激波与边界层干扰的吹除控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对于超音速进气道来说,激波/边界层相互干扰是常见的现象,达到一定程度甚至会出现边界层的分离,并最终影响到发动机的正常运转。所以,对进气道边界层的有效控制对于推进系统是至关重要的。吹除式边界层控制是一种非常有效的方法。
     本文以二维平板/楔结构为基础,首先,数值模拟了斜激波冲击平板诱导平板边界层产生分离的现象,并得出相应的分离区的范围。然后,构造了带有吹除喷嘴的模型。数值模拟了加入边界层的吹除控制后,流场中产生的现象。比较了有/无边界层吹除控制的流场波系结构和壁面参数分布。最后,计算并比较了不同的喷嘴进口压力和相对位置,边界层吹除控制对分离区和流场的影响情况。
     结果表明,数值模拟边界层的吹除控制是可行的。边界层的吹除对于激波/边界层分离和边界层的厚度能够进行有效地控制。在加入吹除控制的情况下,流场中波系发生了复杂的变化,出现了激波之间,激波和膨胀波之间的相互作用,这种现象的主要影响因素是吹除喷嘴的进口总压和吹除喷嘴的位置。
Shock wave/boundary layer interaction is a universal phenomenon in supersonic inlets. It will cause the separation of boundary layer when this phenomenon reach to a certain extent, and this will eventually produce an effect on the nomal work of the engine. So, efficient control of inlet boundary layers is essential for propulsion systems, blowing boundary layer control is a good one which is worth studying.
     In this paper, first of all, the separation of boundary layer induced by impinging shock-wave generated by 2D wedge/plate configuration is numerically studied, and the scope of the separation is given. Then, a 2D wedge/plate configuration with a blowing nozzle is designed. Based on this model, the phenomenon of flow field is numerically studied. A comparison between the two model is drawn, which is about the wave structure of the flow field and the distribution of the parameters along wall. At last, the effects of entrance pressure and relative position of the nozzle on the separation region and flow field are compared and analyzed.
     The results show that, numerical simulation of blowing boundary layer control is feasible. The separation of shock wave/boundary layer and the thinkness of boundary layer can be controlled effectively by a blowing boundary layer control system. However, there are complex changes in the flow field. Specifically, the interactions between shock waves, the interactions between shock wave and dilatiational wave, the main influencing factor is the blowing total pressure of the nozzle, the relative position of the blowing nozzle is other factor.
引文
[1]牟让科,杨永年,叶正寅.超临界翼型的跨音速抖振特性.计算物理.2001(05):477—480页
    [2]章赛进,夏南.二维激波边界层干扰的数值分析.上海大学学报(自然科学版).2004(03):255-263页
    [3]陈雄,郑亚,周长省,鞠玉涛.冲压增程弹丸进气道复杂湍流流场数值仿真.兵工学报.2005(03):303-307页
    [4]马宇,陈强,秦永明,燕军龙,张尚彬.进气道激波附面层干扰控制技术研究最新进展.中国航空学会2007年学术年会气动专题32
    [5]David D Young, Stewart A Jenkins and Daniel N Miller, A Investigation of Active Flowfield Control for Inlet Shock/Boundary Layer Interaction, AIAA Paper 2005-4020
    [6]Tindell R and Willis B, Experimental investigation of blowing for controlling obique shock/boundary layer interactions, AIAA Paper 1997-2642
    [7]Jenkins L, Gorton S and Anders S, Flow control device evaluation for an internal flow with an adverse pressure gradient, AIAA Paper 2002-0266
    [8]Serge E Tournier and James D Paduano, Flow Control in a Transonic Inlet, AIAA Paper 2006-3883
    [9]任三星,李学来,郭荣伟.埋入式进气道流场控制研究.航空学报.2000,21(3):226-229页
    [10]Bur R, Benay R, Corbel B and Delery J, Physical Study of Shock /boundary-Layer Interaction Control in Transonic Flow, AIAA Paper 2000-0933
    [11]Lin Y L, Rimlinger M J, Shih T L and Willis B P, Control of Shock/ Boundary-Layer Inter-actions with Passive Blowing and Bleeding, AIAA Paper 97-3002
    [12]Healy M, M J O and Raghunathan S, Further investigations of passive vortex control jets for shock boundary layer interactions, AIAA Paper 2002-2732
    [13]Hafenrichter E, Lee Y, MCIIwain S, Dutton J and Loth E, Experiments on normal shock/boundary layer interaction control using aeroclastic mesoflaps, AIAA Paper 2001-0156
    [14]Holden H and Babinsky H, Shock/Boundary Layer Interaction Control Using 3D Devices, AIAA Paper2003-447
    [15]Srinivasan K, Loth E, and Dutton J, Aerodynamics of Recirculating Flow Control Devices for Normal Shock/Boundary Layer Interactions, AIAA Paper 2004-426
    [16]张红军,忻贤钧,白葵,沈清.超声速进气道边界层吸除方案设计及实验.实验流体力学.2008年03月,第22卷,第1期
    [17]黄熙君,董金钟,肖承恕,袁涛.大扩张角扩压器的附面层吹除技术的研究.推进技术.1989年06月,第3期
    [18]中国力学学会.中国科学院力学研究所编.郭永怀文集.北京:科学出版社,1982
    [19]Knight D D, Degrez G. Shock Wave Boundary Layer Interactions in High Mach Number Flows. A Critieal Survey of Current Numerical Prediction Capabilities. Advisory Rept.319. AGARD,1998 (12),2:11-13P
    [20]Marat A Goldfeld, Roman V Nestoulia, Alexei V Starov The Boundary Layer interaetion with shock wave and expansion fan. Journal of Thermal Science.2000,9:109-114P
    [21]Beam R M, Warming R F An implicit factored scheme for the compressible Navier-Stokes equations. AIAA,1978,16:393-402P
    [22]蒋旭旭.激波诱导边界层分离的研究..哈尔滨工程大学硕士学位论 文.2006:3-5页,33-35页
    [23]Tsien, Hsue-shen, Finston M Interaetion between paralle streams of Subsonic and supersonic velocities, J. Aero. Sei,1949,16(9):515-528P
    [24]Howarth L. The propagation of steady disturbances in a supersonic stream bounded on one side by a Parallel subsonic stream. Proe Cambridge Phil. Soe.1947:380-390P
    [25]董志勇,韩肇元,刘延宁.运动激波与非定常边界层干扰的实验研究.中国科学技术大学学报.1996,(力学与工程应用专刊):155-159页
    [26]徐立功,冉政.一种计算超声速流中由湍流剪切层脉动引起的激波振荡频率的方法.应用数学和力学.1991(08):7-10页
    [27]黄国平,梁德旺.块结构的MUSCL算法求解三维进气道流场.空气动力学学报.2000(02):9-13页
    [28]张树道,司徒明,韩肇元.SFD方法模拟高超声速进气道中激波与边界层干扰.推进技术.2000(01):5-9页
    [29]Mair W A. Experiments on seperation of boundary layer on probes in a supersonic airstream. Phil Mag,1952,43:695-716P
    [30]董志勇,吕阳泉.激波与边界层干扰研究综述.浙江工业大学学报.2001(09),第29卷,第3期
    [31]郭鸿志,张欣欣,刘向军,李杰.传输过程数值模拟.北京:冶金工业出版社.1998(04):83页
    [32]薛祖绳.边界层理论.北京:水利电力出版社.1995(05):51页
    [33]Lighthill M J. Reflection at a laminar boundary layer of a weak steady disturbance to a supersonic stream, neglecting viscosity and heatcon duction. Quart J Mech and Appl Math,1950,111 (3):303-325P
    [34]Liepmann H W. The interaction between boundary layer and shock waves in transonic flow. J AS,1946,13:623-637P
    [35]Meksyn D. The boundary layer equations of compressible flow separation. ZAMM,1958,38:372-379P
    [36]JonesW P, Launder B E. The prediction of laminarization with a two-equation model of turbulence.Int.J.Heat Mass Transfer.1972, 15:301-314P
    [37]史里希廷.边界层理论.科学出版社.1988:25-26页
    [38]刘惠枝,舒宏纪.边界层理论.人民交通出版社.1991:312-314页
    [39]T.卡门.超声速空气动力学原理和应用.科学出版社.1959:38页
    [40]童秉刚,孔祥言,邓国华.气体动力学.高等教育出版社.123-125页
    [41]Liepmann H W, Roshko A, Dhawan S. On reflection of shock waves from boundary layer. Coll. Aero. Cranfiled, Note No.93,1959
    [42]Hakkinen R J, Greber I, Trilling L. The interaction of an oblique shock wave with a laminar boundary layer. NASA, memo 1959,2-18-59w
    [43]Doyle Knight, Hong Yan, Argyris G, Panaras, Alexander Zheltovodov. Advances in CFD prediction of shockwave turbulent boundary layer interactions. Progress in Aerospace Sciences 39,2003:121-184P
    [44]陈再新,刘福长,鲍国华.空气动力学.北京:航空工业出版社.1993
    [45]陶文铨.数值传热学.西安交通大学出版社.333页
    [46]许维德.湍流边界层理论.哈尔滨船舶工程学院出版社.1986:71页
    [47]张瑜.膨胀波与激波.北京大学出版社.1983(09):76页
    [48]Ackeret J, Feldmann F, Rott N. Investigations of compression shocks and boundary layer in gases moving at high speed. NACA TM 1113,1947
    [49]Liepmann H W. The interaction between boundary layer and shock waves in transonic flow. JAS 13,1946:623-637P
    [50]Barry F W, Shapiro A H, Neumann E P. The Interaction of Shock Waves with Boundary Layer.Philosophical Magazine, Series 7,1951,18(4): 229-238P
    [51]Bogdonoff S M, Kepler C E. Separation of a supersonic turbulent boundary layer. JAS 22,1955:414-424P
    [52]Fluent Inc. Fluent User's Guide. Fluent Inc.2003
    [53]Angela D, McConnell.Roughness Effects on Impinging Shock Wave /Turbulent Boundary Layer Interactions. The paper of Master of Cambridge University Engineering Department.1999,8:33P
    [54]Kistler A L. Fluctuation measurements in a supersonic turbulent boundary layer. Phys. Fluids 2,1959:290-296P
    [55]韩占忠,王敬,兰小平.FLUENT-流体工程仿真计算实例与应用.北京理工大学出版社.2007(7):171-175页