青藤碱对EAE模型大鼠T-bet/IFN-γ/iNOS轴负性调节的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     本研究利用急性大鼠实验性自身免疫性脑脊髓炎(EAE)的动物模型和星形胶质细胞和脾脏淋巴细胞体外培养模型,观察青藤碱对模型的神经功能评分、病理改变及炎症因子表达的影响,并探讨其对EAE的预防治疗作用及可能机制,为临床应用治疗MS提供基础实验依据。
     方法:
     1.动物实验部分
     (1).EAE模型制备:用髓鞘碱性蛋白(myelin basic protein,MBP)肽段68-82(MBP68-82)、含结核杆菌的完全弗氏佐剂(complete Freund's adguvant,CFA)和百日咳毒素(Pertussis Toxin,PTX)免疫Lewis大鼠,建立EAE模型。
     (2).实验分组:本实验分为5组:模型对照组(Control组)、模型组(EAE组)、50mg/kg/d青藤碱治疗组(SIN50)、100mg/kg/d青藤碱治疗组(SIN100)、200mg/kg/d青藤碱治疗组(SIN200)。从免疫的第-1天至第3天连续5天腹腔注射不同剂量的SIN治疗EAE大鼠,观察21天并进行临床评价。
     (3).青藤碱治疗作用评价及机制探讨:通过行为观察记录神经功能评分、体重改变;HE染色评价脊髓组织单个核细胞浸润;3H-TdR法检测脾细胞的增殖反应和ELISA法检测细胞因子分泌水平;用RT-PCR法和Western Blot法检测脊髓组织中T-bet、IFN-γ、iNOS mRNA和蛋白表达变化。
     2.细胞实验部分
     (1).建立星形胶质细胞体外培养诱生iNOS体系:用IFN-γ(10ng/mL)和TNF-α(10 ng/mL)共同诱导,用SIN (1mM)或iNOS选择性抑制剂L-canavanine (1mM)干预,6小时RT-PCR法检测iNOS mRNA水平,12小时Western Blot法检测其蛋白表达,以探讨青藤碱对iNOS是否有直接抑制作用。
     (2).建立脾细胞体外培养诱生T-bet/IFN-γ体系:用抗CD3抗体(2μg/ml)和重组IL-12(10ng/ml)刺激体外培养的脾细胞,用SIN (1mM)干预,24小时RT-PCR法检测脾细胞T-bet/IFN-γmRNA水平,48小时Western Blot法检测T-bet蛋白表达,ELISA法检测培养上清中IFN-γ水平。
     (3).建立脾细胞培养上清对星形胶质细胞诱生iNOS体系:以抗CD3(2μg/ml)和重组IL-12(10ng/ml)刺激体外培养的脾细胞,加或不加青藤碱处理。再以此培养上清作为刺激剂加入星形胶质细胞培养中,观察其对星形胶质细胞iNOS的影响。
     结果:
     1.动物实验部分
     (1).EAE模型发病情况及临床评价:EAE组大鼠免疫后第7天开始发病,第15天达高峰,发病表现为:体重减轻、尾部无力、肢体瘫痪、甚至呈濒死状态,而正常对照组无一发病。青藤碱治疗组大鼠发病高峰期较EAE组延后1天,为免疫后第16天,发病大鼠临床表现与EAE组类同,但病情程度较EAE组轻。EAE组高峰期神经功能评分明显高于青藤碱治疗组(P<0.05 )。
     (2).组织病理学改变:HE染色显示EAE组脊髓组织内有大量单个核细胞浸润,血管周围炎性浸润明显,多数血管周围的浸润呈“袖套样”改变。而SIN治疗组脊髓组织淋巴细胞浸润及血管周围炎性细胞浸润随剂量依赖性减轻。
     (3).脾细胞抗原MBP刺激增殖反应及炎性细胞分子分泌水平:特异性抗原MBP68-82刺激EAE组脾细胞,增殖反应明显高于未刺激对照组;SIN各剂量组对EAE大鼠脾细胞增殖均有抑制作用(P<0.05)。与正常对照组相比,MBP68-82再次活化的EAE组脾细胞培养上清中IFN-γ和TNF-α分泌水平显著增高;而青藤碱能剂量依赖性地抑制特异性抗原活化的脾细胞分泌炎性细胞因子IFN-γ和TNF-α(P<0.05)。
     (4).脊髓组织中T-bet、IFN-γ、iNOS mRNA和蛋白表达变化:MBP诱导的大鼠EAE模型脊髓组织的T-bet、IFN-γ、iNOS mRNA和蛋白水平都较正常对照组显著增高。与EAE组比较,50mg/kg SIN组不能降低脊髓组织中IFN-γ的mRNA和蛋白水平,但100mg/kg、200mg/kg SIN组可有效抑制脊髓组织中IFN-γ的mRNA和蛋白水平,分别抑制了21.32%和55.29%。同样,100mg/kg、200mg/kg SIN组均可有效抑制脊髓组织中T-bet的mRNA和蛋白水平(P<0.05)。50mg/kg、100mg/kg、200mg/kg SIN组均可有效抑制脊髓组织中iNOS的mRNA和蛋白水平(P<0.05)。
     2.细胞实验部分
     (1).青藤碱对大鼠体外培养星形胶质细胞诱生iNOS的影响:用IFN-γ和TNF-α共同刺激星形胶质细胞,可诱导出iNOS mRNA和蛋白的高表达,但青藤碱不能直接抑制由炎性细胞因子诱导的iNOS的产生。而iNOS选择性抑制剂干预细胞可显著抑制iNOS mRNA和蛋白表达水平。
     (2).青藤碱对大鼠体外培养脾细胞诱生T-bet/ IFN-γ的影响:正常初始脾细胞不加任何刺激,T-bet和IFN-γ的表达量水平较低,当用抗CD3抗体和向Th1细胞分化的细胞因子IL-12共同刺激时,T-bet和IFN-γ的产生可显著增加。在培养体系中用SIN(1mM)预处理细胞,发现青藤碱可抑制T-bet和IFN-γ的mRNA和蛋白的表达。
     (3).青藤碱对抗CD3抗体和IL-12处理的脾细胞培养上清诱导星形胶质细胞产生iNOS的影响:用抗CD3抗体和细胞因子IL-12刺激脾细胞培养的上清可诱导星形胶质细胞产生高水平的iNOS,当在脾细胞培养体系中加用青藤碱预处理,脾细胞培养上清诱导星形胶质细胞表达iNOSmRNA和蛋白的能力均被抑制。
     结论:
     1.以髓鞘碱性蛋白肽段MBP68-82、含结核杆菌的完全弗氏佐剂和百日咳毒素为抗原混合物共同免疫Lewis大鼠建立了急性EAE模型,该模型大鼠的发病时间、体重变化、发病时行为改变、临床表现、神经功能评分及病理学改变均与文献报道一致,能有效模拟MS患者的急性发作。
     2.青藤碱改善EAE大鼠的病情、降低发病时临床功能评分、抑制炎性细胞向CNS系统异常浸润;青藤碱可抑制抗原MBP活化的脾细胞增殖反应及分泌炎性细胞因子IFN-γ和TNF-α的能力,从而发挥对EAE的免疫抑制作用。
     3.青藤碱有效抑制T-bet/IFN-γ/iNOS轴,从而缓解脱髓鞘症状。青藤碱抑制iNOS的机制并不是直接抑制星形胶质细胞产生iNOS,而是通过抑制淋巴细胞产生的iNOS诱生剂IFN-γ,而这一作用与青藤碱抑制Th1特异性转录因子T-bet的表达有关。
Objective:
     This study was designed to explore the effect of Sinomenine on the treatment of experimental autoimmune encephalomyelitis (EAE) in Lewis rats. To understand the possible mechanism about the effect of Sinomenine on EAE with animal model in vivo including clinical evaluation, histopathology and expression of cytokine and in vitro using astrocytes and splenocytes culture, so as to approach the Sinomenine's application in clinic.
     Methods
     1. In vivo
     (1) Preparation for EAE model
     Females Lewis rats were immunized with MBP68-82 plus complete Freund's adjuvant (CFA) and Pertussis Toxin(PTX)to make up the model.
     (2)Groups
     Five groups: Control rats,EAE rats,SIN50mg/kg/d treated EAE rats,SIN 100mg/kg/d treated EAE rats,SIN 200mg/kg/d treated EAE rats. The Lewis rats were treated with different doses of SIN with intraperitoneal injection from day -1 to 3 for 5 consecutive days after immunization.
     (3)Effects of SIN on EAE and the mechanisms of the effects
     The incident condition, clinical score and weight lose were used to evaluated severity of EAE. Histological changes were detected by HE and Luxol fast blue/periodic acid-Schiff (LFB/PAS) stain in spinal cords of each group rats. Splenocytes were isolated and used to test proliferation response with 3H-TdR and cytokine levels of splenocytes supernatant and spinal cord with ELISA. Using RT-PCR to test the expression of T-bet, IFN-γand iNOS mRNA level in spinal cords, T-bet and iNOS protein level were measured with Western Blot.
     2. In Vitro
     (1) Astrocyte cell culture and iNOS induction
     Astrocytes were incubated with IFN-γ(10ng/mL) and TNF-α(10ng/mL) to induce expression of iNOS with or without SIN (1mM) or selective iNOS inhibitor, L-canavanine (1mM). SIN (1mM) or L-canavanine (1mM) was added 30 minutes ahead. These cells were cultured for 6 hours for RT-PCR and 12 hours for Western Blot.
     (2) Splenocyte culture and T-bet, IFN-γinduction
     Na?ve splenocytes were stimulated with plate-coated anti-CD3 antibody (2μg/ml) and recombinant rat IL-12 (10ng/ml). To determine the effects of SIN, the cells were pretreated with SIN (1mM) before being added to the plates for 30 minutes. After 48 hours, the culture supernatants were collected and assayed for IFN-γproduction by ELISA. Cells were analyzed for IFN-γand T-bet mRNA by RT-PCR at 24 hours and T-bet protein by western blot at 48 hours.
     (3) The supernatants of rat splenocytes stimulated with anti-CD3 antibody (2μg/ml) and rmIL-12 (10ng/ml) in the presence and absence of SIN (1mM) were collected and then used to induce iNOS production by primary astrocytes. After being cultured for either 6 hours or 12 hours, the astrocytes were collected for preparation of RNA and protein extracts. RT-PCR was performed with the cellular RNA extracts to determine the expression levels of iNOS mRNA. Western blot was performed with the cellular protein extracts to assay the level of iNOS protein.
     Results:
     1. In vivo:
     (1)The condition of the incident and clinical evaluation in each group rats
     The rats in EAE group begin to fall ill after 7 days, the fiftieth day to the peak. The clinic manifestations are: losing weight, limbs palsy, even on the brink of death. The rats in control group have no incidence of EAE. The peak time of SIN treated group delayed 1 day, on the sixth day after immunization. The condition is likely the EAE group, but the clinical situation is better than the EAE group and the clinical scores are significantly reduced compared with EAE group (p<0.05).
     (2) Histopathology change in each group rats
     HE stain showed inflammatory cell infiltration is obviously in EAE rats, the number of mononuclear cells in spinal cords surrounding vascellum in EAE rats significantly increased. The spinal cords from SIN-treated rats showed reduced infiltration of inflammatory cells in the lumbar segments.
     (3)Proliferation responses by stimulation with MBP68-82 and secretion of IFN-γand TNF-αin the supernatants of splenocytes in each group rats
     Compared with unstimulated splenocytes of EAE rats, proliferation responses by MBP68-82 were obviously increased. Compared with EAE rats, proliferation of splenocytes in SIN treated rats were significantly inhibited (P<0.05). Besides, SIN also inhibited secretion of IFN-γand TNF-αin splenocytes supernatant (P<0.05).
     (4) T-bet、IFN-γ、iNOS mRNA and protein levels in each group rats
     MBP-induced EAE resulted in high expression levels of T-bet, IFN-γand iNOS compared with control rats. Compared with EAE rats, 50 mg/kg, 100 mg/kg and 200 mg/kg SIN inhibited the iNOS mRNA and protein level in spinal cord, but only 100 mg/kg and 200 mg/kg SIN blocked the T-bet and IFN-γmRNA and protein levels in spinal cord.
     2. In Vitro
     (1) iNOS induction in primary astrocytes culture
     The primary astrocytes stimulated with combined IFN-γand TNF-αhad a high expression of iNOS mRNA and protein levels compared unstimulated cells. However, the levels of iNOS in the primary astrocytes cultures were reduced by L-canavanine but not by SIN (1mM).
     (2) T-bet/ IFN-γinduction in primary splenocytes culture
     The splenocytes cultured with anti-CD3 antibody and rmIL-12 in the presence or absence of SIN (1mM). Na?ve splenocytes expressed T-bet and IFN-γat basal levels. However, stimulation with CD3 antibody under polarized conditions with rmIL-12 induced their expression significantly. Treatment with SIN (1mM) markedly inhibited the expression of both IFN-γand T-bet.
     (3) The ability of the splenocytes supernatants treated with anti-CD3 antibody and rmIL-12 in the presence of SIN to induce iNOS production by primary astrocytes is reduced
     The supernatants from splenocytes stimulated with anti-CD3 antibody and rmIL-12 in the presence of SIN (1mM) induced significantly lower production of iNOS by primary astrocytes than stimulated only with anti-CD3 antibody and rmIL-12, without SIN (1mM).
     Conclusion
     1. EAE induced with peptide MBP68-82, complete Freund's adguvant and Pertussis Toxin in Lewis rats, whose incidence condition, mean day of onset, disease progression and severity were coincide with with many other reports.
     2. SIN could effectively ameliorate EAE by reducing clinical severity and inflammatory infiltration, proliferation of antigen specific T cells and inflammatory cytokines, which exserted an immunesuppression property.
     3. SIN could inhibit T-bet/IFN-γ/iNOS axis in spinal cord. The anti-iNOS effect of SIN is not associated with the directly suppression iNOS induction of astrocytes but correlated with its inducer IFN-γblocking, which resulted from the inhibition of the transcription factor T-bet.
引文
1. Compston A, Coles A: Multiple sclerosis. Lancet 2008, 372(9648):1502-1517.
    2. Stuerzebecher S, Martin R: Neuroimmunology of multiple sclerosis and experimental allergic encephalomyelitis. Neuroimaging Clin N Am 2000, 10(4):649-668 ,vii-viii.
    3. Montero E, Nussbaum G, Kaye JF, Perez R, Lage A, Ben-Nun A, Cohen IR: Regulation of experimental autoimmune encephalomyelitis by CD4+, CD25+ and CD8+ T cells: analysis using depleting antibodies. J Autoimmun 2004, 23(1):1-7.
    4. Muhallab S, Lidman O, Weissert R, Olsson T, Svenningsson A: Intra-CNS activation by antigen-specific T lymphocytes in experimental autoimmune encephalomyelitis. J Neuroimmunol 2001, 113(2):202-211.
    5. Chen J, Liu X: The role of interferon gamma in regulation of CD4+ T-cells and its clinical implications. Cell Immunol 2009, 254(2):85-90.
    6. Wegner C, Esiri MM, Chance SA, Palace J, Matthews PM: Neocortical neuronal, synaptic, and glial loss in multiple sclerosis. Neurology 2006, 67(6):960-967.
    7. Coisne C, Lyck R, Engelhardt B: Therapeutic targeting of leukocyte trafficking across the blood-brain barrier. Inflamm Allergy Drug Targets 2007, 6(4):210-222.
    8. Neumann H: Control of glial immune function by neurons. Glia 2001, 36(2):191-199.
    9. Stoyanova, II, Lazarov NE: Localization of nitric oxide synthase in rat trigeminal primary afferent neurons using NADPH-diaphorase histochemistry. J Mol Histol 2005, 36(3):187-193.
    10. Heneka MT, Feinstein DL: Expression and function of inducible nitric oxide synthase in neurons. J Neuroimmunol 2001, 114(1-2):8-18.
    11. Rise IR, Kirkeby OJ: Effect of reduced cerebral perfusion pressure on cerebral blood flow following inhibition of nitric oxide synthesis. J Neurosurg 1998, 89(3):448-453.
    12. Anctil M, Poulain I, Pelletier C: Nitric oxide modulates peristaltic muscle activity associated with fluid circulation in the sea pansy Renilla koellikeri. J Exp Biol 2005, 208(Pt 10):2005-2017.
    13. Plotkine M, Margaill I: [NO synthases: new pharmacological targets in cerebrovascular accident?]. Therapie 2002, 57(6):548-553.
    14. Saha RN, Pahan K: Signals for the induction of nitric oxide synthase in astrocytes. Neurochem Int 2006, 49(2):154-163.
    15. Choi WH, Ji KA, Jeon SB, Yang MS, Kim H, Min KJ, Shong M, Jou I, Joe EH: Anti-inflammatory roles of retinoic acid in rat brain astrocytes:Suppression of interferon-gamma-induced JAK/STAT phosphorylation. Biochem Biophys Res Commun 2005, 329(1):125-131.
    16. Brown GC: Mechanisms of inflammatory neurodegeneration: iNOS and NADPH oxidase. Biochem Soc Trans 2007, 35(Pt 5):1119-1121.
    17. Garthwaite G, Goodwin DA, Batchelor AM, Leeming K, Garthwaite J: Nitric oxide toxicity in CNS white matter: an in vitro study using rat optic nerve. Neuroscience 2002, 109(1):145-155.
    18. Duncan AJ, Heales SJ: Nitric oxide and neurological disorders. Mol Aspects Med 2005, 26(1-2):67-96.
    19. Bechtold DA, Smith KJ: Sodium-mediated axonal degeneration in inflammatory demyelinating disease. J Neurol Sci 2005, 233(1-2):27-35.
    20. Dzwonek J, Rylski M, Kaczmarek L: Matrix metalloproteinases and their endogenous inhibitors in neuronal physiology of the adult brain. FEBS Lett 2004, 567(1):129-135.
    21. Bizzozero OA, DeJesus G, Howard TA: Exposure of rat optic nerves to nitric oxide causes protein S-nitrosation and myelin decompaction. Neurochem Res 2004, 29(9):1675-1685.
    22. Martinez-Palma L, Pehar M, Cassina P, Peluffo H, Castellanos R, Anesetti G, Beckman JS, Barbeito L: Involvement of nitric oxide on kainate-induced toxicity in oligodendrocyte precursors. Neurotox Res 2003, 5(6):399-406.
    23. Xiao BG, Ma CG, Xu LY, Link H, Lu CZ: IL-12/IFN-gamma/NO axis plays critical role in development of Th1-mediated experimental autoimmune encephalomyelitis. Mol Immunol 2008, 45(4):1191-1196.
    24. Gocke AR, Cravens PD, Ben LH, Hussain RZ, Northrop SC, Racke MK, Lovett-Racke AE: T-bet regulates the fate of Th1 and Th17 lymphocytes in autoimmunity. J Immunol 2007, 178(3):1341-1348.
    25. Yang Y, Ochando JC, Bromberg JS, Ding Y: Identification of a distant T-bet enhancer responsive to IL-12/Stat4 and IFNgamma/Stat1 signals. Blood 2007, 110(7):2494-2500.
    26. Lovett-Racke AE, Rocchini AE, Choy J, Northrop SC, Hussain RZ, Ratts RB, Sikder D, Racke MK: Silencing T-bet defines a critical role in the differentiation of autoreactive T lymphocytes. Immunity 2004, 21(5):719-731.
    27. Skundric DS, Cai J, Cruikshank WW, Gveric D: Production of IL-16 correlates with CD4+ Th1 inflammation and phosphorylation of axonal cytoskeleton in multiple sclerosis lesions. J Neuroinflammation 2006, 3:13.
    28. Polman CH, Uitdehaag BM: New and emerging treatment options for multiple sclerosis. Lancet Neurol 2003, 2(9):563-566.
    29. Shu L, Yin W, Zhang J, Tang B, Kang YX, Ding F, Hua ZC: Sinomenine inhibits primary CD4+ T-cell proliferation via apoptosis. Cell Biol Int 2007, 31(8):784-789.
    30. Wang Y, Fang Y, Huang W, Zhou X, Wang M, Zhong B, Peng D: Effect of sinomenine on cytokine expression of macrophages and synoviocytes in adjuvant arthritis rats. J Ethnopharmacol 2005, 98(1-2):37-43.
    31. Feng H, Yamaki K, Takano H, Inoue K, Yanagisawa R, Yoshino S: Suppression of Th1 and Th2 immune responses in mice by Sinomenine, an alkaloid extracted from the chinese medicinal plant Sinomenium acutum. Planta Med 2006, 72(15):1383-1388.
    32.林泓怡、李跃华、郭琳等,实验性自身免疫性脑脊髓炎动物模型的改良,南京医科大学学报,2003,(23):235-237。
    33.郭琳,李跃华,林泓怡等,系统性硬化患者脑脊液中白细胞介素-6的变化和临床意义,江苏医药,2003,29(5):366-367。
    34.郭琳、李跃华、李玉华等,青藤碱治疗大鼠实验性自身免疫性脑脊髓炎的研究,南京医科大学学报,2004,(23):100-102。
    35. Zeng Y, Gu B, Ji X, Ding X, Song C, Wu F: Sinomenine, an antirheumatic alkaloid, ameliorates clinical signs of disease in the Lewis rat model of acute experimental autoimmune encephalolmyelitis. Biol Pharm Bull 2007, 30(8):1438-1444.
    36. Baxter AG: The origin and application of experimental autoimmune encephalomyelitis. Nat Rev Immunol 2007, 7(11):904-912.
    37. Mix E, Meyer-Rienecker H, Zettl UK: Animal models of multiple sclerosis for the development and validation of novel therapies - potential and limitations. J Neurol 2008, 255 Suppl 6:7-14.
    38. Rivers TM, Sprunt DH, Berry GP: Observations on Attempts to Produce Acute Disseminated Encephalomyelitis in Monkeys. J Exp Med 1933, 58(1):39-53.
    39. Swanborg RH: Experimental autoimmune encephalomyelitis in the rat: lessons in T-cell immunology and autoreactivity. Immunol Rev 2001, 184:129-135.
    40. Tuohy VK: Peptide determinants of myelin proteolipid protein (PLP) in autoimmune demyelinating disease: a review. Neurochem Res 1994, 19(8):935-944.
    41. Jones MV, Nguyen TT, Deboy CA, Griffin JW, Whartenby KA, Kerr DA, Calabresi PA: Behavioral and pathological outcomes in MOG 35-55 experimental autoimmune encephalomyelitis. J Neuroimmunol 2008, 199(1-2):83-93.
    42. Fujinami RS, Oldstone MB: Amino acid homology between the encephalitogenic site of myelin basic protein and virus: mechanism forautoimmunity. Science 1985, 230(4729):1043-1045.
    43. Gold R, Linington C, Lassmann H: Understanding pathogenesis and therapy of multiple sclerosis via animal models: 70 years of merits and culprits in experimental autoimmune encephalomyelitis research. Brain 2006, 129(Pt 8):1953-1971.
    44. Voskuhl RR, Pitchekian-Halabi H, MacKenzie-Graham A, McFarland HF, Raine CS: Gender differences in autoimmune demyelination in the mouse: implications for multiple sclerosis. Ann Neurol 1996, 39(6):724-733.
    45. Liu ZQ, Chan K, Zhou H, Jiang ZH, Wong YF, Xu HX, Liu L: The pharmacokinetics and tissue distribution of sinomenine in rats and its protein binding ability in vitro. Life Sci 2005, 77(25):3197-3209.
    46. Xu M, Liu L, Qi C, Deng B, Cai X: Sinomenine versus NSAIDs for the treatment of rheumatoid arthritis: a systematic review and meta-analysis. Planta Med 2008, 74(12):1423-1429.
    47. Tang Q, Luo J, Zhu Q, Li Y, Yin S: Synthesis and anti-inflammatory activities investigation of sinomenine derivatives on ring C. Nat Prod Res 2006, 20(11):1015-1023.
    48. Yan LC, Bi EG, Lou YT, Wu XD, Liu ZD, Zhou J, Wang Y, Ma Z, Lin GM, Sun SH et al: Novel sinomenine derivative 1032 improves immune suppression in experimental autoimmune encephalomyelitis. Biochem Biophys Res Commun 2010, 391(1):1093-1098.
    49. Dittel BN: CD4 T cells: Balancing the coming and going of autoimmune-mediated inflammation in the CNS. Brain Behav Immun 2008, 22(4):421-430.
    50. Murphy KM, Reiner SL: The lineage decisions of helper T cells. Nat Rev Immunol 2002, 2(12):933-944.
    51. Farrar JD, Asnagli H, Murphy KM: T helper subset development: roles of instruction, selection, and transcription. J Clin Invest 2002, 109(4):431-435.
    52. Ho IC, Glimcher LH: Transcription: tantalizing times for T cells. Cell 2002, 109 Suppl:S109-120.
    53. Szabo SJ, Kim ST, Costa GL, Zhang X, Fathman CG, Glimcher LH: A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 2000, 100(6):655-669.
    54. O'Garra A, Arai N: The molecular basis of T helper 1 and T helper 2 cell differentiation. Trends Cell Biol 2000, 10(12):542-550.
    55. Mullen AC, High FA, Hutchins AS, Lee HW, Villarino AV, Livingston DM, Kung AL, Cereb N, Yao TP, Yang SY et al: Role of T-bet in commitment of TH1 cells before IL-12-dependent selection. Science 2001, 292(5523):1907-1910.
    56. Elmariah SB, Oh EJ, Hughes EG, Balice-Gordon RJ: Astrocytes regulateinhibitory synapse formation via Trk-mediated modulation of postsynaptic GABAA receptors. J Neurosci 2005, 25(14):3638-3650.
    57. Broholm H, Andersen B, Wanscher B, Frederiksen JL, Rubin I, Pakkenberg B, Larsson HB, Lauritzen M: Nitric oxide synthase expression and enzymatic activity in multiple sclerosis. Acta Neurol Scand 2004, 109(4):261-269.
    58. Hill KE, Zollinger LV, Watt HE, Carlson NG, Rose JW: Inducible nitric oxide synthase in chronic active multiple sclerosis plaques: distribution, cellular expression and association with myelin damage. J Neuroimmunol 2004, 151(1-2):171-179.
    59. Cheng Y, Zhang J, Hou W, Wang D, Li F, Zhang Y, Yuan F: Immunoregulatory effects of sinomenine on the T-bet/GATA-3 ratio and Th1/Th2 cytokine balance in the treatment of mesangial proliferative nephritis. Int Immunopharmacol 2009, 9(7-8):894-899.
    60. Xu LY, Yang JS, Link H, Xiao BG: SIN-1, a nitric oxide donor, ameliorates experimental allergic encephalomyelitis in Lewis rats in the incipient phase: the importance of the time window. J Immunol 2001, 166(9):5810-5816.
    61. Kahl KG, Schmidt HH, Jung S, Sherman P, Toyka KV, Zielasek J: Experimental autoimmune encephalomyelitis in mice with a targeted deletion of the inducible nitric oxide synthase gene: increased T-helper 1 response. Neurosci Lett 2004, 358(1):58-62.
    62. Jiang MZ, Tsukahara H, Hayakawa K, Todoroki Y, Tamura S, Ohshima Y, Hiraoka M, Mayumi M: Effects of antioxidants and NO on TNF-alpha-induced adhesion molecule expression in human pulmonary microvascular endothelial cells. Respir Med 2005, 99(5):580-591.
    63. Makhlouf K, Weiner HL, Khoury SJ: Increased percentage of IL-12+ monocytes in the blood correlates with the presence of active MRI lesions in MS. J Neuroimmunol 2001, 119(1):145-149.
    64. Eid RE, Rao DA, Zhou J, Lo SF, Ranjbaran H, Gallo A, Sokol SI, Pfau S, Pober JS, Tellides G: Interleukin-17 and interferon-gamma are produced concomitantly by human coronary artery-infiltrating T cells and act synergistically on vascular smooth muscle cells. Circulation 2009, 119(10):1424-1432.
    65. Kebir H, Ifergan I, Alvarez JI, Bernard M, Poirier J, Arbour N, Duquette P, Prat A: Preferential recruitment of interferon-gamma-expressing T H 17 cells in multiple sclerosis. Ann Neurol 2009, 66(3):390-402.
    1. Sospedra M, Martin R: Immunology of multiple sclerosis. Annu Rev Immunol 2005, 23:683-747.
    2. Dittel BN: CD4 T cells: Balancing the coming and going of autoimmune-mediated inflammation in the CNS. Brain Behav Immun 2008, 22(4):421-430.
    3. Gold R, Linington C, Lassmann H: Understanding pathogenesis and therapy of multiple sclerosis via animal models: 70 years of merits and culprits in experimental autoimmune encephalomyelitis research. Brain 2006, 129(Pt 8):1953-1971.
    4. Szabo SJ, Kim ST, Costa GL, Zhang X, Fathman CG, Glimcher LH: A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 2000, 100(6):655-669.
    5. Yang Y, Ochando JC, Bromberg JS, Ding Y: Identification of a distant T-bet enhancer responsive to IL-12/Stat4 and IFNgamma/Stat1 signals. Blood 2007, 110(7):2494-2500.
    6. Pellkofer H, Schubart AS, Hoftberger R, Schutze N, Pagany M, Schuller M, Lassmann H, Hohlfeld R, Voltz R, Linington C: Modelling paraneoplastic CNS disease: T-cells specific for the onconeuronal antigen PNMA1 mediate autoimmune encephalomyelitis in the rat. Brain 2004, 127(Pt 8):1822-1830.
    7. Dittel BN, Visintin I, Merchant RM, Janeway CA, Jr.: Presentation of the self antigen myelin basic protein by dendritic cells leads to experimental autoimmune encephalomyelitis. J Immunol 1999, 163(1):32-39.
    8. Young DA, Lowe LD, Booth SS, Whitters MJ, Nicholson L, Kuchroo VK, Collins M: IL-4, IL-10, IL-13, and TGF-beta from an altered peptide ligand-specific Th2 cell clone down-regulate adoptive transfer of experimental autoimmune encephalomyelitis. J Immunol 2000, 164(7):3563-3572.
    9. Lovett-Racke AE, Rocchini AE, Choy J, Northrop SC, Hussain RZ, Ratts RB, Sikder D, Racke MK: Silencing T-bet defines a critical role in the differentiation of autoreactive T lymphocytes. Immunity 2004, 21(5):719-731.
    10. Skundric DS, Cai J, Cruikshank WW, Gveric D: Production of IL-16 correlates with CD4+ Th1 inflammation and phosphorylation of axonal cytoskeleton in multiple sclerosis lesions. J Neuroinflammation 2006, 3:13.
    11. Ponomarev ED, Shriver LP, Maresz K, Dittel BN: Microglial cell activation and proliferation precedes the onset of CNS autoimmunity. J Neurosci Res 2005, 81(3):374-389.
    12. Ponomarev ED, Shriver LP, Maresz K, Pedras-Vasconcelos J, Verthelyi D, Dittel BN: GM-CSF production by autoreactive T cells is required for the activation of microglial cells and the onset of experimental autoimmune encephalomyelitis. J Immunol 2007, 178(1):39-48.
    13. Saha RN, Pahan K: Signals for the induction of nitric oxide synthase in astrocytes. Neurochem Int 2006, 49(2):154-163.
    14. Brown GC: Mechanisms of inflammatory neurodegeneration: iNOS and NADPH oxidase. Biochem Soc Trans 2007, 35(Pt 5):1119-1121.
    15. Infante-Duarte C, Horton HF, Byrne MC, Kamradt T: Microbial lipopeptides induce the production of IL-17 in Th cells. J Immunol 2000, 165(11):6107-6115.
    16. Cosmi L, De Palma R, Santarlasci V, Maggi L, Capone M, Frosali F, Rodolico G, Querci V, Abbate G, Angeli R et al: Human interleukin
    17-producing cells originate from a CD161+CD4+ T cell precursor. J Exp Med 2008, 205(8):1903-1916.
    17. Becher B, Durell BG, Noelle RJ: Experimental autoimmune encephalitis and inflammation in the absence of interleukin-12. J Clin Invest 2002, 110(4):493-497.
    18. Chen Y, Langrish CL, McKenzie B, Joyce-Shaikh B, Stumhofer JS, McClanahan T, Blumenschein W, Churakovsa T, Low J, Presta L et al: Anti-IL-23 therapy inhibits multiple inflammatory pathways and ameliorates autoimmune encephalomyelitis. J Clin Invest 2006, 116(5):1317-1326.
    19. Aggarwal S, Ghilardi N, Xie MH, de Sauvage FJ, Gurney AL: Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J Biol Chem 2003, 278(3):1910-1914.
    20. Langrish CL, Chen Y, Blumenschein WM, Mattson J, Basham B, Sedgwick JD, McClanahan T, Kastelein RA, Cua DJ: IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med 2005, 201(2):233-240.
    21. Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, Murphy KM, Weaver CT: Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 2005,6(11):1123-1132.
    22. Park H, Li Z, Yang XO, Chang SH, Nurieva R, Wang YH, Wang Y, Hood L, Zhu Z, Tian Q et al: A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol 2005, 6(11):1133-1141.
    23. Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM, Stockinger B: TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 2006, 24(2):179-189.
    24. Korn T, Bettelli E, Gao W, Awasthi A, Jager A, Strom TB, Oukka M, Kuchroo VK: IL-21 initiates an alternative pathway to induce proinflammatory T(H)17 cells. Nature 2007, 448(7152):484-487.
    25. Romagnani S: Human Th17 cells. Arthritis Res Ther 2008, 10(2):206.
    26. Ivanov, II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille JJ, Cua DJ, Littman DR: The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 2006, 126(6):1121-1133.
    27. Harris TJ, Grosso JF, Yen HR, Xin H, Kortylewski M, Albesiano E, Hipkiss EL, Getnet D, Goldberg MV, Maris CH et al: Cutting edge: An in vivo requirement for STAT3 signaling in TH17 development and TH17-dependent autoimmunity. J Immunol 2007, 179(7):4313-4317.
    28. Komiyama Y, Nakae S, Matsuki T, Nambu A, Ishigame H, Kakuta S, Sudo K, Iwakura Y: IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis. J Immunol 2006, 177(1):566-573.
    29. Ishizu T, Osoegawa M, Mei FJ, Kikuchi H, Tanaka M, Takakura Y, Minohara M, Murai H, Mihara F, Taniwaki T et al: Intrathecal activation of the IL-17/IL-8 axis in opticospinal multiple sclerosis. Brain 2005, 128(Pt5):988-1002.
    30. Tzartos JS, Friese MA, Craner MJ, Palace J, Newcombe J, Esiri MM, Fugger L: Interleukin-17 production in central nervous system-infiltrating T cells and glial cells is associated with active disease in multiple sclerosis. Am J Pathol 2008, 172(1):146-155.
    31. Kebir H, Ifergan I, Alvarez JI, Bernard M, Poirier J, Arbour N, Duquette P, Prat A: Preferential recruitment of interferon-gamma-expressing T H 17 cells in multiple sclerosis. Ann Neurol 2009, 66(3):390-402.
    32. Kebir H, Kreymborg K, Ifergan I, Dodelet-Devillers A, Cayrol R, Bernard M, Giuliani F, Arbour N, Becher B, Prat A: Human TH17 lymphocytes promote blood-brain barrier disruption and central nervous system inflammation. Nat Med 2007, 13(10):1173-1175.
    33. Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M: Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 1995, 155(3):1151-1164.
    34. Hori S, Nomura T, Sakaguchi S: Control of regulatory T cell development by the transcription factor Foxp3. Science 2003, 299(5609):1057-1061.
    35. Peng Y, Laouar Y, Li MO, Green EA, Flavell RA: TGF-beta regulates in vivo expansion of Foxp3-expressing CD4+CD25+ regulatory T cells responsible for protection against diabetes. Proc Natl Acad Sci U S A 2004, 101(13):4572-4577.
    36. McGeachy MJ, Stephens LA, Anderton SM: Natural recovery and protection from autoimmune encephalomyelitis: contribution of CD4+CD25+ regulatory cells within the central nervous system. J Immunol 2005, 175(5):3025-3032.
    37. Chen X, Oppenheim JJ, Winkler-Pickett RT, Ortaldo JR, Howard OM:Glucocorticoid amplifies IL-2-dependent expansion of functional FoxP3(+)CD4(+)CD25(+) T regulatory cells in vivo and enhances their capacity to suppress EAE. Eur J Immunol 2006, 36(8):2139-2149.
    38. Chung DT, Korn T, Richard J, Ruzek M, Kohm AP, Miller S, Nahill S, Oukka M: Anti-thymocyte globulin (ATG) prevents autoimmune encephalomyelitis by expanding myelin antigen-specific Foxp3+ regulatory T cells. Int Immunol 2007, 19(8):1003-1010.
    39. Hirata S, Matsuyoshi H, Fukuma D, Kurisaki A, Uemura Y, Nishimura Y, Senju S: Involvement of regulatory T cells in the experimental autoimmune encephalomyelitis-preventive effect of dendritic cells expressing myelin oligodendrocyte glycoprotein plus TRAIL. J Immunol 2007, 178(2):918-925.
    40. Mosser DM, Zhang X: Interleukin-10: new perspectives on an old cytokine. Immunol Rev 2008, 226:205-218.
    41. Mann MK, Maresz K, Shriver LP, Tan Y, Dittel BN: B cell regulation of CD4+CD25+ T regulatory cells and IL-10 via B7 is essential for recovery from experimental autoimmune encephalomyelitis. J Immunol 2007, 178(6):3447-3456.
    42. Ichiyama K, Yoshida H, Wakabayashi Y, Chinen T, Saeki K, Nakaya M, Takaesu G, Hori S, Yoshimura A, Kobayashi T: Foxp3 inhibits RORgammat-mediated IL-17A mRNA transcription through direct interaction with RORgammat. J Biol Chem 2008, 283(25):17003-17008.
    43. McGeachy MJ, Bak-Jensen KS, Chen Y, Tato CM, Blumenschein W, McClanahan T, Cua DJ: TGF-beta and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain T(H)-17 cell-mediated pathology. Nat Immunol 2007, 8(12):1390-1397.
    44. Xu L, Kitani A, Fuss I, Strober W: Cutting edge: regulatory T cells induceCD4+CD25-Foxp3- T cells or are self-induced to become Th17 cells in the absence of exogenous TGF-beta. J Immunol 2007, 178(11):6725-6729.
    45. Huseby ES, Liggitt D, Brabb T, Schnabel B, Ohlen C, Goverman J: A pathogenic role for myelin-specific CD8(+) T cells in a model for multiple sclerosis. J Exp Med 2001, 194(5):669-676.
    46. Babbe H, Roers A, Waisman A, Lassmann H, Goebels N, Hohlfeld R, Friese M, Schroder R, Deckert M, Schmidt S et al: Clonal expansions of CD8(+) T cells dominate the T cell infiltrate in active multiple sclerosis lesions as shown by micromanipulation and single cell polymerase chain reaction. J Exp Med 2000, 192(3):393-404.
    47. 47. Friese MA, Fugger L: Autoreactive CD8+ T cells in multiple sclerosis: a new target for therapy? Brain 2005, 128(Pt 8):1747-1763.
    48. Junker A, Ivanidze J, Malotka J, Eiglmeier I, Lassmann H, Wekerle H, Meinl E, Hohlfeld R, Dornmair K: Multiple sclerosis: T-cell receptor expression in distinct brain regions. Brain 2007, 130(Pt 11):2789-2799.
    49. Sun D, Whitaker JN, Huang Z, Liu D, Coleclough C, Wekerle H, Raine CS: Myelin antigen-specific CD8+ T cells are encephalitogenic and produce severe disease in C57BL/6 mice. J Immunol 2001, 166(12):7579-7587.
    50. Weiss HA, Millward JM, Owens T: CD8+ T cells in inflammatory demyelinating disease. J Neuroimmunol 2007, 191(1-2):79-85.
    51. Kuhlmann T, Lingfeld G, Bitsch A, Schuchardt J, Bruck W: Acute axonal damage in multiple sclerosis is most extensive in early disease stages and decreases over time. Brain 2002, 125(Pt 10):2202-2212.