高温超导多工器及其在宽带数字接收机多通道前端的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高温超导薄膜(HTS)在微波频段下,具有极为优越的微波性能:在L、S波段其微波表面电阻R_s比常规金属导体的要低3~5个数量级,并能够实现高达1×10~7A/cm~2的电流密度。利用这些高温超导薄膜已经制造出许多高温超导无源微波器件(如滤波器、多工器、功分器、限幅器、延迟线等)与电路(如放大器、振荡器、高速A/D转换器等),它们具有比常规器件和电路更高的性能,这些高性能的高温超导无源微波器件与电路,应用到现代移动通信系统、卫星通信系统、雷达系统以及电子战(EW)侦察接收机系统中,将极大的提升系统性能,具有十分广阔的应用前景。
     本论文主要工作内容:设计和研制高灵敏高温超导接收机前端的关键器件—高温超导滤波器和多工器,并与数字接收机技术相结合,研制开发新型宽带数字接收机的高灵敏高温超导双通道前端样机。虽然现在高温超导微波器件的设计是基于传统的常规微波器件的设计技术,但是由于高温超导技术的应用有些限制性的条件以及自身的特点,传统的常规滤波器和多工器设计需要进行一些发展改进以适合高温超导技术的应用。找到一种适合高温超导滤波器和多工器的简便、快速、准确的设计方法是我们研究的重点,并在此基础上开发研制新型宽带数字接收机的高性能高温超导多通道前端系统。
     本论文主要创新性工作如下:
     1、发展了一种快速、准确的滤波器CAD设计方法:利用滤波器的谐振器与其频率响应的对应关系,结合计算机强大仿真能力,来完成滤波器的设计。设计过程不再需要优化过程,大大节省了结构较复杂、级数较多的高温超导滤波器的设计周期,并通过实验验证了这个设计方法。制作的8级高温超导滤波器和低温工作低噪声放大器组件,工作频段XXX-XXXMHz,通带带宽5MHz,在77K下测试结果:带内增益21dB左右;带内反射小于-12dB;带内噪声小于0.8dB,最小噪声0.58dB。(论文第二章)
     2、针对设计过程更为复杂、困难的高温超导多工器的设计,发展了直接设计法设计高温超导多工器。通过对多工器的集总参数电路模型的研究,找到影响多工器性能的主要参数以及其调整变化的趋势,以获得较理想的初值,节省优化时间,避免复杂的理论和冗长的公式演算,并通过实验验证了这个设计方法。制作的四级高温超导双工器工作在3-4GHz频段,通道带宽500MHz,在温度77K下测试,测试结果达到:通带内插损小于0.8dB,通带间带外抑制大于30dB@通带中心频率,通带内反射小于-10dB;制作的四级高温超导四工器工作在2-4GHz频段,通道带宽500MHz,在温度77K下测试,测试结果达到:通带内插损小于0.8dB,通带间带外抑制大于30dB@通带中心频率,通带内反射在-10dB左右。(论文第三章)
     3、开展了高温超导多工器功率容载能力的研究。通过实验发现高温超导连续通带多工器在其交接区域内的功率容载能力并不比其单个通道带内的功率容载能力高,反而要低1dB左右。原因是高温超导连续通带多工器交接区域存在着大量微波电流,这些微波电流增加了多工器在交接区域内的损耗,因而降低了其交接区域内功率容载能力。(论文第三章)
     4、研制开发了宽带数字接收机的高灵敏高温超导双通道前端样机。实验测试样机在频段XXX-XXXGHz,中频带宽为500MHz,各通道灵敏度S在-85dBm和-86dBm之间,换算成系统总噪声系数N_F在1.0dB和1.3dB之间;输出功率1dB压缩点P_(1dB)=15.7dBm,输出功率三阶交截点OIP3=27.7dBm,系统总增益G=47.8dB(论文第四章)
The high temperature superconducting (HTS) is a preferable microwave device material due to its three or five orders lower surface impedance than those of normal metals at L to X band and its large current density which can reach to 1×10~7 A/cm~2. Many low insertion loss HTS devices have been produced in recent years, including HTS filters, HTS multiplexers, HTS limiters, HTS delay lines, etc. When these high-performance HTS devices are used in the microwave systems ~ including mobile communication systems, Satellite communication systems, radar systems and electronic warfare receiver systems, these systems' performance has been greatly enhanced, which shows a great prospect of application.
     Though the design of HTS multiplexer is based on that of conventional multiplexer, the design procedures have to be modified due to some limited conditions when the HTS technology is in application. In this thesis, we developed the designs of HTS contiguous diplexers and HTS contiguous quadraplexers which are the key devices of the HTS receiver front-end. Experiments have been done to validate the design concept which is applied to the research and development of a new multi-channel HTS front-end in wideband digital receiver systems. The fabricated prototype of double-channel HTS front-end shows a high performance.
     The main results are as follows:
     1. We have developed the design of HTS filters, which are based on the relations between the parameters of filters' resonators and the frequency response of filters. The developed design procedures can reach to the design object more quickly and accurately without optimization process by the powerful computer simulation, which significantly reduces the designning period of HTS filters. Experiments have been done to validate the design concept. The fabricated 8-pole HTS filter and LNA modules operated at 77 K, and their performance of xxx-xxx MHz with 5 MHz wide is as follows: gain>21dB and noise figure<0.8dB.
     2. For the more complex and difficult design of HTS multiplexers, we have developed a "direct designing": The LC lumped parameter models of multiplexers are used for the analysis of the relations between the parameters of lumped parameter models and the frequency response of multiplexers. In this way we can know the main parameters that affect the performance of multiplexers and the trend to get an ideal matching. Thus, we can efficiently simplify the design task and significantly reduces amount of optimization time. Experiments have been done to validate the design concept. The fabricated 4-pole HTS diplexer and 4-pole HTS quadraplexer operated at 77 K shows excellent performance which operation frequency was from 3GHz to 4GHz with 500-MHz-wide channels and from 2GHz to 4GHz with 500-MHz-wide channels respectively. The insertion loss in the pass-band is less than 0.8 dB and the rejection between per channel is greater than 30dB.
     3. The power handling properties of a HTS diplexer have been measured. The tested power dependent frequency response of the HTS diplexer shows that the power handling capability of the HTS diplexer on the crossover region is not higher than that on the in-band region, even somewhat lower 1dB, due to larger microwave currents in the device in the crossover region.
     4. We have developed the technology of a new muli-channel HTS front-end in wideband digital receiver systems. The fabricated prototype of double-channel HTS front-end shows a high performance. Their performance of each channel is as follows: noise figure< 1.3 dB, P1dB=15.7dBm, OIP3=27.7dBm, G=47.8dB and S<-85dBm, when its operation frequency was from xxx GHz to xxx GHz with 500-MHz-wide channels.
引文
[1]Onnes,H.K.The resistance of pure mercury at helium temperature.Leiden Comm.,1911,129b
    [2]Bednorz,J.G.,K.A.Muller.Possible high T_c superconductivity in the Ba-La-Cu-O system.Z.fur Phys.,1986,64:189
    [3]Wu,M.K.,Ashburn,J.R.,and Torng,C.J.Superconductivity at 93K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure.Phys.Rev.Lett.,1987,58:908
    [4]Sheng,Z.Z.,A.M.Hermann.Bulk superconductivity at 120K in the TI-Ca/Ba-Cu-O system.Nature,1988,332:138
    [5]Chu,C.W.,Gao,L.,Chen,F.,et.al.Superconductivity above 150K in HgBa_2Ca_2Cu_3O_(8+8) at high pressure.Nature,1993,365:323-325
    [6]Meissner.M.,and Ochsenfeld.R.Naturwissenschaften.1933,21:787-788
    [7]Bardeen.J.,L.N.Cooper,and J.R.Schrieffer.Theory of Superconductivity.Phys.Rev.1957,198:1175-1204
    [8]London.F.,and H.London.The electromagnetic equations of the superconductor.Proc.Roy.Soc.1935,A-149:71-88
    [9]Lynn.J.W.High-temperature Superconductivity.New York:Springer-Verlag,1990:29-59
    [10]Shoenberg.D.Superconductivity.Cambridge University Press,1965:194-196
    [11]Hayt.Jr.,W.H.Engineering Electromagnetics.Fourth Edition,McGraw Hill,1981:402
    [12]李言荣,恽正中.电子材料导论.北京:清华大学出版社,2001
    [13]Raveau,B.,Michel,C.,and HERVIEU,M.Crystal Chemistry of High-T_c Superconducting Copper oxides.Berlin:Springer-Verlag.1991
    [14]林炜,马瑞新.高温超导YBCO薄膜及其制备.微纳电子技术,2006,(08):377-381
    [15]史力斌,王云飞,柯于洋,等.YBCO/LAlO和YBCO/MgO超导薄膜的微波性质.北京科技大学学报,2007,29(11):1128-1131
    [16]Cooke,D.W.,Gray,E.R.,Houlton,R.J.,et al.Surface resistance of YBa_2Cu_3O_7 films on SrTiO_3 and LaGaO_3 substrates.Appl.Phys.Lett.,1989,55:914-916
    [17]Mansour,R.R.Microwave superconductivity.MTT.,2002,50(3):750-759
    [18]Zhang D W,Liang G L,Shi C F,et al.A 19-pole cellular bandpass filter using 75-mm-diameter high-temperature superconducting thin filmsIEEE Microwave and GuidedWave Letters,1995,5 (11):405
    [19]Ueno Y,OkazakiM,Sakakibara N,et al.High-Tc superconducting filter for receiver front-end of mobiletelecommunication basestation.ISEC'01,June 2001,83
    [20]Hong,J.S.,Lancaster,Jedamzik,D.,et al.8-pole superconducting quasi-elliptic function filter for mobile communications application.Microwave Symposium Digest,IEEE MTT-S International,1998,1(6):367-370
    [21]Tsuzuki G,Ye S,Berkowitz S.Ultra selective HTS bandpass filter for 3G wireless application IEEE Trans.App 1.Super2cond.,2003,13 (2):261
    [22]何豫生,黎红,何艾生,等.适用于GSM1800移动通信基站前端的高温超导滤波器和子系统原理样机.中国科学,E辑,2002,32(4):479
    [23]刘邦长,吉朋松,曹必松,等.GSM1800移动通信用20级高温超导滤波器研究.低温物理学报,2002,24:310
    [24]羊恺,王平.The development of HTSC X-band bandpass filter宇航学报,2002,23:91
    [25]Curits.A.,and S.J.Fiedziuszko.Dual mode microstrip filters.Applied Microwave,1991:86-93
    [26]Curits.A.,and S.J.Fiedziuszko.Miniature Dual mode microstrip filters.IEEE MTT-S Int.Microwave Symp.Digest,1991,2:443-446
    [27]甘本祓,吴万春.现代滤波器的结构与设计.北京,科学出版社,1973
    [28]Jia-Sheng Hong.Microstrip Filters for RF/Microwave Applications.New York:A Wiley-Interseience Publication,2001
    [29]闫敦豹,袁乃昌.PBG结构缺陷的谐振特性研究.微波学报.2003,19:29-33
    [30]C.G.Montgomery,R.H.Dicke,E.M.Prucell.Principle of Microwave Circuits.New York:McGraw-Hill,1948,ch.4
    [31]R.M.Fano,A.W.Lawson.Microwave Transrmssion Circuits.New York:McGraw Hill,1948.
    [32]R.J.Wenzel.Exact design of TEM microwave networks using quarter-wave lines.IEEE- Trans.MTT.,1964,12:94-111
    [33]R.J.Wenzel.Application of synthesis methods to multichannel filter design.IEEE Trans.MTT.,1965,13:5-15
    [34]J.R.Pierce.Guided-wave frequency range transducer.U.S.Patent 2626990,filed May 4,1948,issued Jan.27,1953.
    [35]J.R.Pierce.Parallel-resonator filters.Proc.IRE,1949,37:152-155
    [36]R.R.Mansour et al.A 60 channel superconductive input multiplexer integrated with pulse-tube cryocoolers. IEEE Trans. MTT., 2000,48:1171-1180
    [37] Matthaei, G. L., Young, Leo, Young, L., et al. Microwave Filters, Impedance-Match Networks and Coupling Structures. Dedham, MA: Artech House, 1980
    [38] Mansour, P. R., Rammo, F., and Dokas, V. Design of hybrid-coupled mutiplexers and diplexers using asymmetrical superconducting filter. IEEE MTT-S Int. Microwave Symp. Digest, 1993,3:1281-1284
    [39] E. G. Cristaf and G. L. Matthaei. A technique for the design of multiplexer having contiguous channels. IEEE Trans. MTT., 1964,12:88-93
    [40] G. L. Matthaei and E. G. Cristal. Theory and design of diplexers and multiplexer. in Advances in Microwaves, New York: Academic Press, 1966,2
    [41] J. D. Rhodes. Suspended substrates provide alternative to coax. Microwave Syst. News, 1979,9:134-143
    [42] J. D. Rhodes and J. E. Dean. MIC broadband filters and contiguous multiplexers. in 9th Eur. Microwaue Conf. Proa, Sevenoaks,Kent, England: Microwave Exhibitions and Publishers Ltd.,1979:407-411
    [43] E. L. Norton. Constant resistance network with applications to filter groups. Bell Syst. Tech. J.1937,16:178-193
    [44] V. Belevitch. Synthesis of nonconstant-impedance filter pairs. Philips J. Res. 1980, 35:103-121
    [45] D. C. Youla and F. Winter. New theorems in the synthesis of passive multiplexers. Int. J.Circuit Theory Appl., 1991,19:341-364
    [46] Randall W. Rhea. HF Filter Design and Computer Simulation. Noble Publishing, Atlanta, GA,1994.
    [47] Ning Junsong, Yang Kai, Luo Zhengxian, et al. Design of high temperature superconducting contiguous-band diplexer. Chinese Science Bulletin, 2009, 7, to be published.
    [48] J. D. Rhodes and R. Levy. Design of general manifold multiplexers. IEEE Trans. MTT., 1979,27:111-123
    [49] Oates, D. E. Hein, M. A., Hirst, P. J., et al. Nonlinear microwave surface impedance of YBCO films: latest results and present understanding. Physica C. 2002:372-376,462-468
    [50] Ning Junsong, Bu Shirong, Luo Zhengxian, et al. On the power handling properties of high temperature superconducting microwave contiguous duplexer. Journal of Superconductivity and Novel Magnetism, has been accepted.
    [51] Mansour, R. R., Jolley, B., Ye, S., et al. On the power handling capability of high temperature superconductive filters.IEEE Trans.MTT.,1996,44:1322-1338
    [52]Boyd J.A.,Harris D.B.,King D .D.,Welch H.W.Electronic Countermeasures.New Rork,Peninsula Publishing,1961.
    [53]Fitts E.E.,Burton,R.W.The strategy of Electromagnetic Conflict.New Rork,Peninsula Publishing,1980
    [54]Schleher D.C.Introduction to Electronic Warfare.Norwood,MA:Artech House,1985
    [55]Baker D.Advances in Communications Electronic WarfareElectrical and Computer Engineering,2006.CCECE '06.Canadian Conference on May 2006:52 - 55
    [56]Spozio,A.E.Electronic warfare systems.IEEE Transactions on,MTT.,2002,50(3):633 - 644
    [57]Grant P.M.,Collins J.H.Introduction to electronic warfare.Communications,Radar and Signal Processing,IEE Proceedings F,1982,129(6):113 - 132
    [58]Wang Bingqie,Ding Kejia,Jin Mei,Su Donglin.EMC Design Technologies on EW Weapons and Equipment.Antennas,Propagation & EM Theory,2006.ISAPE '06.7th International Symposium on 26-29 Oct.2006:1 - 4
    [59]Collins J.H.,Grant P.M.A Review of Current and Future Components for Electronic Warfare Receivers.IEEE Trans,MTT.,1981,29(5):395-403
    [60]Morrow R.J.Electromagnetic environment synthesis a tool for ESM system development and support.Communications,Radar and Signal Processing,IEE Proceedings F 1985,132(7):298 - 303
    [61]Pekan,H.,Haslett,J.W.A comparison of analog front end architectures for digital receivers.Electrical and Computer Engineering,2005.Canadian Conference on 1-4 May 2005:1073 - 1077
    [62]Kaiser S.G.Digital receiver technology,architecture,and application.Microwave Symposium Digest,1996.,IEEE MTT-S International 1996,3(6):1331 - 1334
    [63]Meyr H.,Subramanian R.Advanced digital receiver principles and technologies for PCS.Communications Magazine,IEEE 1995,33(1):68 -78
    [64]Poberezhskiy,Y.S.On Dynamic Range of Digital Receivers.Aerospace Conference,2007 IEEE 2007:1 - 17
    [65]Spezio,A.E.Electronic warfare systems.IEEE Transactions on,MTT.,2002,50(3):633 - 644
    [66]Hong Wang.Design of wideband digital receiver.Communications,Circuits and Systems,2005.Proceedings.2005 International Conference on 2005,2:27-30
    [67]Gupta D.,Filippov,T.V.,Kirichenko A.E,et,al.Digital Channelizing Radio Frequency Receiver.Applied Superconductivity,IEEE Transactions on 2007 17(6):430 - 437
    [68]Tsui,J.B.Y.,Stephens J.P.,Sr.Digital microwave receiver technology.IEEE Transactions on MTT.,2002 50(3):699 - 705
    [69]David L.Adamy著吴汉平译.电子战建模与仿真导论.电子工业出版社2004.4
    [70]B.R.Hatcher.Intercept probability and intercept time.Electronic Warfare,8,95 (March/April 1976).
    [71]B.R.Hatcher.EW acquisition systems.Probability of intercept and intercept time,Wattkins-Jonson Tech Note.3(3)(May/June 1976).
    [72]T.K.Ishii,Microwave Engineering.Ronald Press,New York,1996
    [73]M.I.Skolnik.Introduction to Radar Syestem.Chapter 8,McGraw-Hill,New York,1962.
    [74]D.K.Barton.Radar System Analysis.Prentice Hall,Englewood Cliffs,NJ,1964.
    [75]R.Pettai.Noise in Receiving Systems,Wiley,New York,1984.
    [76]IRE Dictionary of Electronics Terms and Symbols,institute of Radio Engineers,New York,1961
    [77]Solid state amplifiers.Watkins Johnson Company,June 1979.
    [78]Solid state microwave amplifiers.Aertech Industries Catalog No.5978,Sunnyvale,CA
    [79]Thin-film cascadable amplifiers.Watkins Johnson Co.,Palo Alto,CA,1977
    [80]Microwave component amplications-designing with modular amplifiers,Avantek,Santa Clara,CA,1976.
    [81]F.March,C.Wheeler,and R.Disman.Microwave transistor amplifiers.Watkins Johnson Co.,Application Note 100378A.June 1973.
    [82]Designing with GPD amplifiers.ATP-1002,Avantek,Santa Clara,CA.June 1972.
    [83]D.L.Cheadle.Cascadable amplifiers.Watkins Johnson Co.,Tech Notes,6(1) (January /February 1979).
    [84]S.N.Van Voorhis.Microwave Receivers.McGraw-Hill,New York,1947.
    [85]L.B.Van Brunt.Applied ECM.EW Engineering Inc.Dunn Loring,VA,1982
    [86]W.E.Ayer.Characteristics of crystal video receivers employing RF preamplifion.Technical Report No.153-3,Stanford Electronics Laboratories,Stanford University,1956
    [87]M.I.Skolnik.Radar Handbook.Chapter 5.McGraw-Hill,New York,1970.
    [88]P.J.Meier,OKEAN,H.C.,and SARD,E.W.Integrated X-band sweeping superheterodyne receiver.IEEE Trans.MTT.1971,19:600-609
    [89]E.J.Crescenzi Integrating components for new front-end design.Microwaves.13.35,1974
    [90]C.E.Dexter and R.D.Glaz.HF receiver design.Watkins Johnson Co.,Tech Notes,5(2),1977
    [91]C.W.Earp.Frequency indicating cathode ray oscilloscope.U.S.patent 2434 914,1948
    [92]R.C.Cumming,G.A.Myers.Performance of receivers and signal analyzers using broad-band frequency-sensitive devices.Technical Report No.1905-1,Stanford Electronics Laboratories,Stanford University,1976
    [93]T.Harper.High probability of intercept receivers.Watkins Johnson Co.,Tech Notes,2(4),1975
    [94]T.Harper.New trends in EW receivers.Countermeasure,1976:34-38
    [95]The channelized receiving systems.Staff Report.Microwave system news,1976
    [96]P.Hennessy,J.D.Quick.The channelized receiver comes of age.Microwave System News 1979.
    [97]T.Harper.Hybridization of competitive receivers.Watkins Johnson Co.,Tech Notes,7(1),1980
    [98]C.B.Hoffmann,A.R.Baron.Wideband ESM receiving systems.Part I Microwave J,1980.Part II,1981
    [99]S.Petiotis.Acousto-optics light the path to broadband ESM receiver design.Microwave J,1978
    [100]Spezio,A.E.Acousto-optics for electronic warfare applications.Proc.12~(th)Annual ASILOMA-R Conference on Circuits Systems and Computers,1978
    [101]W.R.White,I.M.Saffitz.Compressive receivers.Airborne Instruments Lab.Div.of Cutler Hammer,Inc.,Topics in Electronics,1962,3
    [102]Klauder,J.R.,Price,A.C.,Darlington,C.,et al.The theory and design of chirp radar.Bell System Technical J.,1960,39
    [103]Reinhold Ludwig,Gene Bogdanov.RF circuit design:theory and application.Prentice Hall PTR.20O8
    [104]张其劭,罗正祥等.高灵敏高温超导接收机前端.低温物理学报,2003,25:576-583