Boehnke M, Collins F S, Weber B L. Localization of the gene for ATP citrate lyase (ACLY) distal to gastrin(GAS) and proximal to D17S856 on chromosome 17q12-q21. Genomics, 1994, 21(2): 444-446
    47. Dana R S, Darrell A K, Stephen B S. Depression of lipogenesis in swine adipose tissue by specific dietary fatty acids. J Anim Sci, 1996, 74: 975-983
    48. Davoli R, Zambonelli P, Bigi D, Fontanesi L, Russo V. Analysis of expressed sequence tags of porcine skeletal muscle. Gene, 1999, 233(1-2): 181-188
    49. Diez J, Iglesias P. The role of the novel adipocyte-derived hormone adiponectin in human disease. Eur J Endo, 2003,148:293-300
    50. Doiron B, Cuif M H, Chen R, Kahn A. Transcriptional glucose signaling through the glucose response element is mediated by the pentose phosphate pathway. Biol Chem, 1996, 271(10): 5321-5324
    51. Doss R P. Differential display without radioactivity-a modified procedure. Biotechniques, 1996,21: 408-412
    52. Dynan W S. Modularity in promoters and enhancers. Cell, 1989, 58(1): 1-4
    53. Eckel R H, Jensen D R, Schlaepfer I R, Yost T J. Tissue-specific regulation of lipoprotein lipase by isoproterenol in normal-weight humans. Am J Physiol, 1996, 271:1280-1286
    54. Elshourbagy N A, Near J C, Kmetz P J, Sathe G M, Southan C, Strickler J E, Gross M, Young J F, Wells T N, Groot P H. Rat ATP citrate-lyase: Molecular cloning and sequence analysis of a full-length cDNA and mRNA abundance as a function of diet, organ, and age. J Biol Chem, 1990, 265(3): 1430-5
    55. Elshourbagy N A, Near J C, Kmetz P J, Wells T N, Groot P H, Saxty B A, Hughes S A, Franklin M, Gloger I S. Cloning and expression of a human ATP-citrate lyase cDNA. Eur J Biochem, 1992, 204(2): 491-9
    56. Emilsson V, Lm Y L, Cawthome M A. Expression of the functional leptin receptor mRNA in pancreatic islets and direct inhibitory action of leptin on insulin secretion. Dabetes, 997, 46: 313-316
    57. Etherton T D, Louveaui I, Sorensen M T, Chaudhuri S. Mechanisms by which somatotrop in decreases adipose tissue growth. Am J Clin Nutr, 1993, 58(2): 287 -295
    58. Fasshauer M, Klein J, Neumann S, Eszlinger M, Paschke R. Tumor necrosis factor is a negative regulator of resistin gene expression and secretion in 3T3-L1 adipcytes. Biophys Res Commun, 2001, 288: 1027-1031
    59. Fislage R, Berceanu M, Humboldt Y, Wendt M, Cberender H. Primer design for a prokaryotic differential display RT-PCR. Nucleic Acids Res, 1997, 25:1830-1835
    60. Frigerio J M, Dagorn J C, and Iovanna J L. Cloning, sequencing and expression of the L5, L21, L27a, L28, S5, S9, S10 and S29 human ribosomal protein mRNAs. Biochim Biophys Acta, 1995,1262(1): 64-68
    61. Fuchs B, Zhang K, Bolander M E, Sarkar G. Differential mRNA fingerprinting by preferential amplification of coding sequences. Gene, 2000, 258: 155-163
    62. Fugier C, Tousaint J J, Prieur X, Plateroti M, Samarut J, Delerive P. The lipoprotein lipase inhibitor ANGPTL3 is negatively regulated by thyroid hormone. J Biol Chem. 2006, 281(17):11553-9
    63. Fukuhara A, Matsuda M, Nishizawa M, Segawa K, Tanaka M, Kishimoto K, Matsuki Y, Murakami M, Ichisaka T, Murakami H, Watanabe E, Takagi T, Akiyoshi M, Ohtsubo T, Kihara S, Yamashita S, Makishima M, Funahashi T, Yamanaka S, Hiramatsu R, Matsuzawa Y, Shimomura I. Visfatin: a protein secreted by visceral fat that mimics the effects of insulin. Science, 2005, 307(5708): 426-430
    64. Fukuhara A, Matsuda M, Nishizawa M. Visfatin: a protein secreted by visceral fat that mimics the effects of insulin. Science, 2005, 307:426-430.
    65. Goff S A, Ricke D, Lan T H, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D, Hutchison D, Martin C, Katagiri F, Lange B M, Moughamer T, Xia Y, Budworth P, Zhong J, Miguel T, et al. A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science, 2002, 296: 79-92
    66. Grossniklaus U, Vielle-Calzada J P, Hoeppner M A, Gagliano W B. Maternal control of embryogenesis by MEDEA, a polycomb group gene in Arabidopsis. Science, 1998, 280(5362): 446-450
    67. Hahn S A, Schutte M, Hoque A T, Moskaluk C A, da Costa L T, Rozenblum E, Weinstein C L, Fischer A, Yeo C J, Hruban R H, Kern S E. DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science, 1996, 271(5247): 350-353
    68. Haselbeck R J, Colman R F, McAlister-Henn L. Isolation and sequence of a cDNA encoding porcine mitochondrial NADP-specific isocitrate dehydrogenase. Biochemistry, 1992, 31: 6219-6223
    69. Haugen F, Jorgensen A, Drevon C A, Trayhurn P. Inhibition by insulin of resistin gene expression in 3T3-L1 adipcytes. FEBS Lett, 2001, 5(71): 105-108
    70. Hochscheid R, Jaques G, Wegmann B. Transfection of human insulin-like growth factor binding protein 3 gene inhibits cell growth and tumorigenicity: a cell culture model for lung cancer. J Endocrinol, 2000,166(3): 553-563
    71. Holland P M, Abramson R D, Watson R, Gelfand D H. Detection of specific polymerase chain reaction product by utilizing the 5'-3' exonuclease activity of Thermus aquaticus DNA polymerase. Proc Natl Acad Sci U S A, 1991, 88(16): 7276-7280
    72. Hu E, Liang P, Spiegelman B M. AdipoQ is a novel adipose specific gene ysregulated in obesity. J Biol Chem, 1996, 271(18): 10697-10703
    73. Hutley L, Prins J B. Fat as an endocrine organ: relationship to the metabolic syndrome. Am J Med Sci, 2005, 330(6): 280-28
    74. Inoue H, Tamur T, Ehara N, Nishito A, Nakayama Y, Maekawa M, Imada K, Tanaka H, Inagaki K. Biochemical and molecular characterization of the NAD(+)-dependent isocitrate dehydrogenase from the chemolithotroph Acidithiobacillus thiooxidans. FEMS Microbiol Lett, 2002, 214: 127-132
    75. Jurecic R, Belmont J W. Long-distance DD-PCR and cDNA microarrays. Curr Opin Microbiol, 2000,3(3): 316-321
    76. Katsurada A A, Iritan N, Fukuda H, Matsumura Y, Nihimoto N, Noguchi T, Tanaka T. Effects of nutrients and hormones on transcrip tional and post transcriptional regulation of acetyl-CoA carboxylase in rat liver[J]. Eur Biochem, 1990, 190(2): 435- 441
    77. Kemp T J, Sadusky T J, Simon M, Brown R, Eastwood M, Sassoon D A, Coulton G R. Identification of a Novel Stretch-Responsive Skeletal Muscle Gene (SMPX). Genomics, 2001,72: 260-271
    78. Kern P A, Sagjizadeh, Ong J M, Bosch R J, Deem R, Simsolo R B. The expression of tumor necrosis factor in human adipose tissue regulation by obesity, weight loss, and relationship to lipoprotein lipase. J Clin Invest, 1995, 95(5): 2111-211
    79. Kersten S, Mandard S, Tan N S, Escher P, Metzger D, Chambon P, Gonzalez F J, Desvergne B, Wahli W. Characterization of the fasting-induced adipose factor FIAF, a novel peroxisome prolifertor-activated receptor target gene. J Biol Chem, 2000, 275(37): 28488-93
    80. Kim I, Kim H G, Kim H, Park S K, Uhm C S, Lee Z H, Koh G Y. Hepatic expression, synthesis and secretion of a novel fibrinogen/angiopoietin-related protein that prevents endothelial-cell apoptosis. Biochem J, 2000, 346(3): 603-10
    81. Kim I K, Wak H J, Ann J E, So J N, Liu M, Koh K N, Koh G Y. Molecular cloning and characterization of a novel angiopoietin family protein angiopoietin-3. FEBS Lett, 1999a, 443(3): 353-356
    82. Kim J, Chubatsu L S, Admon A, Stahl J, Fellous R, Linn S. Implication of mammalian ribosomal protein S3 in the processing of DNA damage. J Biol Chem, 1995, 270(23): 13620-9
    83. Kim K H, Lee K, Moon Y S1. A cystein-rich adipose tissue specific secretory factor inhibits adipose differentiation. J Biol Chem, 2001, 276:11252-11256
    84. Kim K S, Kang J G, Moon Y A, Park S W, Kim Y S. Regulation of ATP-citrate lyase gene transcription. Yonsei MedJ, 1996,37(3): 214-24
    85. Kim T S, Fteake H C. High carbohydrate diet and starvation regulate lipogenic mRNA in rats in a tissue specific manner. Nutrition, 1996,126 (3): 611-61
    86. Kim Y O, Koh H J, Kim S H, Jo S H, Huh J W, Jeong K S, Lee I J, Song B J, Huh T L. Identification and functional characterization of a novel, tissue-specific NAD(+)-dependent isocitrate dehydrogenase beta subunit isoform. J Biol Chem, 1999b, 274: 36866-36875
    87. Koh H J, Lee S M, Son B G, Lee S H, Ryoo Z Y, Chang K T, Park J W, Park D C, Song B J, Veech R L, Song H, Huh T L. Cytosolic NADP+-dependent isocitrate dehydrogenase plays a key role in lipid metabolism. J Biol Chem, 2004, 279: 39968-39974
    88. Kornacker M S, Lowenstein J M. Citrate and the conversion of carbohydrate into fat. The activities of citrate-cleavage enzyme and acetate thiokinase in livers of starved and re-fed rats. Biochem J, 1965, 94: 209-215
    89. Kozak M. Comparison of initiation of protein synthesis in eucaryotes and organelles. Microblol Rev, 1983,47: 1-45
    90. Larsen T S, Nilsson N 0, Belfrrage P. Seasonal changes in hormone-sensitive lipase activity in adipose tissue from Norwegian and Svalbard reindeer. Acta Physiol Scand, 1985,125(4): 735-738
    91. Lee J Y, Hirono I, Aoki T. Cloning and analysis of expression of Mx cDNA in Japanese flounder, Paralichthvs olivaceus. Dev Comn Immunol, 2000, 24(4): 407-415
    92. Le Jan S, Amy C, Cazes A, Monnot C, Lamande N, Favier J, Philippe J, Sibony M, Gasc JM, Corvol P, Germain S. Angiopoietin-like 4 is a proangiogenic factor produced during ischemia and in conventional renal cell carcinoma. Am J Pathol, 2003,162(5): 1521-1528
    93. Liang P, Averboukh L, Pardee A B. Distribution and cloning of eukaryotic mRNAs by means of differential display: refinements and optimization. Nucleic Acids Res, 1993, 21: 3269-3275
    94. Liang P, Pardee A B. Differetial display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science, 1992, 257: 987-971
    95. Liang P, Zhu W M, Zhang X Y, Guo Z, O'Connell R, Averboukh L, Wang F L, Pardee A B. Differential display using one-base anchored oligo-dT primers. Nucleic Acids Res, 1994, 22: 5763-5764
    96. Liu B H. Statistical Genomics: Linkage, Mapping, and QTL Analysis. CRC Press, LLC, 1998. 404-409
    97. Liu Y G, Huang N. Efficient amplification of insert end sequences from bacterial artificial chromosome clones by thermal asymmetric interlaced PCR. Plant Mol Biol Rep, 1998,16(2): 175-181
    98. Liu Y G, Whittier R F. Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics, 1995, 25: 674-681
    99. Liu Y G, Xiong Y Z, Deng C Y, Zuo B, and Zhang J H. Comparison of gene expression patterns in Longissimus dorsi of pigs between the high-parent heterosis cross combination LandracexLarge White and the mid-parent heterosis cross combination Large White xMeishan. Asian Austral J Anim Sci, 2004,17: 1192-1196
    100.Livak J K, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2~(-ΔΔC)T method. Method, 2001, 25: 402-408
    101.Maeda K, Okubo K, Shimomura I, Funahashi T, Matsuzawa Y, Matsubara Kl. cDNA cloning and expression of a novel adipose specific collagen-like factor, apM1(AdiPose Most abundant Gene transcript 1). Biochem BiophysRes Commun, 1996, 221(2): 286-289
    102.Maeda N, Li H, Lee D, Oliver P, Quarfordt S H, Osada J. Targeted disruption of the apolipoprotein C-III gene in mice results in hypotriglyceridemia and protection from postprandial hypertriglyceridemia. J Biol Chem, 1994, 269(38): 23610-6
    103.Maeda N, Takahashi M, Funahashi T, Kihara S, Nishizawa H, Kishida K, Nagaretani H, Matsuda M, Komuro R, Ouchi N, Kuriyama H, Hotta K, Nakamura T, Shimomura I, Matsuzawa Y. PPAR gamma ligands increase expression and plasma concentrations of adiponectin, an adipose derived protein. Diabetes, 2001, 50(9): 2094-2099
    104.Mandard S, Zandbergen F, van Straten E, Wahli W, Kuipers F, Muller M, Kersten S. The fasting-induced adipose factor/angiopoietin-like protein 4 is physically associated with lipoproteins and governs plasma lipid levels and adiposity. J Biol Chem, 2006,281(2): 934-944.
    105.Mao J, Chirala S S, Wakil S J. Human acetyl-CoA carboxylase 1 gene: presence of three promoters and heterogeneity at the 5VuntranslatedmRNA region. ProcNatl Acad Sci U S A ,2003 ,100: 7515 - 7520
    106.Matz M, Usman N, Shagin D, Bogdanova E, Lukyanov S. Ordered. Differential display: a simple method for systematic comparison of gene expression profiles. Oxford: Oxford University Press, 1997, 2541-2542
    107.Mcnamara J P, Mcearland D C, Bai S. Regulation of bovine adipose tissue metabolism during lactation. 3. Adaptations of hormone2sensitive and lipoprotein lipases. J Dairy Sci, 1987,70(7): 1377-1384
    108.McTernan C L, McTernan P G, Harte A L, Levick P L, Barnett A H, Kumar S. Resistin, central obesity, and type 2 diabetes. Lancet, 2002, 359: 46-47
    109.Mildner A M, Clarke S D. Porcine fatty acid synthase: Cloning of a complementary DNA, tissue distribution of its mRNA and suppression of expression by somatomop in and dietary protein. Nutrition, 1991,121(6): 90-907
    
    110.Mitchell P J, Tjian R. Transcriptional regulation in mammalian cells by sequence- specific DNA binding proteins. Science, 1989,45: 371-378
    111.Moon B, Kwan J J, Duddy N, Sweeney G, Begum N. Resistin inhibits glucose uptake in L6 cells independently of changes in insulin signaling and GLUT4 translocation. Am J Physiol Endocrinol Metab, 2003, 285:106-115
    112.Moon Y A, Kim K S, Cho U H, Yoon D J, Park S W. Characterization of regulatory elements on the promoter region of human ATP-citrate lyase. Exp Mol Med, 1999, 31(2): 108-114
    113.Moon Y A, Park S W, Kim K S. Characterization of cis-acting elements in the rat ATP citrate lyase gene promoter. Exp Mol Med, 2002, 34(1): 60-8
    114.Moses A C, Tsuzaki S. Is insulin a growth factor? In: Insulin-like growth factors: Molecular and cellular aspects. Boca Raton: CRC Press, 1991
    115.Mou L J, Miller H, Li J, Wang E, Chalifour. Improvements to the differential display method for gene analysis. Biochem Bioph RES Co, 1994, 199(2): 564-569
    116.Nakamura M T, Cho H P, Clarke S D. Regulation of hepatic Delta26 desaturase expression and its role in the poly-unsaturafed fatty acid inhibition of fatty acid synthase gene expression in mice. J Nutr, 2000,130(6):1561-1565
    117.Naora H. Involvement of ribosomal proteins in regulating cell growth and apoptosis: translational modulation or recruitment for extra-ribosomal activity? Immunol Cell Biol, 1999,77(3): 197-205
    118.Nishimura M, Miki T, Yashima R, Yokoi N, Yano H, Sato Y, Seino S. Angiopoietin-3: a novel member of the angiopoietin family. FEBS Lett, 1999,448: 254-256
    119.Oike Y, Yasunaga K, Ito Y, Matsumoto S, Maekawa H, Morisada T, Arai F, Nakagata N, Takeya M, Masuho Y, Suda T. Angiopoietin-related growth factor (AGF) promotes epidermal proliferation, remodeling, and regeneration. Proc Natl Acad Sci U S A, 2003,100(16): 9494-9
    120.Ouchi N, Kihara S, Arita Y, Okamoto Y, Maeda K, Kuriyama H, Hotta K, Nishida M, Takahashi M, Muraguchi M, Ohmoto Y, Nakamura T, Yamashita S, Funahashi T, Matsuzawa Y. Adiponectin, an adipocyte-derived plasma protein, inhibits endothelial NF-kappaB signaling through a cAMP-dependent pathway. Circulation, 2001, 102: 1296-1301
    121.Palmer S, Groves N, Schindeler A, Yeoh T, Biben C, Wang C C, Sparrow D B, Barnett L, Jenkins N A, Copeland N G, Koentgen F, Mohun T, Harvey R P. The Small Muscle-specific Protein Csl Modifies Cell Shape and Promotes Myocyte Fusion in an Insulin-like Growth Factor 1-dependent Manner. J Cell Bio, 2001, 153: 985-997
    122.Pan P W, Li K, Tuggle C K, Yu M, Liu B, Zhao S H. Sequencing, tissue distribution and physical mapping of the porcine homologue of cardiomyopathy associated 3 (CMYA3).Anim Genet, 2003, 34(6): 473-474
    123.Patzak D, Zhuchenko O, Lee C C, Wehnert M. Identification, mapping, and genomic structure of a novel X-chromosomal human gene (SMPX) encoding a small muscular protein Hum Genet, 1999,105: 506-512
    124.Peek R, van Gelderen B E, Bruinenberg M, Kijlstraa. Molecular cloning of a new angiopoietinlike factor from the human cornea. Invest Ophthalmol Vis Sci, 1998, 39(10): 1782-8
    125.Romagnoli S, Maddaloni M, Livini C, Motto M. Relationship between gene expression and hybrid vigor in primary root tips of young maize (Zea mays L.) plantlets. Theor Appl Genet, 1990, 80: 769-775
    126.Salati L M, Clarke S D. Fatty acid inhibition of hormonal induction of acetyl-coenzymeA carboxylase in hepatocyte monolayers. Arch Biochim Biophys, 1986, 246: 82-89
    127.Sambrook J, Fritsch E F, Maniatis T. Molecular Cloning: A Laboratory Manual. 2nd edition. Cold Spring Harbor Laboratory Press, 1989.
    128.Sarmiento U, Benson B, Kaufman S, Ross L, Qi M, Scully S, DiPalma C. Morphologic and molecular changes induced by recombinant human leptin in the white and brown adipose tissues of C57 BL/ 6 mice. Lab Invest, 1997, 77: 243-256
    129.Schindeler A, Lavuloa L, Harveya R P. Muscle costameric protein, Chisel/Smpx, associates with focal adhesion complexes and modulates cell spreading in vitro via a Rac1/p38 pathway. Exp Cell Res, 2005, 307: 367 - 380
    130.Sethi J K, Vidal-Puig A. Visfatin: the missing link between intra-abdominal obesity and diabetes? Trends Mol Med, 2005,11: 344-3
    131.Shaw G, Kamen R. A conserved AU sequence from the 3'untranslated region of GM-CSF mRNA mediates selective mRNA degradation. Cell, 1986,46(5): 659-67
    132.Shimamura M, Matsuda M, Kobayashi S, Ando Y, Ono M, Koishi R, Furukawa H, Makishima M, Shimomura I. Angiopoietin-like protein 3, a hepatic secretory factor, activates lipolysis in adipocytes. Biochem Biophys Res Comman, 2003,301(2): 604-6
    133.Shojima N, Sakoda H, Ogihara T, Fujishiro M, Katagiri H, Anai M, Onishi Y, Ono H, Inukai K, Abe M, Fukushima Y, Kikuchi M, Oka Y, Asano T. Humoral regulation of resistin expression in 3T3-L1 and mouse adipose cells. Diabetes, 2002, 516: 1737-1744
    134.Shyamala V, Ames G F. Genome walking by single specific primer polymerase chain reaction: SSP-PCR. Gene, 1989, 84(1): 1-8
    135.Smith M R, Kung H, Durum S K, Colburn N H, Sun Y. TIMP-3 induces cell death by stabilizing TNF-alpha receptors on the surface of human colon carcinoma cells. Cytokine, 1997, 9(10): 770-80
    136.Smith N R, Aldersley M, Li A, High A S, Moynihan T P, Markham A F, Robinson P A. Automated differential display using a fluorescently labeled universal primer. Biotechniques, 1997, 23: 274-279
    137.Smith T R, Mcnamare J P. Regulation of bovine adipose tissue metabolism during lactation. 6. Cellularity and hormone-sensitive lipase activity as affected by genetic merit and energy intake. J Dairy Sci, 1990, 73 (3): 772-783
    138.Steppan C M, Bailey S T, Bhat S, Brown E J, Banerjee R R, Wright C M, Patel H R, Ahima R S, Lazar M A. The hormone resistin links obesity to diabetes. Nature, 2001, 409(6818): 307-312
    139.Stolovich M, Tang H, Hornstein E, Levy G, Cohen R, Bae S S, Birnbaum M J, Meyuhas O. Transduction of growth or mitogenic signals into translational activation of TOP mRNAs is fully reliant on the phosphatidylinositol 3-kinase-mediated pathway but requires neither S6K1 nor rpS6 phosphorylation. Mol Cell Biol, 2002, (23): 8101-13
    140.Strus D S. Growth stimulatory actions of insulin in vitro and in vivo. Endocr Rev, 1984,12(5): 356-369
    141.Sulic S, Panic L, Barkic M, Mercep M, Uzelac M, Volarevic S. Inactivation of S6 ribosomal protein gene in T lymphocytes activates a p53-dependent checkpoint response. Genes Dev, 2005, 19(24): 3070-3082
    142.Sun O X, Liu Z Y. Differetial gene expression between wheat hybrids and their parental inbreds in seeding leaves. Euphytica, 1999, 106: 117-123
    143.Sun Y, Hegamyer G, Colburn N H. Molecular cloning of five messenger RNAs differentially expressed in preneoplastic or neoplastic JB6 mouse epidermal cell: one is homologous to human tissue inhibitor of metalloproteimases-3. Cancer Res, 1994, 54:1139-1144
    144.Terauchi R, Kahl G. Rapid isolation of promoter sequences by TAIL-PCR: the 5'-flanking regions of Pal and Pgi genes from yams (Dioscorea). Mol Gen Genet, 2000, 263(3): 554-560
    145.Theissen G, Fischer A. RC4D-restriction fragment length polymorphism-coupled domain-directed differential display. Methods Mol Biol, 1997, 85:123-133
    146.Trayhurn P, Beattie J H. Physiological role of adipose tissue: white adipose tissue as an endocrine and secretary organ. P Nutr Soc, 2001, 60: 329-339
    147.Triglia T, Peterson M G, Kemp D J. A procedure for in vitro amplification of DNA segments that lie outside the boundaries of known sequences. Nucleic Acids Res, 1998,16(16): 81-86
    148.Tsaftairs A S. Molecular aspects of heterosis in plants. Physiol Plantarum, 1995, 94: 362-370
    149.Valenzuela D M, Griffiths J A, Rojas J, Aldrich T H, Jones P F, Zhou H, McClain J, Copeland N G, Gilbert D J, Jenkins N A, Huang T, Papadopoulos N, Maisonpierre P C, Davis S, Yancopoulos G D. Angiopoietin 3 and 4: diverging gene courterparts in mice and human. Proc Natl Acad Sci U S A, 1999, 96(5): 1904-1909
    150.Walters D M, Russ R, Knackmuss H J, Rouviere P E. High-density sampling of a bacterial operon using mRNA differential display. Gene, 2001, 273: 305-315
    151.Weaver K R, Caetano-Anolles G, Gresshoff P M, Callahan L M. Isolation and cloning of DNA amplification products from Silver-stained ployacrylamide gels. Biotechniques, 1994,16: 226-227
    152.White H W, Kusukawa N. Agarose-based system for separation of short tandem repeat loci. Biotechniques, 1997, 22(5): 976-980
    153.Wilson D M 3rd, Deutsch W A, Kelley M R. Drosophila ribosomal protein S3 contains an activity that cleaves DNA at apurinic/apyrimidinic sites. J Biol Chem, 1994, 269(41): 25359-64.
    154.Wolf G. Nutritional and hormonal regulation of fatty acid synthase. Nutr rev, 1996, 54(1): 122-127
    155.Wool I G Extraribosomal functions of ribosomal proteins. Trends Biochem Sci, 1996, 21(2): 164-165
    156.Wool I G The structure and function of eukaryotic ribosomes. Annu Rev Biochem, 1979, 48: 719-754
    157.Xiong L Z, Yang G P, Zhang Q F, Maroof M A S. Relationship between differential gene expression in leaves with heterosis and heterozygosity in a rice diallel cross. Mol Breeding, 1998, 4: 129-136
    158.Xu D Q, Xiong Y Z, Ling X F, Lan J, Liu M, Deng C Y, Jiang S W, Lei M G. Identification of a differential gene HUMMLC2B between F1 hybrids Landrace xYorkshire and their female parents Yorkshire. Gene, 2005, 35: 2118-2126
    159.Yamada K, Shimoka M., Nagayma K. Bacterial invasion induces interleukine-7 receptor expression in colonic epithelial cell line, T84. Eur J Immunol, 1997, 27: 3456-3460
    160.Yamamoto K, Takeshita K, Shimokawa T, Yi H, Isobe K, Loskutoff D J, and Saito H. Plasminogen activator inhibitor-1 is a major stress-regulated gene: Implications for stress-induced thrombosis in aged individuals. Proc Natl Acad Sci U S A, 2002, 99: 890-895
    161.Yamauchi T, Kamon J, Waki H, Terauchi Y, Kubota N, Hara K, Mori Y, Ide T, Murakami K, Tsuboyama-Kasaoka N, Ezaki O, Akanuma Y, Gavrilova O, Vinson C, Reitman M L, Kagechika H, Shudo K, Yoda M, Nakano Y, Tobe K, Nagai R, Kimura S, Tomita M, Froguel P, Kadowaki T. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med, 2001, (7): 941-946
    162.Yamazaki M, Saito K. Differential display analysis of gene expression in plants. Cell Mol Life Sci, 2002,59(8): 1246-55, Review
    163.Yoshida K, Shimizugawa T, Ono M. Angiopoietin- like protein 4 is a potent hyperlipidemia- induced factor in mice. Lipid Res, 2002,43(11): 1170-2
    164.Yu J G, Javorschi S, HevenerA L. The effect of thiazolidinediones on plasma adiponectin levels in normal, obese, and type 2diabetic subjects. Diabetes, 2002, 51 (10): 2968-2974
    165.Yumoto H, Nakae H, Fujinaka K, Ebisu S, Matsuo T. Interleukin-6 (IL-6) and IL-8 Are Induced in Human Oral Epithelial Cells in Response to Exposure to Periodontopathic Eikenella corrodens. Infect Immun. 1999, 67(1): 384-394
    166.Yu Z K, Wright J T, Hausman G J. Pre-adipocyte recruitment in stromal vascular cultures after depletion of committed preadipocytes by immunocytotoxicity. Obesity Res, 1997, 5(1): 9-15
    167.Zeng L, Dai J, Ying K, Zhao E, Jin W, Ye Y, Dai J, Xu J, Xie Y, Mao Y. Identification of a novel human angiopoietin-like gene expressed mainly in heart. J Hum Genet, 2003,48(3): 159-162
    168.Zhang Y, Peoenca R, Maffei M, Barone M, Leopold L, Friedman J M. Positional cloning of the mouse obese gene and its human homologue. Nature, 1994, 372: 425-432
    169.Zhao S, Ooi S L, Yang F C, Pardee A B. Three methods for identification of true positive cloned cDNA fragments in differential display. Biotechniques, 1996, 20: 400-404
    170.Zhu H, Bunn H F. Signal transduction: How do cells sense oxygen? Science, 2001, 292(5516): 449-451
    171.Zimmermann R, Strauss J G, Haemmerle G, Schoiswohl G, Birner-Gruenberger R, Riederer M, Lass A, Neuberger G, Eisenhaber F, Hermetter A, Zechner R. Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science, 2004, 306:1383-1386
    172.Zuo B, Xiong Y Z, Deng C Y, Su Y H, Wang J, Lei M G, Li F E, Jiang S W, Zheng R. Polymorphism, linkage mapping and expression pattern of the porcine skeletal muscle glycogen synthase (GYSl) gene. Anim Genet, 2005, 36(3): 254-7