碳纳米管固定脂肪酶用于1-苯基乙醇的拆分
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1-苯乙醇是一种重要的有机合成原料,有两个对映体(R,S-1-苯乙醇)。本文的主要研究内容是利用固定化脂肪酶拆分1-苯乙醇及其动力学研究。
     本论文对交联法制备固定化酶的方法和条件进行了初步探索。利用氧化多壁碳纳米管(MWNT)为固定化载体,以N-羟基琥珀酰亚胺(NHS)和1-(3-二甲基氨基丙基)-3-乙基碳化二亚胺盐酸盐(EDAC)为交联剂,在pH 6.2的吗啉乙磺酸(MES)缓冲液中,将Candida.sp99-125脂肪酶(CSL)成功交联在多壁碳纳米管上,通过元素分析测定固定化酶的最大负载量为1.8mg CSL/mg MWNT,根据橄榄油乳化液水解滴定法测定固定化酶相对酶活收率达63%,由圆二色性光谱和傅里叶红外光谱测定固定化酶相对二级结构保持率为61.3%。
     实验以正庚烷为溶剂,乙酸乙烯酯为酰基供体,在有机相中α-苯乙醇与乙酸乙烯酯在固定化脂肪酶(MWNT-CSL)的催化下发生转酯化反应,利用固定化脂肪酶的高度对映体选择性,R-1-苯乙醇发生转酯化生成R-1-乙酸苯乙酯,剩余未反应的底物为S-1-苯乙醇,反应混合物可以比较容易的进行分离,从而实现拆分1-苯乙醇的目的。
     实验中利用带手性柱的液相色谱仪Shimadzu 10AVP来定量分析反应过程底物及产物的浓度变化,并计算各自的对映体过剩量e.e.s和底物转化率C。
     本论文确立了以正庚烷为溶剂,乙酸乙烯酯为酰基载体的酶催化转酯化反应体系。考察了不同的反应温度、酰基载体与底物摩尔比对反应的影响,并对该酶的反应条件进行优化,最终确定了反应时间。结果表明该酶在底物浓度50mmol/L、酰基载体与底物摩尔比为6:1、反应温度为50℃、摇床转速为100rpm的条件下,反应时间为56h,转化率达到49.8%,e.e.s达到97.4%。
     同时,我们还考察了该酶的重复使用效率。当固定化脂肪酶反复使用五次,反应56h时,底物的转化率均大于44%,只是底物的e.e.值有所降低,但产物的e.e.值没有下降,这就说明该酶的对映体选择性并没有受到不利影响。
1-Phenyl ethanol was one of the important chiral building blocks for organic synthesis.The objective of this work is to study the resolution of(R, S)-1-Phenyl ethanol by lipase immobilized on multi-walled carbon nanotubes.
     Lipase was covalently attached onto multi-walled nano tubes(MWNTs) by using N-hydroxysuccinimide(NHS) and N-ethyl-N-(3-(dimethylamino) propyl) carbodiimide hydrochloride(EDC) as crosslinking agent in MES [2-(N-morpholino) ethanesulfonic acid]buffer.The high support surface area of MWNTs facilitated high enzyme loadings(up to 1.8 mg of CSL/mg of MWNT) as determined by elemental analysis.63%of hydrolytic activity was retained by the conjugate of MWNT with lipase.And the secondary structure of the conjugate was anlysed through FTIR Spectroscopy and Circular dichroism(CD) spectra.
     In the resolution,n-heptane was used as solvent and vinyl acetate as acyl donor.And lipase and lipase-MWNT were used as catalyst.The productα-phenylethyl acetate was approximately 100%enantiomeric pureα-Phenyl ethanol was transesterified with vinyl acetate.
     The concentrations of different enantiomer of substrate and product were analyzed by high performance liquid chromatography(HPLC) with chiral column,from which the enantiomeric excess of substrate and product was calculated.
     Optimum conditions of transesterification of immobilized lipase were investigated,including the influence of temperature,molar ratio of vinyl acetate to(R,S) - 1-Phenyl ethanol and reaction time.It was found that the optimal temperature and molar ratio were 50℃and 6:1,respectively.At the optimized reaction conditions,when the reaction time was about 56h, conversion was 49.8%and enantiomeric excess was 97.4%.
     The reuse of lipase-MWNT was studied.The results show that when reaction time reached 56h,conversion of substrate was higher than 44%,but the enantiomeric excess of R-phenylethyl acetate remained unvaried.
引文
[1]Luis S P,JoseM L,Alirio E R.Chiral separation by SMB chromatog2raphy[J].Sep Puri Tech,2000,20:67-72
    [2]邓金根,迟永样,朱槿,等.化学拆分的新方法研究[J].合成化学,1999,7(4):340-344
    [3]刘学良,刘莺,王俊德,等.分子烙印技术的应用与最新进展[J].分析化学,2002,30(10):260-1266.
    [4]陈宁.酶工程[M1.中国轻工业出版社,2005,3-24
    [5]Lee K T,Akoh C C.Structured lipids:synthesis and applications[J].Food Research International,1998,14(1):17-34.
    [6]郭铮,张根旺.脂肪酶的结构特征和化学修饰[J].中国油脂,2003,28(7):5-10
    [7]Yahya A R M,Anderson W A.Ester synthesis in lipase-catalyzed reactions[J].Enzyme Microbial Technology 1998,23(7):438-450.
    [8]韩丽,杨倩,孙志浩,等.脂肪酶催化拆分外消旋6-羟基-8-氯辛酸乙酯[J].精细化工,2007,24(6):574-576
    [9]盛梅,曹国民,宋国强,等.固定化脂肪酶在有机相中催化酯化反应[J].石油化工高等学校学报,1999,12(3):25-30
    [10]杜伟,宗敏华,陈伟锋,等.有机相脂肪酶催化酮基布洛芬的立体选择性酯化[J].微生物学通报,2000,27(6):429-432
    [11]董亚琴,孟春,石贤爱,等.脂肪酶催化扁桃酸乙酯酯交换反应的研究[J].分子催化,2006,20(8):351-354
    [12]Laane C,Boeren S,Vos K,Veeger C.,Rules for optimization of biocatalysis in organic solvents,Biotechnol.Bioeng.,1987,30:81-87.
    [13]Valivety R H,Hailing P J,Peilow A D,Macrae A R.,Reaction rate with suspended lipase catalyst shows similar dependence on activity on water activity in different organic solvents,Biochim.Biophys.Acta 1992,1118:218-222
    [14]Zaks A,Klibanov A M.EnZymatic catalysis in organie media at 100 degrees[J].Science,1984,224(4654):1249-1251.
    [15]Zaks A.Industrial bioeatalysis[J].Current Opinionin Chemical Biology,2001,5(2):130-136.
    [16]Aern T J,nibanov.A M.The mechanism of irreversible enzyme inactivation at 100℃[J].Seience,1985,228:1280-1284.
    [17]袁勤生.现代酶学[M].华东理工大学出版社,2007(2):245.
    [18]Dorothy M O,Sanyal G,Volkin D B,Marcy A I,Chan H K,Ryan J A,Russell C.Middaugh.Stabilization of the FK506 binding Protein by ligand binding[J].Biochemical and Biophysical Research Communications,1991,179(2):741-748.
    [19]Affleetk R,Xu Z F,Suzaw V.Enzymatic catalysis and dynamics in low-water environments[J].Proceedings of the National Academy Science.1992,89(3):1100-1104.
    [20]Halling P J.Thermodynamic predictions for bioeatalysis in nonconventional media:Theory,tests,and recommendation for experimental design and analysis[J].Enzyme and Microbial Technology,1994,16(3):178-206.
    [21]Berglund P,Holmquist M,Hult K.Alcohols as enantioseleetive inhibitors in a lipase catalyzed esterification of a chiral acyl donor[J].Biotechnology Letter,1995,17:55-60.
    [22]Kuo S J,Parkin K L.Acetylacylglycerol formation by lipase in microaqueous milieu:effects of acetyl group donor and environmental factors[J].Jounal of Agriculture and Food Chemistry,1995,43:1775-1783.
    [23]Rangheard M S,Langrand G,Triantaphylides C,Baratti J.Multieompetitive enzymetic reactions in organic media:application to the determination of lipase alcohol specificity[J].Enzyme Microbial Technology,1992,14:966-974.
    [24]王军.脂肪酶固定化及催化醋化反应[J].日用化学工业,1995,3:4-7
    [25]吴可克,安庆大.酶促反应合成蔗糖棕搁酸酯的研究[J].中国油脂,2004,29(3):37-39
    [26]李秀文,万婷.非水介质中酶促反应的研究进展[J].高等函授学报(自然科学版),2005,18(2):43-59
    [27]Schmid R,Partali V.Regioselective hydrolysis of diesters of(Z)-and(E)-2-methyl-butenedioic acids by PLE[J].Tetrahedron Letters,2001,42:8543-8545.
    [28]Zaks A,Aikady S,Pikovsky,Kurths J,Symbolic dynamics behind the singular continuous Power spectra of continuous power,Physica D:Nonlinear phenomena,1998,117(1-4):77-94.
    [29]Bornscheuer U T,Yamane T.,Activity and stability of lipase in the solid-phase glycerolysis of triolein,Enzyme Microb.Technol.1994,16:864-869.
    [30]Huge-Jensen B,Galluzzo D R,Jensen R G.,Partial purification and characterization of free and immobilized lipases from Mucor miehei,Lipids,1987,22:559-565.
    [31]黄磊,程振民.无机材料在酶固定化中的应用[J].化工进展,2006,25(6):1245-1249
    [32]Martin N,Joha B,Erland H,etal.Lipase immobilized by adsorption[J].APPL Mierobiol Biotechnol,1988,28:527-530.
    [33]David A,Riekert.Improved organic acid production by calcium alginate-immobilized propionibacteria[J].EnzymeMicrobi.,1988,22(5):409-414.
    [34]Jirku V.A novel entrapping matrix for yeast-catalyzed ethanol fermentation[J].Process Biochem.,1999,34(2):193 196.
    [35]曹国民,盛梅.蚕丝固定化脂肪酶催化性能研究[J].日用化学工业,1997,(6):303-309
    [36]Alexander E,Ivanov,Manfredv P,ecal.Methods for the immobilization of and their use for ester Synthesis[J].Journal of Molecular Catalysis,1997,(3):303-309.
    [37]胡文静,谭天伟,王芳,等.改性壳聚糖固定化脂肪酶的研究[J].生物工程学报,2007,23(4):667-671
    [38]Iijima S.Helical microtubes of graphite carbon[J].Nature,1991,354:56-58.
    [39]C.X.Cai,J.Chen,J.Bao,T.Lu,Application of carbon nanotubes in analytical chemistry[J].Chin.J.Anal.Chem,2003,32:381-387.
    [40]S.K.Smart,A.I.Cassady,G.Q.LU,D.J.MarLin,The biocompatibility of carbon nanotubes[J].Carbon,2006,44:1034-104.
    [41]PM.Ajayan,Nanotubes from carbon,Chem.Rev,1999,99,1787-1800.
    [42]H.Dai,Carbon unties and challenges,Suf.Sci.,2002,500,218-241.
    [43]Ajayan P M.Nanotubes from carbon[J].Chem Rev,1999,99(7):1787-1799
    [44]Pederson M R,Broughton J Q.Nano capillarity in fullerene tubules[J].Phys Rev Lett,1992,69(18):2689-2692
    [45]Carrol D L,Redlich P,BlaseX,et al.Effects of nanodomain formation on theelectronic structure of doped carbon nanotubes[J].Phys Rev Lett,1998,81(11):2332-2335
    [46]Frank S,Poncharal P,Wang Z L,et al.Carbon nanotube quantum resistors[J].Science,1998,280(5370):1744-1746
    [47]Bachtold A,Strunk C,Salvetat J P,et al.Aharonov-Bohm oscillations in carbon nanotubes[J].Nature,1999,397(6721):673-67
    [48]Tans S J,Verschueren A R,Dekker C.Room temperature transistor based on a single carbon nanotube[J].Nature,1998,393(6680):49-52
    [49]Collins P G,Bradley K,Ishigami M,et al.Extreme oxygen sensitivity of electronic properties of carbon nanotubes[J].Science,2000,287(5459):1801-1804
    [50]Overney G,Zhong W,Tomanek D Z.Structural rigidity and low frequency vibration modes of long carbon tubules[J].Phys D,1993,27(1):93-96
    [51] Chengyu Wei, Srivastava D, Kyeongjae Cho. Molecular dynamics study of temperature dependent plastic collapse of carbon nanotubes under axial compression [J]. Computer Modeling in Engineering&Sciences, 2002, 3(2): 255-261
    [52] Ruoff R S, Lorents D C. Mechanical and thermal properties of carbon nanotubes [J]. Carbon, 1995,33(7): 925-930
    [53] Tadashi Ema, Juka Kobayashi, Soichi Maeno ,Takashi Sakai and Masanori Utaka, Origin of the enantioselectivity of lipases explained by a stereo-sensing mechanism operative at the transition state,Bulletin of the Chemical Society of Japan, 1998,71:443-453
    [54]A.J.M. Janssen, A.J.H. Klunder and B.Zwanenburg, Resolution of secondary alcohols by enzyme-catalyzed transesterification in alkyl carboxylates as the solvent, Tetrahedron, 1991,47(35):7645-7662
    [55]Liisa T. Kanerva, Jouko Vihanto, Marjo H. Halme, Jyrki M. Loponen and Erkki K. Euranto, Solvent effects in lipase-catalyzed transesterification reactions Acta Chemica Scandinavica , 1990,44:1032-1035
    [56]Krista Frings, Martin Koch, Winfried Hartmeier, Kinetic resolution of 1-phenylethanol with high enantioselectivity with native and immobilized lipase in organic solvents. Enzyme and Microbial Technology, 1999, (25):303-309
    [57]Toshiyuki Nishio, Minoru Kamimura, Masakazu Murata, Yoshiyasu Terao Kazuo Achiwa ,Production of optically active esters and alcohols from racemic alcohols by lipase-catalyzed stereoselective transesterification in non-aqueous reaction system, Journal of Biochemistry 1989,105:510-512
    [58]Takashi Keumi, Yasumasa Hiraoka, Takashi Ban, Ichiro Takahashi and Hidehiko Kitajima, Utility of acyloxypyridines and acylazoles for thelipase-catalysed enantioselective acylation of 1-phenylethanol, Chemistry Letters 1991, 11:1989-1992
    [59]Koichiro Naemura, Ritsuko Fukada, Masayoshi Konishi, Keiji Hirose and Yoshito Tobe, Lipase YS-catalyzed acylation of alcohols: A predictive active site model for lipase YS to identify which enantiomer of a primary or a secondary alcohol reacts faster in this acylation, Journal of the Chemical Society Perkin Transactions, 1994,1253- 1256
    [60]Andre Overmeyer, Sandra Schrader-Lippelt, Volker Kasche and Gerd Brunner, Lipase-catalysed kinetic resolution of racemates at temperatures from 400℃ to 1600℃ in supercritical CO2,Biotechnology Letters, 1999,21:65-69
    [61]Jose-Ramon Carrillo-Munoz, Denis Bouvet, Eryka Guibe-Jampel, Andre Loupy and Alain Petit,Microwave-promoted lipase-catalyzed reactions. Resolution of (±) -1-phenylethanol, Journal of Organic Chemistry 1996,61:7746-7749
    [62]Arie L. Gutman, Dov Brenner and Aviv Boltanski, Convenient practical resolution of racemic alkyl-aryl alcohols via enzymatic acylation with succinic anhydride in organic solvents, Tetrahedron Letters 1993,4(5):839-844
    [63] Manfred Schudok and Gerhard Kretzschinar, Enzyme catalyzed resolution of alcahols using ethoxyvinyl acetate, Ttrahedron Letters, 1997, 38(3):387-388
    [64]Yasuyuki kita, Yasushi Takebe, Kenji Murata, Tadaatsu Naka and Shuji Akai, Convenient enzymatic resolution of alcohols using highly reactive, nonharmful acyl doners, 1 -ethoxyvinyl esters, Journal of Organic Chemistry, 2000,65:83- 88
    [65]Hans Frykman, Niklas Ohrner, Torbjorn Norm and Karl Hult, S-ethyl thiooctanoate as acyl donor in lipase catalysed resolution of secondary alcohols Ttrahedron Letteer, 1993, 34(8): 1367-1370
    [66]Hong Yang , Erik Henke and Uwe T. Bornscheuer, Highly efficient double enantioselection by lipase-catalyzed transesterification of (R,S)-carboxylic acid vinyl esters with (RS)-1- phenylethanol,Tetrahedron: Asymmetry, 1999, 10:957-960
    [67]Sonja H. Schofer, Nicole Kaftzik, Peter Wasserscheid and Udo Kragl, Enzyme catalysis in ionic liquids: lipase catalysed kinetic resolution of 1-phenylethanol with improved enantioselectivity , Chemical Communication, 2001,5:425-426
    [68]Daniele Bianchi, Pietro Cesti, Ezio Battistel Anhydrides as acylating agents in lipase-catalyzed steroselective esterification of racemic alcohols, Journal of Organic Chemistry, 1988,53:5531-5534
    [69]Neils Krebsfanger, kerstin Schierholz, Uwe T. Bornscheuer, Enantioselectivity of a recombinant esterase from pseudomonas fluorescens towards alcohols and carboxylic acids, Journal of Biotechnology, 1998,60,105-111
    [70]Jean-Yves Legros, Martial Toffano, Sally K. Drayton, Michael Rivard and Jean-Claude Fiaud,Kinetic resolution of secondary alcohols mediated by rabbit gastric lipase, Ttrahedron Letters,1997,38(11):1915-1918
    [71]Yoshio Okahata, Yoshitaka Fujimoto and Kuniharu I Ijiro, Lipase-lipid complex as a resolution catalyst of racemic alcohols in organic solvents, Ttrahedron Letters 1988, 29(40):5133-5134
    [72]Yoshio Okahata, Yoshitaka Fujimoto and Kuniharu Ijiro A lipid-coated lipase as an enantioselective ester synthesis catalyst in homogeneous organic solvents,Journal of Organic Chemistry,1995,60:2244-2250
    [73]Bakker,M.;Spruijt,A.S.;Uan Rantwijk,F.;Sheldon,R.A.,Highly enantioselective aminoacylase-catalyzed transesterification of secondary alcohols,Tetrahedron Asymmetry,2000,11(8):1801-1808
    [74]Bakker,M.;Spruijt,A.S.;Uan Rantwijk,F.;Sheldon,R.A.,Enantioselective transesterification of secondary alcohols mediated by aminoacylases from aspergillus species,Journal of Molecular Catalysis B:Enzymatic,2001,11:373-376
    [75]Anil K.Saikia,Ghanashyam Bez,Maitreyee S.Bezbarua and Nabin C.Barua,Goat liver lipase:An efficient biocatalyst for enantioselective transesterification of secondary alcohols using vinyl acetate as acyl donor,Journal of the Indian Chemical Society,1997,74:937-939
    [76]何耀强,王炳武,谭大伟.假丝酵母99-125脂肪酶的发酵工艺研究[J].生物工程学报,2004,20(6):918-921
    [77]Dordiek J S,Biotechnol Prog,1992,8:259-267.
    [78]彭立凤.有机溶剂对酶催化活性和选择性的影响,化学进展,2000,12(3):296-304