转基因棉花的Bt毒素在土壤中的分布及对土壤酶活性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
转基因棉花对中国和世界棉花生产起到了积极的推动作用。随着转Bt CrylAc基因棉花的种植面积逐年增加,人们对转基因作物释放后存在的安全性也越来越关注。因此深入研究转Bt基因抗虫棉在土壤中的Bt毒蛋白含量与残留、对土壤生态系统平衡、酶活性等的影响是转基因作物能否健康、可持续发展的必备条件。
     本试验采用盆栽试验并结合酶联免疫(ELISA)法测定了转Bt基因抗虫棉及常规棉花在不同生育时期在根际土壤及非根际土壤的Bt毒蛋白含量,以及各个生育时期的根际及非根际土壤的脲酶和蔗糖酶活性变化,旨在为转Bt基因棉花种植后的根际环境变化提供信息,并为转基因植物的土壤生态系统安全性评价提供科学依据。
     主要结果如下:
     1.红壤、黄棕壤及黄褐土种植转Bt基因棉花和常规棉花后,根际土的Bt毒素含量大于非根际土的,其中转Bt基因棉花根际土与非根际土有显著性差异,而常规棉花根际与非根际则差异不显著。转Bt基因棉花在苗期根际土的Bt毒素含量为黄褐土>黄棕壤>红壤,分别为常规棉花根际土的1.44、1.21、2.38倍,而在花铃期为黄棕壤>黄褐土>红壤,分别为常规棉花根际土的1.56、1.16、1.97倍,且均达到显著差异。
     2.黄褐土、黄棕壤和红壤两种棉花的根际土和非根际土都随棉花生长期增长Bt毒素含量先增加后减少。其中转Bt基因棉花的黄褐土、黄棕壤和红壤根际土的Bt毒素含量最大值分别为3.67 ng/g土、3.61 ng/g土和3.16 ng/g土,而最小值分别为0.79 ng/g土、0.79 ng/g土和0.62 ng/g土。在实验期间内,转Bt基因棉花的根际土Bt毒素含量大于常规棉花的,说明转Bt基因棉花确有更多的Bt毒素释放到根际土中。
     3.黄褐土、黄棕壤和红壤上种植转Bt基因棉花或常规棉花后,根际土的蔗糖酶活性高于非根际上。蕾期、花铃期的转Bt基因棉花根际土的蔗糖酶活性均为黄棕壤>黄褐土>红壤,且都达到显著差异。转Bt基因棉花蕾期黄棕壤、黄褐土及红壤根际土的蔗糖酶活性分别是常规棉花根际土的0.93、1.14、1.02倍,花铃期为1.09、1.07、1.24倍。
     4.黄褐土和黄棕壤根际土和非根际土的蔗糖酶活性均随生长期先减小再增大,最后又减少。其中种植转Bt基因棉花的黄褐土和黄棕壤根际土的蔗糖酶活性最小值分别为28.17 mg/g土和39.00mg/g土,而最大值分别为50.36 mg/g土和63.68 mg/g土。
     5,转Bt基因棉花蕾期根际土的脲酶活性为黄棕壤>红壤>黄褐土,但相互间差异不显著,而在花铃期为黄褐土>红壤>黄棕壤,且黄褐上与红壤有显著差异,红壤与黄棕壤差异不显著。转Bt基因棉花根际土的脲酶活性都大于非根际土。转Bt基因棉花蕾期黄褐土、黄棕壤和红壤根际土的脲酶活性分别是常规棉花根际土的2.02、1.87、2.31倍,花铃期为0.96、0.88、1.01倍。
     6.从蕾期到吐絮期,转Bt基因棉花的根际土和非根际土以及常规棉花的非根际土的脲酶活性一直减小,而常规棉花根际土的脲酶活性则先增大,后减小。其中转Bt基因棉花的黄褐土和黄棕壤的根际土脲酶活性最大值为分别为0.82 mg/g土和0.87mg/g土,而最小值分别为0.59 mg/g土和0.41 mg/g土。整个生育期内,根际土的脲酶活性均大于非根际土的。
Transgenic cotton has played a pc,sitive role in promoting cotton production of China and the world.With the growth of planting area of the transgenic Bt CrylAc cotton year by year,people pay more attention to the safety of the release of transgenic crops.Deeply study of the Bt toxic protein content and residue in the soil after planting transgenic Bt cotton and non-Bt cotton,and the influence on the soil ecosystem balance and the soil invertase and urease activity are necessary conditions for sustainable development and healthy of Transgenic crops.
     Detecting content of Bt insecticidal crystalline protein(ICP) using the enzyme linked immuno sorbed assay(ELISA),the invertase activity and urease activity in rhizosphere and non-rhizosphere soil in different stages of transgenic Bt cotton and non-Bt cotton adopt a pot experiment,that can provide the effects of rhizosphere environment and a scientific basis for safety assessment of the soil ecosystem.The main results are outlined as follows:
     1.Content ofBt ICP in rhizosphere soil is more than in non-rhizosphere soil after planting transgenic Bt cotton and non-Bt cotton.Content of Bt ICP in bud stage of transgenic Bt cotton in rhizosphere soil is in the order of yellow cinnamon soil>yellow brown soil>red soil.Contents ofBt ICP oftransgenic Bt cotton were 1.44,1.21 and 2.38 times of non-Bt cotton in yellow cinnamon soil,yellow brown soil and red soil,separately. Content of Bt ICP in flowering and boll-setting period of transgenic Bt cotton in rhizosphere soil is in the order of yellow brown soil>yellow cinnamon soil>red soil. Contents of Bt ICP of transgenic Bt cotton were 1.56,1.16 and 1.97 times of non-Bt cotton in yellow brown soil,yellow cinnamon soil and red soil,separately.All of them are significantly differences.
     2.Content of Bt ICP of transgenic Bt cotton and non-Bt cotton in rhizosphere and non-rhizospher soil firstly increases,then decreases with time.The maximum values of Bt content of transgenic Bt cotton in rhizosphere soil are 3.67 ng/g in yellow cinnamon soil, 3.61 ng/g in yellow brown soil and 3.16 ng/g in red soil.And the minimum values of Bt content are 0.79 ng/g in yellow cinnamon soil,0.79 ng/g in yellow brown soil and 0.62 ng/g in red soil.Throughout the experimental period,content ofBt ICP in rhizosphere soil of transgenic Bt cotton is approximately more than of non-Bt cotton.The result show that more Bt ICP released to rhizosphere soil from transgenic Bt cotton than non-Bt cotton.
     3.The soil invertase activity in rhizosphere soil is approximately more than in non-rhizosphere soil after planting transgenic Bt cotton and non-Bt cotton.The soil invertase activity of transgenic Bt cotton in rhizosphere soil including bud stage and flowering and boll-setting period is in the order of yellow brown soil>yellow cinnamon soil>red soil.All of them are significantly differences.The soil invertase activity of transgenic Bt cotton in bud stage is 0.93 times of non-Bt cotton in yellow brown soil,1.14 times in yellow cinnamon soil and 1.02 times in red soil.And when in flowering and boll-setting period,that is 1.09 times,1.07 times and 1.24 times.
     4.The soil invertase activity of transgenic Bt cotton and non-Bt cotton in rhizosphere and non-rhizospher soil including yellow brown soil and yellow cinnamon soil firstly decreases,then increases with time.The minimum soil invertase activity of transgenic Bt cotton in rhizosphere soil are 28.17 mg/g in yellow cinnamon soil and 39.00 mg/g in yellow brown soil.And the maximum values of Bt content are 50.36 mg/g in yellow cinnamon soil and 63.68 mg/g in yellow brown soil.
     The soil urease activity of transgenic Bt cotton in rhizosphere soil in bud stage is in the order of yellow brown soil>red soil>yellow cinnamon soil.And they are no significant differences.And the soil urease activity in flowering and boll-setting period is in the order of yellow cinnamon soil>red soil>yellow brown soil.
     5.It is significantly difference between yellow cinnamon soil and red soil.It is no significantly difference between red soil and yellow brown soil.The soil urease activity in rhizosphere soil is more than in non-rhizosphere soil after planting transgenic Bt cotton. The soil urease activity of transgenic Bt cotton in bud stage is 2.02 times of non-Bt cotton in yellow cinnamon soil,1.87 times in yellow brown soil and 2.31 times in red soil.And when in flowering and boll-setting period,that is 0.96 times,0.88 times and 1.01 times.
     6.The soil urease activity of transgenic Bt cotton and non-Bt cotton in non-rhizosphere soil decreases with time.And the soil urease activity of transgenic Bt cotton in rhizosphere soil is similar to that.The soil urease activity of non-Bt cotton in rhizospher soil firstly increases,then decreases.The maximum soil urease activity of transgenic Bt cotton in rhizosphere soil are 0.82 mg/g in yellow cinnamon soil and 0.87 mg/g in yellow brown soil.And the minimum values of Bt content are 0.59 mg/g in yellow cinnamon soil and 0.41 mg/g in yellow brown soil.Throughout the experimental period,the soil urease activity in rhizosphere soil is more than of in non-rhizosphere soil.
引文
1.陈松,吴敬音,何小兰等.转基因抗虫棉组织中Bt毒蛋白表达量的ELISA测定.江苏农业学报.1997,13(3):27-29
    2.陈松,张震林,张香桂等.ELISA方法鉴定转Bt基因抗虫棉.江苏农业科学.2003,1:21-23
    3.陈永红,李哲敏,许世卫.农业转基因生物安全性分析,中国食品与营养,2003,9:4-6
    4.邓立新,生物农药苏云金芽孢杆菌杀虫剂及其增效剂.化学教学.2004,3:31-32
    5.丁群星,谢友菊,戴景瑞.用子房注射法将Bt毒蛋白基因导入玉米的研究.中国科学(B辑).1993,23(7):707-713
    6.丁志勇,许祟任,王戎疆.转Bt基因抗虫棉与常规棉中几种同工酶的比较--转基因植物安全性评价生理指标初探.生态学报.2001,21(2):332-336
    7.郭三堆,崔洪志.中国抗虫棉GFM CrylA杀虫基因的合成及表达载体构建.中国农业科技导报.2000,2(2):21-25
    8.贾士荣.转基因作物的安全性争论及其对策.生物技术通道.1999,1(6):1-7
    9.贾士荣,郭三堆,安道昌.转基因棉花.科学出版社,2001:218-224
    10.励建荣.转基因食品的优点和安全性.食品工业利技,2002,23(4):25-28
    11.李影林,鲁长毫,卢淑文等.中华医学检验全书.人民卫生出版社.1996
    12.刘光明,苏文金,陈向峰.应用ELISA定量检测转基因玉米中Bt蛋白的研究.食品科学.2002,23(8):217-221
    13.刘光明,苏文金.应用间接ELISA方法定量检测转基因抗虫玉米.食品与生物技术.2003,22(1):49-53
    14.刘茵,刘秀花.转基因植物在农业中的应用.商丘师范学院学报.2004,2:143-146
    15.莽克强.转基因植物的生物安全性的商榷.生物工程进展.1996,16(4):2-6
    16.聂建荣,王建武,骆世明.转基因植物对农业生物多样性的影响.应用生态学报.2003,14(8):1369-1373
    17.聂凌鸣,宁正祥.转基因食品的发展前景.粮食与油脂.2002,10:28-30
    18.秦崇涛,陈在杰,苏军等.3种ELISA法定量检测转CrylAc基因水稻CrylAc蛋白的比较研究.福建农业学报.2003,18(4):258-263
    19.屈西峰,姜玉英,张跃进.我国转基因抗虫棉应用现状和对策.植保技术与推广.2001,21(4):37-39
    20.瞿礼嘉.现代生物技术导论.高等教育出版社.1998:254-286
    21.芮玉奎.转基因抗虫棉生产安全性的研究.[博士学位论文].北京:中国农业大学图书馆,2003
    22.沈法富,于元杰,尹承俏等.利用Dot-ELISA检测Bt棉杀虫蛋白的研究.中国农业科学.1999,32(1):15-19
    23.沈法富,韩秀兰,范术丽.转Bt基因抗虫棉根际微生物区系和细菌生理样多样性的变化.生态学报.2004,24(3):432-437
    24.沈关心,周汝麟.现代免疫学实验技术.湖北科学技术出版社.1998
    25.束春娥,柏立新,孙以文等.转基因抗虫棉的抗性鉴定.江苏农业学报.1997,13(1):23-27
    26.孙彩霞,陈利军,武志杰等.种植转Bt基因水稻对土壤酶活性的影响.应用生态学报.2003,14(12):2261-2264
    27.孙彩霞,陈利军,武志杰.Bt毒素在转基因棉花与土壤系统中的分布.应用生态学报.2005,16(9):1765-1768
    28.田颖川,秦晓峰,许丙寅等.表达苏云金杆菌δ-内毒素基因的转基因烟草的抗虫性.生物工程学报,1991,7(1):1-10
    29.汪海珍,徐建民,谢正苗.转基因作物在土壤环境中的残留及其对土壤生物的影响.土壤.2005.37(4):370-374
    30.王保民,何钟佩,田晓莉.苏云金芽胞杆菌杀虫晶体蛋白CrylA单克隆抗体的制备及在转Bt基因棉毒蛋白检测上的应用.棉花学报.2000,12(1):34-39
    31.吴孔明,郭予元,王武刚.部分GK系列Bt棉对棉铃虫抗性的田间评价.植物保护学报.2000,27(4):317-321
    32.吴立成,李啸风,叶庆富等.转CrylAb基因水稻中毒蛋白的表达、分泌及其在土壤中的残留.环境科学.2004,25(5):116-127
    33.吴伟祥,叶庆富,闵航.不同生长期转Bt基因水稻秸杆还土对淹水土壤酶活性的影响.生态学报.2003,3(11):2353-2358
    34.夏敬源,崔金杰.转Bt基因抗虫棉在害虫综合治理中的作用研究.棉花学报,1999,11(2):57-64
    35.谢道昕,范云六,倪丕冲.苏云金芽孢杆菌杀虫基因导入中国栽培水稻品种中花11号获得转基因植株.中国科学(B辑).1991,8:830-834.
    36.徐曼妮,赵建阳,厉曙光等.转基因食品及其检测方法.食品科技.2002,12:1-3
    37.喻翠玲,冯中朝.全球转基因作物生产概况与发展趋势.生态经济.2005,7:73-75
    38.曾杨清.转基因食品的生物安全性探讨.四川食品与发酵.2002,38(1):34-38
    39.张小四,李松岗,许崇任等.转Bt棉不同生长期及不同器官杀虫蛋白表达量的免疫学方法测定.北京大学学报.2000,36(4):41-48
    40.张永军,吴孔明,郭予元.转Bt基因棉花杀虫蛋白含量的时空表达及对棉铃虫的毒杀效果.植物保护学报.2001,28(1):1-6
    41.周志军,杨培慧,郑志雯等.转基因食品及其检测技术.武汉工业学院学报.2002,1:25-28.
    42.Anastas P T,Warner JC.Green Chemistry:Theory and practice.New York:Oxford science publish.1998
    43.Angle J S.Release of transgenic plants:Biodiversity and population-level consideration.Mol Ecol.1994,3:45-50
    44.Aziz Elbehri,Steve Macdonald.Estimating the impact of transgenic Bt cotton on west and central Africa:a general equilibrium approach,world development.Economic research service,USDA.2004,32(12):2049-2064
    45.Benedict J H,Sachs E S,Altman D W,Deaton R J,Kohel D R.Field performailce of cottons expressing transgenic CrylA insecticidal proteins for resistance to Heliothis virescens and hellicoverpa zea(Lepido ptera:Noctuidae).J Ecol Entomolo.1996,89:230-238
    46.Bruns H A,Abel C A.Nitrogen fertility effects on Bt-endotoxin and nitrogen concentrations of maize during early growth.Agron J.2003,95:207-211
    47.Busto M D,Perez-Mateos M.Extraction of humic-β-glucosidase fractions from soil.Biol and Fertil Soils.1995,20:77-82.
    48.Cannon R J C.Bt transgenic crops:Risk and benefits.Integrat Pest Manage Reviews,2000,5:151-173
    49.Cousins Y L,Lyon B R,Llewetlgn D J.Transformation of an Australian cotton cultivar:prospects for cotton improvement through genetic engineering.Aust J of Plant Physiol.1991,18:481-494
    50. Cummings C E, Armstrong G, Hodgman T C. Structural and functional studies of a synthetic peptide mimicking a proposed membrane inserting region of a Bacillus thuringiensis 8-endotoxin. Mol Memb Biol. 1994, 11: 87-92
    
    51. Crecchio C, Stotzky G Insecticidal activity and biodegradation of the toxin from bacillus thuringiensis subsp, kurstaki bound to humic acids from soil. Soil Biol & Biochem. 1998, 30(4): 463-470
    
    52. Crecchio C, Stotyky G. Biodegradation and insecticidal activity of the toxin from Bacillus thuringiensis subsp. kurstaki bound on complexes of montmorillonite-humic acids-Al hydroxypolymers. Soil Biol & Biochem. 2001, 33: 573-581
    
    53. Donegan K K, Palm C J, Fieland V J, Porteous L A, Ganio L M, Schaller D L, Bucao L Q, Seidler R J. Changes in levels, species, and DNA fingerprints of soil microorganisms associated with cotton expressing the Bacillus thuringiensis var. kurstaki endotoxin. Appl Soil Ecology. 1995,2(2): 111-124
    
    54. Donegan K K, Seidler R J, Doyle J D. Fieland V J. A field study with genetically engineered alfalfa inoculated with recombinant Sinorhizobium meliloti: Effects on the soil ecosystem. J Appl Ecol, 1999, 36: 920-936
    
    55. Ferre J, Escriche B, Bel Y. Biochemistry and genetics of insect resistance to Bacillus thuringiensis insecticidal crystal proteins. FEMS Microbiol Lett. 1995,132: 1-7
    
    56. Griffiths B S, Geoghegan I E, Robertson W M. Testing genetically engineered potato, producing the lections GNA and Con A, on nontarget soil organisms and processes. J Appl Ecol. 2000, 37(1): 159-170
    
    57. Head G, Surber J B, Watson J A, Martin J W, Duan J J. No detection of Cry1Ac protein in soil after multiple years of transgenic Bt cotton (Bollgard) use. Environ Entomol.2002,31:30-36
    
    58. Huang J K, Rozelle S, Pray C, Wang Q. Plant biotechnology in China. Science. 2002, 295, 674-677.
    
    59. Hofte H, Whiteley H R. Insecticidal crystal protein of Bacillus thuringiensis. Microbiol Rev. 1989, 53: 242-255
    
    60. Hori H, Takahashi Y,. Detection of the Bacillus thuringiensis serovar japonensis strain Buibui protoxin with enzyme-linked immunosorbent assay and its application to detection of the protoxin in soil. Appl Entomol and Zoology. 2000, 35: 401-411
    61. Hopkins D W. Greorich E G. Detection and decay of the Bt endotoxin in soil from a field trial with genetically modified maize. Eur J Soil Sci. 2003, 54: 793-800
    
    62. James R R. Utilizing a social ethic toward the environment in assessing genetically engineered insect-resistance in trees. Agric and Human Values. 1997, 14: 237-249
    
    63. James C, Global status of commercialized transgenic crops. ISAAA Brief. 2002. 24
    
    64. Jerkins J N, Mc Carty J C, Buehler R E, Rangan G. Resistance of cotton with 5-endotoxin genes from Bacillus thuringiensis var. Kurstaki on selected Lepidopteran insects. Agron J. 1997, 89: 768-780
    
    65. Jepson P C, Croft B A, Pratt G E. Test systems to determine the ecological risks posed by toxin release from Bacillus thuringiensis genes in crop plants. Molec Ecol. 1994,3:81-89
    
    66. Kirouac M, Vachon S, Rivest J L. Analysis of the properties of Bacillus thuringiensis insecticidal toxins using a potential-sensitive fluorescent probe. Membrane Biol. 2003, 196: 51-59
    
    67. Lipp M, Brodmann P, Pietsch K, Pauwels J, Anklam E, Borchers T, Braunschweiger G, Busch U. IUPAC collaborative trial study of method to detect genetically modified soybeans and maize in dried powder. J AOAC Inte. 1999, 82(4): 923-928
    
    68. Lipp M, Anklam E. Results of an interlaboratory assessment of a screening method of genetically modified organisms in soybeans and maize. Food Control. 2000, 83(4): 919-926
    
    69. Yang L, Chen J, Huang C, Liu Y, Jia S, Pan L, Zhang D. Validation of a cotton-specific gene, Sad1, used as an endogenous reference gene in qualitative and real-time quantitative PCR detection of transgenic cottons. Plant Cell Rep. 2005, 24: 237-245
    
    70. Losey J E, Rayor L S, Carter M E. Transgenic pollen harms monarch larvae. Nature, 1999,399:214-216
    
    71. Men X Y, Ge F, Edwards C A, Erdal N Y. Influence of pesticide applications on pest and predatory arthropods associated with transgenic Bt cotton and non-transgenic cotton plants. Phytoparasitica. 2004, 32 (3): 246-254
    
    72. Morra M J. Assessing the impact of transgenic plant products on soil organisms. Mol Ecol.1994, 3: 53-55
    73. Parlak F J, Deaton R W, Armstrong T A. Insect resistant cotton plants. Biotechnology. 1990,8:93-94
    
    74. Palm C J, Schaller D L, Donegan K K, Seidler R J. Persistence in soil of transgenic plant produced Bacillus thuringiensis var.kurstaki δ-endotoxin. Can J Microbiol. 1996, 42(12): 1258-1262
    
    75. Peferoen M. Progress and prospects for field use of Bt genes in crops. Trends in Biotechnology. 1997,15: 173 -177
    
    76. Pomeranz Y, Meloan C F. Food Analysis: Theory and Practice. Van Nostrand Reinhold, New York. 1994, 3: 491-505
    
    77. Sachs E S, Benedict J H, Stelly D M, Taylor J F, Altman D W, Berberich S A, Davis S K. Expressionand segregation of genes encoding Cry1A insecticidal proteins in cotton. Crop Science. 1998, 1: 11-20
    
    78. Saxena D, Florest S, Stotzky G. Insecticidal toxin in root exudates from Bt corn. Nature. 1999, 402:480-481
    
    79. Saxena D, Stotzky G. Insecticidal toxin from bacillus thuringiensis is released from roots of transgenic Bt corn in vitro and in situ. FEMS Microbiol Ecol, 2000: 33-35
    
    80. Schuler T H, Poppy G M, Keny B R, Brubaker C L, Wendell J F. Insect-resistant transgenic plants. Trends in Biotechnology . 1998,16: 168-175
    
    81. Sims S R, Berberich S A. Bacillus thuringiensis Cry1A protein levels in raw and processed seed of transgenic cotton: Determination using insect bioassay and ELISA. J Econ Entomol. 1996, 89: 247-251
    
    82. Snow A A, Palma P M. Commercialization of transgenic plants: Potential ecological risks. Bioscience.1997, 47(2): 86-96
    
    83. Stotzky G. Persistence and biological activity in soil of insecticidal proteins from Bacillus thuringiensis and of bacterial DNA bound on clays and humic acids. J Environ Qual. 2000, 9: 691-705
    
    84. Stotzky G. Persistence and biological activity in soil of the insecticidal proteins from Bacillus thuringiensis, especially from transgenic plants. Plant Soil. 2004, 266: 77-89
    
    85. Tabatabai M A, Fu M. Extraction of enzymes from soils. New York: Marcel Dekker. 1992, 7: 197-227
    86. Tabatabai M A. Garcia-Manzanedo A M, Acosta-Martinez V. Substrate specificity of arylamidase in soils. Soil Biol Biochem. 2002, 34:103- 110
    
    87. Takahashi Y, Hori H, Furuno H. Enzyme-linked immunosorbent assays for rapid and quantitative detection of insecticidal crystal proteins of bt pesticides. J Pesticide Science. 1998,23:386-391
    
    88. Tapp H, Stotzky G. Dot blot enzyme-linked immunosorbent assay for monitoring the fate of insecticidal toxins fromBacillus thuringiensis in soil . Appl Environ Microb. 1995,61:602-609
    
    89. Tapp H, Stotzky G. Persistence of the insecticidal toxins from Bacillus thuringiensis subsp.kurstaki in soil. Soil Biol& Biochem. 1998, 30(4): 471-476
    
    90. Traore S B, Carlson R E, Pilcher C D, Rice M E. Bt and non-Bt maize growth and development as affected by temperature and drought stress. Agron J. 2000, 92: 1027-1035
    
    91. Trevors J T, Kuikman P, Waston B. Transgenic plants and biogeochemical cycles. Mol Ecol. 1994,3:57-64
    
    92. US EPA. Bacillus thuringiensis plant-pestcides registration action document: preliminary risks and benefits sections. US EPA. 2000
    
    93. Van R J, McGaughey W H, Jonhson D E. Mechanism of insect resistance to the microbial insecticide Bacillus thuringiensis. Science. 1990. 247: 72-74
    
    94. Vazquez R I, Prieto D L, Riva G A. Development of an immunoradio metric assay for quantitative determination of CrylA(b) in transgenic sugarcane plants. J Immunological Methods. 1996, 196:33-39
    
    95. Zwahlen C, Hilbeck A, Gugerli P, Nentwig W. Degradation of the Cry1Ab protein within transgenic Bacillus thuringiensiscorn tissue in thefield. Mol Ecol. 2003, 12: 765-775