具有光催化活性的纳米TiO_2复合抗菌纤维的低温制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文首先回顾了光催化技术的发展历史,简述了二氧化钛的光催化原理,从贵金属沉积、金属离子掺杂、半导体复合、染料光敏化、固定状负载及非金属掺杂等几种途径综述了二氧化钛光催化剂的改性方法,按水热法、溶胶-凝胶法、低温溶解-再沉淀法、液相沉积法及低温均相沉淀法分类介绍了二氧化钛的低温制备研究进展,并基于自己对光催化技术的认识,就今后光催化技术研究的发展方向及重点、热点提出了一些看法。
     本文采用三种方法即微波辅助液相沉积法、溶胶-凝胶热水处理法和溶解-再沉淀法分别在棉纤维、聚丙烯腈纤维和聚乙烯醇纤维等三种纤维上沉积了二氧化钛薄膜,制备出复合抗菌纤维,克服了传统方法制备的二氧化钛薄膜必须高温煅烧来实现晶型转化的不足,实现了二氧化钛的低温晶化,采用扫描电子显微镜、透射电子显微镜、X射线衍射和UV-vis光谱等手段进行了表征,并系统研究了制备条件对样品光催化活性的影响。
     (1)本文首次将微波辐射和液相沉积法组合应用于在纤维上沉积二氧化钛薄膜,微波加热方法的引入不仅大大缩短了反应时间,提高的二氧化钛的晶化程度,而且发现采用微波辅助液相沉积法可以大大降低反应所需的前驱体浓度,可以在纤维上制备得到更致密的二氧化钛薄膜,有利于提高二氧化钛与纤维的粘附作用,提高抗菌纤维的光催化活性和重复使用性。
     (2)溶胶凝胶-热水处理法,这是一种先制备TiO_2-SiO_2薄膜,然后通过热水处理实现二氧化钛晶型转化的方法,该法由于在制备过程中加入了二氧化硅,它不仅促进了热水处理过程中二氧化钛的晶型转换,提高了二氧化钛的光催化活性,增加了对纤维的粘附作用,而且起到了在光催化反应过程中对纤维的保护作用。
     (3)溶解-再沉淀方法,这是一种先制备晶化的二氧化钛溶胶,然后再沉淀制膜的方法,该法所用原料四氯化钛廉价易得,由于其首先制备晶化的二氧化钛溶胶,所以二氧化钛的晶化程度相对容易控制。
     以亚甲基蓝为模型污染物的光催化活性试验和以金黄色葡萄球菌(S.aureus)、大肠埃希菌(E.coli)及铜绿假单胞菌(P.aeruginosa)为模型菌种的抗菌试验结果表明采用上述三种方法制备的复合纤维在紫外光下有很好的光催化活性和显著的
In this paper, technichques relating to modification of TiO_22 based photocatalysts in recent years such as metal cation doping, metalloid anion doping, ion implantation, photosensitization, fixed technology and so on were reviewed based on the brief introduction of the degradation mechanisms of semiconductor photocatalysts. The recent developments in the preparation of the photocatalytical titania nanoparticles and thin films at low temperature were reviewed with comparation for the different preparation methods, such as hydrothermal methods, sol-gel methods, precipitation process at low temperatures , liquid phase deposition, and so on. The research direction in the near future has also been previewed.Thin film coatings of titania nanocrystals based on cotton fibers (TiO_2/Cotton), polyacrylonitrile fibers (TiO_2/PAN) and polyvinyl alcohol fibers (TiO_2/PVA) were prepared successfully at low temperature by different methods such as microwave assisted liquid phase deposition (MW-LPD) process, sol-gel process with hot water treatment, dissolution-reprecipitition process and so on. The thin films were anatase crystalline and annealing post-treatment at high temperature was avoided.(1) Compared with the conventional LPD processes, the MW-LPD technique could provide quickly high yield and crystallinity in a diluted precursor solution at a low temperature because the high-frequency microwaves penetrated into the bulk of the material and the volumetric interaction of the electromagnetic fields with the material results in dielectric (volumetric) heating. This leaded to higher heating efficiency with faster processing and not only the deposition rate but also the crystalinity of the products were improved remarkably by MV irradiation. The microwave irradiation is benefit for the formation of higher crystallinity of titania and continuous layers of titania on fibers.(2) Titania thin film was deposited successfully on fiber by the sol-gel process with the assistance of tetraethyl silicate (TEOS) at low temperature. It was found that the densification and crystallization of the film was resulted from the post-treatment in boiling water because of the hydrolysis of the Si-O-Ti bonds and dissolution of the
    silica component formed in the film. For the silica coatings on which anatase nanocrystals were precipitated superficially, the residual silica under-layer acted as a protective coating against the photocatalytic degradeation of the fiber substrates.(3) For the preparation of nanocrystalline anatase thin films deposited on fibers by sol-gel dip-coating method, the TiO2 sol were prepared by a low temperature dissolution-reprecipitition process in a liquid media using cheaper TiCLj as precursor, and the crystallization of amorphous precursor was proceeded by peptizing with acid and then refiuxing for a periodic time. The TiO2 sol was prepared firstly and the crystallization of titania could be controlled easily.The fibers with anatase coatings showed high photocatalytic property and better repetition on the photodegradation of MB. The quantitative examination of antibacterial activity indicated that the fibers as-prepared had higher bactericidal activities towards E. coli, P. aeruginosa, and S. aureus. The titania coated fibers are expected to be applied as novel photocatalysts for the antibacterial action, air clean-up indoor, deodoring and antifouling.In order to improve the repeating circles of the semiconductor titania photocatalyst and broaden its applications, TiO2 photocatalysts immobilized on suitable supports such as PDVB microspheres (PDVB@TiC>2), cheaper adsorbent attapulgite (TiO2-ATP) and carbon (TiCVC) were developed. The hybrid photocatalysts developed were characterized by scaning electron microscopy (SEM), transmitsion electron microscopy(TEM), X-ray diffraction (XRD), elemental analysis, Brunauer-Emmett-Teller (BET), and UV-vis adsorption spectroscopy.(4) The core/shell anatase TiC>2 encapsulated poly(divinylbenzene) (PDVB@TiO2) hybrid microspheres were prepared by the two steps: (D the copolymer particles (PDVB) were prepared by the radical precipitation copolymerization of divinylbenzene (DVB) and y-methacryloxypropyltrimethoxy silane (KH-570);(2) tetrabutyl titanate (TBOT) was co-hydrolyzed with the trimethoxy silane groups on the surfaces of the PDVB cores and then the amorphous TiO2 shell obtained was phase transformed to anatase Ti(>2 by acid peptization. The polymer supported TiC>2 photocatalysts prepared at low temperature, had better repetition because of the
    coupled action of KH-570 between the PDVB core and TiCh shell. Furthermore, it could be easily separated from the solution by simple sedimentation.(5) A new route for preparation of TiCVC hybrid photocatalysts were developed by calcining the core/shell (PDVB@TiO2) hybrids at temperatures of 400, 450 or 500 °C in a furnace under air for certain time. The TiCVC hybrids obtained at higher calcination temperature had higher surface area because of more eliminateion of polymer core. The present catalysts show high adsorptivity and high photoactivity for the degradation of MB and can be very easily separated from the solution by sedimentation or simple filtration and it can be used repeatedly for MB removal with preservation of its photoactivity.(6) Fine particles of photoactive anatase-type TiC>2, prepared by hydrolysis of TBOT with hydrolysis control agent tetrabutylammonium hydroxide (TBA)OH and crystallized under microwave (MV) irradiation, were loaded on adsorbent support attapulgite (ATP). The substrates of target were adsorbed on the adsorbent support, and then a high concentration environments of the substrate was formed around the loaded TiC>2, resulting in an increase in the photodestruction rate. One of the most interesting features of the resulting catalysts with low titania contain (<30 %) is their fast decantability in comparison with that of TiC>2. This way one of the most important drawbacks of photocatalysis, the catalysts separation from the solution, was overcome by simple sedimentation and decantation.In particular, the typicall features of the photocatalysts prepared in this dissertation would make them very suitable for configurations and efficient photoreactor for purification of polluted water.
引文
[1]. Fujishima A, Rao T N, Tryk D A. Titanium dioxide photocatalysis. J. Photochem. Photobiol. C: Photochem. Rev., 2000 (1), 1 : 1-21
    [2]. Farrauto R J, Heck R M. Environmental catalysis into the 21st century. Catal. Today, 2000, 55: 179-187
    [3]. Mills A, Le Huntes S. An overview of semiconductor photocatalysis. J. Photochem. Photobiol. A :Chem., 1997, 108: 1
    [4]. Hoffman M R, Matin S T, Choi W, Bahnemann D W. Environmental applications of semiconductor photocatalysis. Chem. Rev., 1995, 95:69-96
    [5]. Lee H Y, Park Y H, Ko K H. Correlation between surface morphology and hydrophilic/hydrophobic conversion of MOCVD-TiO_2 films. Langmuir, 2000, 16, 7289-7293
    [6]. Tryk D A, Fujishima A, Honda K. Recent topics in photoelectrochemistry: Achievements and future prospects. Electrochimica Acta., 2000, 45:2363-2376
    [7]. Jacoby WA, Maness C P, Wolfrum E J, Blake D M, Fennel J A. Mineralization of bacterial cellmass on a photocatalytic surface in air. Environ. Sci. Technol. 1998, 32, 2650-2653.
    [8]. Fank S N, Bard A J. Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders. J. Phy. Chem., 1977, 81:1484-1488
    [9]. Carey J H, Lawrence J, Tosine H M. Photodechlorination of PCBps in the presence of titanium dioxide in aqueous susponsions. Bull. Environ. Contain. Toxicol., 16 (6): 697-701
    [10]. Fox M A, Dulay M T. Heterogeneous photocatalysis. Chem. Rev., 1993, 93:341-357
    [11]. Chatterjee Debabrata, Dasgupta Shimanti. Visible light induced photocatalytic degradation of organic pollutants. J. Photochem. Photobiol. C: Photochem. Re., 2005, 6(2-3): 186-205
    [12].韩兆慧,赵华侨.半导体多相光催化应用研究进展.化学进展,1999,11:1-10
    [13]. Robert D, Malato S. Solar photocatalysis: A clean process for water detoxification. Science of the Total Environment, 2002, 291: 85-97
    [14].韩世同,习海玲,史瑞雪,付贤智,王绪绪.半导体光催化研究进展与展望.化学物理学报.2003,16,339-349
    [15].高濂,郑珊,张青红.纳米氧化钛光催化材料及应用,北京:化学工业出版社,2002.
    [16]. Boer K W, Survery of Semiconductor Physics. New York: Var Nostrand Reinhold. 1990, 249
    [17]. Brillas E, Mur E, Sauleda R, et al. Aniline mineralization by AOP's: Anodic oxidation, photocatalysis, electro-Fenton and photoelectro-Fenton processes. Appl. Catal. B: Environ. 1998, 16;31-42
    [18]. Alberici R M, Jardim W F. Photocatalytic destruction of VOCs in the gas-phase using titanium dioxide. Appl. Catal. B: Environ. 1997, 14:55-68
    [19]. Jaeger C D, Bard A J. Spin trapping and electron spin resonance detection of radical intermediates in the photodecomposition of water at TiO_2 particle system. J. Phys. Chem., 1979, 83 (13): 3146-3152
    [20]. Hong A P, Bahnemann D W, Hoffmann M. Depletion of hydrogen peroxide in aqueous suspensions, J. Phys. Chem., 1987, 91 (9): 2109-2117
    [21]. Fujihira M, Satoh Y, Osa T. Heterogeneous photocatalytic oxidation of aromatic compounds on TiO_2. Nature, 1981, 293(2): 206-208
    [22]. Ilmay J A, F ridovich I. Suppression of oxidative envelope damage by pseudo reversion of a superoxide dismutase deficient mutant of E. Coli. J. Bacteriol., 1992, 174 (3): 953-961
    [23]. Cai R X, Hashimoto K, Itoh K, et al. Photokilling malignant cells with ultrafine TiO_2 powder. Bull. Chem. Soc. Jpn., 1991, 64 (4): 1268-1273
    [24]. Shimada K, Shimahara K. Responsibility of hydrogen peroxide for the lethality of resting Escherichia Coli B cells. Agric. Biol. Chem., 1982, 46 (8): 1329-1337
    [25]. Yoshihiko Kikuchi, Kayano Sunada et al. Photocatalytic bactericidal effect of TiO2 thin films: dynamic view of the active oxygenspecies responsible for the effect. J. Photochem. Photobio A: Chem., 1997, 106: 51-56.
    [26]. Tanaka K, Capule M F V, H isanaga T. Effect of crystallinity of TiO_2 on its photocatalytic action. Chem. Phys. Lett., 1991, 187 (1-2): 73-76
    [27]. Linsebigler A L, Lu G Q, Yates J T. Photocatalysis on TiO_2 Surfaces: Principles, Mechanisms, and Selected Results. Chem. Rev., 1995, 95:735-758
    [28].沈伟韧,赵文宽,贺飞等.TiO_2光催化反应及其在废水处理中的应用.化学进展,1998,10(4):349-361
    [29].范崇政,肖建平,丁延伟.纳米TiO_2的制备与光催化反应研究进展.科学通报,2001,46(4):265-273
    [30]. Bickley I B, Gonzalez-Carreno T, Lees J S, et al. A structural investigation of titanium dioxide photocatalysts. J, Solid. State. Chem., 1991, 92:178-190
    [31]. Bacsa R R, Kiwi J. Effect of rutile phase on the photocatalytic properties of nanocrystalline titania during the degradation of p-coumaric acid. Appl. Catal. B: Environ., 1998, 16:19-29
    [32]. Zhang Z, Wang C C, Zakaria R, et al. Role of particle size in nanocrystalline TiO_2-based photoeatalysts. J. Phys. Chem: B, 1998, 102:10871-10878
    [33]. Serpone N, Law less D, Khairutdinov R, Eizo P. Subnanosecond relaxation dynamics in TiO_2 colloidal sols (particle sizes Rp=1.0-13.4 nm). Relevance to heterogeneous photocatalysis. J. Phys. Chem., 1995, 99:16655-16661
    [34]. Furube A, A sah i T, M asuhara H, et al. Charge carrier dynamics of standard TiO_2 catalysts revealed by Femtosecond Diffuse Reflectance Spectroscopy. J. Phys. Chem: B, 1999, 103:3120-3127
    [35]. Zhang Q H, Gao L, Guo J K. Effects of calcination on the photocatalytic properties of nanosized TiO_2 powders prepared by TiCl_4 hydrolysis. Appl. Catal. B: Environ., 2000, 26: 207-215
    [36]. Maira A J, Yeung K L, Soria J , Coronado J M , Belver C, Lee C Y, Augugliaro V. Gas-phase photo-oxidation of toluene using nanometer-size TiO_2 catalysts. Appl. Catal. B: Environ., 2001, 29:327-336
    [37]. Spanhel L, Weller H, Henglein A. Photochemistry of semiconductor colloids. 22. Electron ejection from illuminated cadmium sulfide into attached titanium and zinc oxide particles. J. Am.Chem. Soc, 1987, 109: 6632-6635.
    [38]. Carp O, Huisman C L, Reller A. Photoinduced reactivity of titanium dioxide. Prog. Solid. State.Chem., 2004, 32: 33-177.
    [39]. Zhao G, Kozuka H, Yoko T. Sol-gel preparation and photoelectrochemical properties of TiO_2 films containing Au and Ag metal particles. Thin Solid Films, 1996, 277(1-2), 147-154
    [40]. Zakrzewska K, Radecka M, Kruk A, et al. Noble metal/titanium dioxide nanocermets for photoelectrochemical applications. Solid State Ionics, 2003, 157: 349-356
    [41]. Li X Z, Li F B. Study of Au/Au~(3+)-TiO_2 photocatalysts toward visible photooxidation for water and wastewater treatment. Environ. Sci. Technol, 2001, 35: 2381-2387
    [42]. Yoon J W, Sasaki T, Koshizaki N, et al. Preparation and characterization of M/TiO_2 (M = Ag, Au,Pt) nanocomposite thin films. Scripta Mater., 2001, 44: 1865-1868
    [43]. Fu X, Zeltner W A, Anderson M A. Gas-phase photocatalytic mineralization of benzene on porous titania-based catalysts. Appl. Catal. B: Environ., 1995, 6: 209
    [44]. Harade K, Hisanaga T, Tanaka K. Photocatalytic degradation of organophosphorous insecticides in aqueous semiconductor suspensions. Wat. Res., 1990, 24: 1415-1417
    [45]. Ohtani B, Iwai K, Nishimoto S, et al. Role of platinum deposits on Titanium(Ⅳ) Oxide particles:Structural and kinetic analyses of photocatalytic reaction in aqueous alcohol and amino acid solutions.J. Phys. Chem: B., 1997, 101: 3349-3359
    [46]. Elmasides C, Kondarides I, Gruenert W. XPS and FTIR study of Ru/Al_2O_3 and Ru/TiO_2 catalysts: Reduction characteristics and interaction with a methane-oxygen mixture. J. Phys. Chem.: B., 1999,103: 5227-5239
    [47]. Berko A, Biro T, Solymosi F. Formation and migration of carbon produced in the dissociation of CO on Rh/TiO_2(110)-(1 × 2) model catalyst: A scanning tunneling microscopy study. J. Phys. Chem:B., 2000, 104:2506-2510
    [48]. Choi W Y, Termin A, Hoffmann M R. The role of metal ion dopants in quantum-sized TiO_2:Correlation between photoreactivity and charge carrier recombination dynamics. J. Phys. Chem., 1994,98(51): 13669-13679
    [49]. Ohno T, Tanigawa F, Fujihara K, et al. Photocatalytic oxidation of water by visible light using ruthenium-doped titanium dioxide powder. J. Photochem. Photobiol. A: Chem., 1999, 127: 107-110
    [50]. Wang J A, Limas-Ballesteros R. Quantitative determination of titanium lattice defects and solid-state reaction mechanism in iron-doped TiO_2 photocatalysts. J. Phys Chem:. B, 2001, 105: 9692-9698
    [51]. Klosek S, Raftery D. Visible light driven V-doped TiO_2 photocatalyst and its photooxidation of ethanol. J. Phys Chem: B, 2001, 105: 2815-2819.
    [52].张金龙,陈海军,徐华胜,等.可见光照射下丙炔光催化水解反应的研究Ⅱ.钒离子对二氧化钛催化性能的影响.催化学报,2004,5(1):10-14
    [53].孙晓君,井立强,蔡伟民,等.掺Pb的TiO_2纳米功能材料的制备及其光催化性能.压电与声光,2002,4(3):232-235
    [54]. Iwasaki M, Hara M, Kawada K, et al. Cobalt Ion-Doped TiO_2 Photocatalyst Response to Visible Light. J. Colloid. Interface Sci., 2000, 224:202-204
    [55]. Sakata Y, Yamamoto T, Gunji H, et al. Effect of Lead oxide addition to the photocatalytic behavior of TiO_2. Chem. Lett., 1998, 131-132
    [56]. Radecka M, Zakrzewska K, Wierzbicka M, et al. Study of the TiO_2-Cr_2O_3 system for photoelectrolytic decomposition of water. Solid State Ionics, 2003, 157:379-386
    [57]. Karvinen S, Lamminmki R. Preparation and characterization of mesoporous visible-light-active anatase. Solid State Sciences, 2003, 5:1159-1166
    [58]. Miki-Yoshida M, Collins-Martinez V, Amezaga-Madrid P, et al. Thin films of photocatalytic TiO_2 and ZnO deposited inside a tubing by spray pyrolysis. Thin Solid Films, 2002, 419: 60-64.
    [59].李芳柏,古国榜,李新军,等.WO_3/TiO_2纳米材料的制备及光催化性能.物理化学学报,2000,16(11):997-1002
    [60].成英之,张渊明,唐渝.WO_3-TiO_2薄膜型复合光催化剂的制备和性能.催化学报,2001,22(2):203-205
    [61]. Chappel S, Chen S G, Zaban A. TiO_2-coated nanoporous SnO_2 electrodes for dye-sensitized solar Cells. Langmuir, 2002, 18:3336-3342
    [62]. Okada M, Yamada Y, Jin P, et al. Fabrication of multifunctional coating which combines low-eproperty and visible-light-responsive photocatalytic activity. Thin Solid Films, 2003, 442 (122): 217-221.
    [63].刘平,周廷云,林华香,等.TiO_2/SnO_2复合光催化剂的耦合效应.物理化学学报,2001,17(3):265-269
    [64]. Bedja I, Kamat P V. Capped semiconductor colloids. Synthesis and photoelectrochemical behavior of TiO_2 capped SnO_2 nanocrystallites. Capped semiconductor colloids. Synthesis and photoelectrochemical behavior of TiO_2 capped SnO_2 nanocrystallites. J. Phys. Chem., 1995, 99 (22): 9182-9188
    [65]. Kumar A, Jain A K. Photophysics and photochemistry of colloidal CdS-TiO_2 coupled semiconductors-photocatalytic oxidation ofindole. J. Mol. Catal. A: Chem., 2001, 165:265-273
    [66]. Cheng Ping, Zheng Maoping, Jin Yangping, et al. Preparation and characterization of silica-doped titania photocatalyst through sol-gel method. Mater. Lett., 2003, 57:2989-2994
    [67]. Hiroyoshi K, Masafumi S, Kazuhiko H, et al. Photooxidation of propylene with oxygen over TiO_2-SiO_2 composite oxides prepared by rapid hydrolysis. J. Mol. Catal. A: Chem., 2001, 172:25-31
    [68].毛东森,卢冠忠,陈庆龄.钛锆复合氧化物载体的制备、物化性质及在催化反应中的应用.催化学报,2004,25(6):501-510
    [69]. Reddy B M, Chowdhury B. X-ray photoelectron spectroscopy study of V_2O_5 dispersion on a nanosized Al_2O_3-TiO_2 mixed Oxide. Langmuir, 2001, 17:1132-1137
    [70]. Radecka M, Zakrzewska K, Wierzbicka M, et al. Study of the TiO_2-Cr_2O_3 system for photoelectrolytic decomposition of water. Solid State Ionics, 2003, 157 (1-4): 379-386
    [71]. Reddy B M, Sreekanth P M, Reddy E P. Surface characterization of La_2O_3-TiO_2 and V_2O_5/La_2O_3-TiO_2 catalysts. J. Phys. Chem: B, 2002, 106:5695-5700
    [72]. Chen Yongsheng, Fierro J L G, Tanaka T, et al. Supported tantalum oxide catalysts: Synthesis, physical characterization, and methanol oxidation chemical probe reaction. J. Phys. Chem: B, 2003, 107:5243-5250
    [73].简丽.纳米Ce/TiO_2光催化剂的制备及光催化性能.稀土,2004,25(2):29-31
    [74]. Dongsen Mao, Guangzhou Lu, Qingling Chen et al. Catalytic performance of B_2O_3/TiO_2-ZrO_2 for vapor-phase beckmann rearrangement of cyclohexanone oxime: The effect of boria loading. Catalysis Letters, 2001, 77 (1-3): 119-124
    [75].李芳柏,古国榜,李新军,等.纳米复合Y_2O_3/TiO_2的制备、表征及其光催化性能研究.中国稀土学报,2001,19(3):225-228
    [76].吕笑梅,方靖淮,陆祖宏.敏化TiO_2纳米晶太阳能电池.功能材料,1998,29(6):574-577
    [77]. Park N G, Schlichthorl G, van de Lagemaat J, et al. Dye-sensitized TiO_2 solar cells: Structural and photoelectrochemical characterization of nanocrystalline electrodes formed from the hydrolysis of TiCl_4. J. Phys. Chem: B, 1999, 103: 3308-3314.
    [78]. OpRegan B, Gratzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO_2 films. Nature, 199, 353,737-738.
    [79]. Patrick B, Kanat P V. Photoelectrochemistry in semiconductor particulate systems 17 Photosensitization of large bandgap semiconductors: charge injection from triplet excited thionine into zinc oxide colloids. J. Phys. Chem., 1992, 96 (3): 1423-1428.
    [80]. Vlachopenlos N, Liska P, Augustyuski J, et al. Very efficient visible light energy harvesting and conversion by spectral sensitization of high surface area polycrystalline titanium dioxide films. J. Am. Chem. Soc., 1988, 110 (4): 1216-1220.
    [81].张莉,杨迈之,高恩勤,等.五甲川菁染料的敏化作用及其在Gratzel型太阳能电池中的应用.高等学校化学学报,2000,21(10):1543-1546
    [82]. Gao F G, Bard A J, Kispert L D. Photocurrent generated on a carotenoid-sensitized TiO_2 nanocrystalline mesoporous electrode. J. Photochem. Photobiol. A: Chem., 2000, 130:49-56
    [83]. Smestad G P, Michael G. Demonsttrating electron transfer and nanotechnology: a natural dye-sensitized nanocrystalline enengy converter. J. Chem. Education, 1998, 75 (6): 752-786
    [84]. Alfredo O, Ceorgina P, Sebastian P J. Electron transfer via organic dyes for solar conversion. Solar Energy Materials and Solar Cells, 1999, 59:137-143
    [85]. Tennakone K, et al. Sensitization of nano-porous films of TiO_2 with santalin (red sandalwood pigment) and construction of dye-sensitized solid-state photovoltaic cells. J. Photochem. Photobiol. A: Chem., 1998, 117:137-142
    [86]. Kazuhiro S, Maki S, et al. Photosensitization of porous TiO_2 semiconductor electrode with xanthene dyes. Chem. Lett., 1998, 27 (8): 753-754.
    [87]. Kuciauskas D, Freund M S, Gray H B, et al. Electron transfer dynamics in nanocrystalline titanium dioxide solar cells sensitized with Ruthenium or Osmium polypyridyi complexes. J. Phys.Chem: B, 2001, 105: 392-403.
    [88]. Islam A, Sugihra H, Arakawa H. Molecular design of ruthenium(Ⅱ) polypyridyl photosensitizers for efficient nanocrystalline TiO_2 solar cells. J. Photochem. Photobiol. A: Chem., 2003, 158 (2/3): 131-138
    [89]. Takahashi Y, Arakawa H, Sugihara H, et al. Highly efficient polypyridyl-ruthenium(Ⅱ) photosensitizers with chelating oxygen donor ligands: β-diketonato-bis(dicarboxybipyridine)ruthenium. Inorg. Chim. Acta, 2000, 310:169-174
    [90]. Islam A, Sugihara H, Hara K, et al. Dye Sensitization of Nanocrystalline Titanium Dioxide with Square Planar Platinum(Ⅱ) Diimine Dithiolate Complexes. Inorg. Chem., 2001, 40:5371-5380
    [91]. Ruile S, Kohle O, Pèchy P, et al. Novel sensitisers for photovoltaic cells. Structural variations of Ru(Ⅱ) complexes containing 2,6-bis(1-methylbenzimidazol-2-yl)pyridine. Inorg. Chim. Acta, 1997,261:129-140
    [92]. Islam A, Sugihara H, Singh L P, et al. Synthesis and photophysical properties of ruthenium(Ⅱ) charge transfer sensitizers containing 4,4'-dicarboxy-2,2'-biquinoline and 5,8-dicarboxy-6,7-dihydro-dibenzo[1,10]-phenanthroline. Inorg. Chim. Acta, 2001,322: 7-16
    [93]. Ngamsinlapasathian S, Sakulkhaemaruethai S, Pavasupree S, et al. Highly efficient dye-sensitized solar cell using nanocrystalline titania containing nanotube structure. J. Photochem. Photobiol. A: Chem., 2004, 164:145-151
    [94]. Stergiopoulos T, Karakostas S, Falaras P. Comparative studies of substituted ruthenium(Ⅱ)-pyrazoyl-pyridine complexes with classical N3 photosensitizer: the influence of--NCS dye iigands on the efficiency of solid-state nanocrystalline solar cells. J. Photochem. Photobiol. A: Chem., 2004, 163:331-340
    [95]. Tesfamichael T, Will G, Bell J, et al. Characterization of a commercial dye-sensitised titania solar cell electrode. Solar Energy Materials and Solar Cells, 2003, 76:25-35
    [96]. Choi W Y, Termin A, Hoffmann M R. The Role of metal ion dopants in quantum-sized TiO_2: Correlation between photoreactivity and charge carder recombination dynamics. J. Phys. Chem., 1994, 98 (51): 13669-13679.
    [97]. Zakeeruddin S M, Nazeeruddin M K, et al. Molecular Engineering of Photosensitizers for Nanocrystalline Solar Cells: Synthesis and Characterization of Ru Dyes Based on Phosphonated Terpyridines. Inorg. Chem, 1997, 36:5937-5946
    [98]. Barbe Ch J, Arendse F, Comte P, Jirousek M, Lenzmann F, Shklover V, Gratzel M. Crystal structures of Ru complex sensitizers ofTiO_2 anatase nanopowders. J. Solid State. Chem. 1997, 132: 60-72
    [99]. Kavan L, Gratzel M, Rathousky J, Zukal A. Nanocrystalline TiO_2 (anatase) electrodes: surface morphology, adsorption, and electrochemical properties. J. Electrochem. Soc., 1996, 143(2): 394-400
    [100].冷文华,张莉,成少安等.附载二氧化钛光催化降解水中对氯苯胺(PCA).环境科学,2000,6:46-50
    [101].邱健斌,曹亚安,马颖等.担载材料对TiO_2薄膜光催化活性的影响.物理化学学报.2000,16(1):1-4
    [102]. Takeda N, Torimoto T, Sampath S. Effect of inert supports for titanium iioxide loading on enhancement of photodecomposition rate of gaseous propionaldehyde. J. Phys. Chem., 1995, 99: 9986-9991
    [103].刘平,王心晨,付贤智.光催化自清洁陶瓷的制备及其特性.无机材料学报,2000,15(1):88-92
    [104].张彭义,余刚,蒋展鹏.固定化二氧化钛膜的制备及其光催化性能.中国环境科学,2000,20(5):436-440
    [105]. Matsumoto Y, Ishikawa Y, Nishida M, Ii S. A new electrochemical method to prepare mesoporous titanium(Ⅳ) oxide photocatalyst fixed on Alumite substrate. J. Phys. Chem.: B, 2000, 104:4204-4209
    [106]. Byme J A, Eggins B R, Brown N M D, et al. Immobilisation of TiO_2 powder for the treatment of polluted water. Appl. Catal. B: Environm., 1998, 17:25-36
    [107].黄正宏,许德平,康飞宇,郝吉明.炭与TiO_2光催化剂的复合及协同作用研究进展.新型炭材料.2004,19:229-238
    [108]. Sopyan I, Watanabe M, Murasawa S, Hashimoto K, Fujishima A.. Film-type photocatalyst incorporating highly active TiO_2 powder and fluororesin binder: Photocatalytic activity and long-term stability. J. Electroanal. Chem., 1996, 415(1-2): 183-186
    [109]. Herrmann J M, Tahiri H, Guillard C, et al. Photocatalytic degradation of aqueous hydroxy-butandioic acid (malic acid) in contact with powdered and supported titania in water. Cata. l Today, 1999, 54:131-141
    [110]. Hofstadler K, Bauer R, Novalic S, Heisler G New reactor design for photocatalytic wastewater treatment with TiO_2 immobilized on fused-silica glass fibers: Photomineralization of 4-Chiorophenol.Environm. Sci. Tech., 1994, 28:670-674
    [111].方佑龄,赵文宽,尹少华等.纳米TiO_2在空心陶瓷微球上的固定化及光催化分解辛烷.应用化学,1997,14:81-84
    [112]. Hu C, Wang Y Z, Tang H X. Preparation and characterization of surface bond-conjugated TiO_2/SiO_2 and photocatalysis for azo dyes. Appl. Catal. B: Environm., 2001, 30:277-285
    [113]. Loddo V, Marci G, Martin C, et al. Preparation and characterisation of TiO_2 (anatase) supported on TiO_2 (rutile) catalysts employed for 4-nitrophenoi photodegradation in aqueous medium and comparison with TiO_2 (anatase) supported on Al_2O_3. Appl. Catal. B: Environm., 1999, 20:29-45
    [114]. Torimoto T, Shigeryoshi I T O, Kuwabata S, et al. Effects of adsorbents used as supports for titanium dioxide loading on photocatalytic degradation of propyzamide. Environra. Sci. Tech., 1996, 30:1275-1281
    [115]. Yamashita H, Harada M, Tanii A, et al. Preparation of efficient titanium oxide photocatalysts by an ionized cluster beam (ICB) method and their photoeatalytic reactivities for the purification of water. Catal. Today, 2000, 63:63-69
    [116]. Zhe D, Hu X J, Po L Yue, et al. Synthesis of anatase TiO_2 supported on porous solids by chemical vapor deposition. Catal. Today, 2001, 68:173-182
    [117]. Kang M, Lee J H, Lee S H. Preparation of TiO_2 film by the MOCVD method and analysis for decomposition of trichloroethylene using in situ FT-IR spectroscopy. J. Mol. Catal. A: Chem, 2003, 193:273-283
    [118]. Chen S F, Zhao M Y, Tao YW. Photocatalytic degradation of organophosphorous pesticides using TiO_2 supported on hollow glass microheads. J. Environ. Sci. 1997, 9:278-284
    [119]. Akihiko H, Yoshifutions T, et al. Acceleration of oxidations and retardation of reductions in photocatalysis ofa TiO_2-SnO_2 bilayer-type catalyst. J. Electrochem. Soc., 2000, 147 (6): 2279-2283
    [120]. Hiroaki T, Akihiko H, A patterned-TiO_2-SnO_2 bilyer type photocataluyst. J. Phys. Chem: B,2000, 104 (19), 4585-4587
    [121]. Kikuchi Y, Sunada K, lyoda T, et al. Photocatalytic bactericidal effect of TiO_2 thin films: dynamic view of the active oxygen species responsible for the effect. J. Photochera. Photobiol. A: Chera, 1997, 106:51-56
    [122]. Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima E, Kitamura A et al. Photogeneration of highly amphiphilic TiO_2 surfaces. Adv. Mater., 1998, 10(2): 135-138.
    [123]. Zhang Y, Crittenden J C, Fixed-bed photocatalysts for solar decontamination of water. Environ. Sci. Teechnol., 1994, 28:435-442
    [124]. Sabate J, Anderson M A, Kikkawa H, et al. Nature and properties of pure and Nb-doped TiO_2 ceramic menbranes affecting the photocatalytic degration of 3-chloro salicylic acid as a Model of halogenated organic compounds. J. Catal., 1992, 134 (1): 36-46
    [125].赵青南,余家国,赵建修,冯为民.溶胶-凝胶法制备釉面砖表面TiO_2涂层的XPS研究及其光催化性能.China Ceramics(中国陶瓷),1999,35:16-19
    [126]. Moazzem M, Greogory Hossain, Raupp B. Polychromatic radiation field model for a honeycomb monolith photocatalytic reactor. Chem. Eng. Sci., 1999, 54:3027-3034
    [127]. Italo M, Paolo P. Photocatalytic oxidation of organic acids in aqueous media by a supported catalyst. Chem. Eng. Sci., 1999, 54:3107-3111
    [128]. Negishi N, Takeuchi K, Ibusuki T. The surface structure of titanium dioxide thin film photocatalyst. Appl. Surf. Sci., 1997, 121/122:417-420
    [129].藤山岛,桥本和仁.光触媒制造方法.日本:公开特许公报,平72171408,1995207211.
    [130].西方聪,西村智明,北野功.污染物质除去用光触媒.日本:公开特许公报,平9257096,1997203204.
    [131].Zhang L X, Liu P, Su Z X. Low temperature preparation titania coated PAN fiber and its photocatalytical property. J. Chin. Chem. Soc. In press.
    [132]. Takeda N, Ohtani M, Torimoto T, Kuwabata S, Yoneeyama H. Evaluation of Diffusibility of Adsorbed Propionaldehyde on Titanium Dioxide-Loaded Adsorbent Photocatalyst Films from Its Photodecomposition Rate. J. Phys. Chem. B, 1997, 101:2644-2649.
    [133] Hu C, Tang Y C, Tang H X. Characterization and photocatalytic activity of transition-metal-supported surface bond-conjugated TiO_2/SiO_2. Cataly. Today, 2004, 90(3-4): 325-330
    [134] Vohra M S, Lee J S, Choi W Y. Enhanced photocatalytic degradation of tetramethylammonium on silica-loaded titania. J. Appl. Electrochem., 2005, 35(7): 757-763.
    [135]. Ding Z, Lu G Q, Greenfield P F. A Kinetic study on photocatalytic oxidation of phenol in water by silica-dispersed titania nanoparticles. J. Colloid Interface Sci. 2000, 232:1-9
    [136]. Modestov A D, Lev O. Photocatalytic oxidation of 2,4-dichlorophenoxyacetic acid with titania photocatalyst. Comparison of supported and suspended TiO_2. J. Photochem. Photobiol. A Chem. 1998, 112:261-270
    [137]. Herman J M, Tahiri H, Ait-Ichou Y, Lassaletta G, González-Elipe A R, Fernandez A. Characterization and photocatalytic activity in aqueous medium of TiO_2 and Ag-TiO_2 coatings on quartz. Appl. Catal. B: Environm. 1997, 13:219-228
    [138]. Kominami H, Kohno M, Matsunaga Y, Kera Y. Thermal decomposition of titanium alkoxide and silicate ester in organic solvent: A new method for synthesizing large-surface-area, silica-modified titanium(Ⅳ) oxide of high thermal stability. J. Am. Ceram. Soc., 2001, 84:1178-1180
    [139]. Vagrieken R, Aguado J, Lopez-Munoz M J, Marugan J. Synthesis of size-controlled silica-supported TiO_2 photocatalysts. J. Photochem. Photobiol. A Chem., 2002, 148:315-322
    [140]. Chen J, Eberlein L, Langford C H. Pathways of phenol and benzene photooxidation using TiO_2 supported on a zeolite. J. Photochem. Photobiol. A Chem., 2002, 148:183-189
    [141]. Chen H R, Shi J L, Zhang W H, Ruan M L, Yan D S. Incorporation of titanium into the inorganic wall of ordered porous zirconium oxide via direct synthesis. Chem. Mater., 2001, 13: 1035-1040
    [142]. Hirano M, Nakahara C, Ota K, Inagaki M. Direct formation of zirconia-doped titania with stable anatase-type structure by thermal hydrolysis. J. Am. Ceram. Soc., 2002, 85: 1333-1335
    [143]. Ooka C, Yoshida H, Suzuk K, Hattori T. Effect of surface hydrophobicity of TiO_2-pillared clay on adsorption and photocatalysis of gaseous molecules in air. Appl. Catal. A Gen., 2004, 260:47-53
    [144]. Ooka C, Yoshida H, Horio M, Suzuk K, Hattori T. Adsorptive and photocatalytic performance of TiO_2 pillared montmorillonite in degradation of endocrine disruptors having different hydrophobicity. Appl. Catal. B: Environ., 2003, 41:313-321
    [145]. Murayama H, Shimizu K, Tsukada N, Shimada A, Kodama T, Kitayama Y. Photocatalytic degradation ofhexachlorocyclohexane (HCH) TiO_2-pillared fluorine mica. Chem. Commun., (2002) 2678-2679
    [146]. Shimiza K, Kanoko T, Fujishima T, Kodama T, Yoshida H, Kitayama Y, Selective oxidation of liquid hydrocarbons over photoirradiated TiO_2 pillared clays. Appl. Catal. A. Gen., 2002, 225: 185-191
    [147]. Tatsuda N, Fukushima Y, Wakayama H. Penetration of titanium tetraisopropoxide into mesoporous silica using supercritical carbon dioxide. Chem. Mater., 2004, 16: 1799-1805
    [148]. Tatsuda N, Itahara H, Setoyama N, Fukushima Y. Preparation of titanium dioxide/activated carbon composites using supercritical carbon dioxide. Carbon, 2005, 43:2358-2365
    [149]. Tsumura T, Kojitani N, Izumi I, Iwashita N, Toyoda M, lnagaki M, Carbon coating of anatase-type TiO_2 and photoactivity. J. Mater. Chem., 2002, 12:1391-1396
    [150]. Lettrnarm C, Hildenbrand K, Kisch H, Macyk W, Maier W F, Visible light photodegradation of 4-chlorophenol with a coke-containing titanium dioxide photocatalyst. Appl. Catal. B: Environm. 2001, 13:215-227
    [151]. Przepiorski J, Yoshizawa N, Yamada Y, Activated carbons containing TiO_2:Characterization and influence of a preparation method on the state of TiO_2 supported. J. Mater. Sci. 2001, 36:4249-4257
    [152]. Tryba B, Morawski A W, Inagaki M. Application of TiO_2-mounted activated carbon to the removal of phenol from water. Appl. Catai. B: Environm. 2003, 41:427-433
    [153]. Tryba B, Morawski A W, lnagaki M. A new route for preparation of TiO_2-mounted activated carbon. Appl. Catal. B: Environm. 2003, 46:203-208
    [154]. Moreno-Castilla C, Maldonado-Hodar F J, Carrasco-Marin F, Rodriguez-Castellon E, Surface characteristics of titania/carbon composite aerogels. Langmuir. 2002, 18:2295-2299
    [155]. Zhang X W, Zhou M H, Lei L H. Preparation of photocatalytic TiO_2 coatings of nanosized particles on activated carbon by AP-MOCVD. Carbon. 2005, 43:1700-1708
    [156]. Li Y J, Li X D, Li J W, Yin J. TiO_2-Coated active carbon composites with increased photocatalytic activity prepared by a properly controlled sol-gel method. Mater. Lett. 2005, 59: 2659-2663
    [157]. Zhang L X, Liu P, Su Z X. A new route for preparation of TiO_2/C hybrids and their photocatalytic properties. J. Mol. Catal. A: Chem. 2006, 248:189-197
    [158]. Carpio E, Zǘniga P, Ponce S, Solis J, Rodriguez J, Estrada W. Photocatalytic degradation of phenol using TiO_2 nanocrystals supported on activated carbon. J. Mol. Catal. A: Chem. 2005, 228: 293-298
    [159]. Inagaki M, Hirose Y, Matsunaga T, Tsumura T, Toyoda M, Carbon coating of anatase-type TiO_2 through their precipitation in PVA aqueous solution. Carbon. 2003, 41:2619-2624
    [160]. Tryba B, Tsumura T, Junas M, Morawski A W, Inagaki M. Carbon-coated anatase: adsorption and decomposition of phenol in water. Appl. Catal. B: Environm. 2004, 50:177-183
    [161]. Tryba B, Morawski A W, Tsumura T, Toyoda M, Inagaki M, Hybridization of adsorptivity with photocatalytic activity-carbon-coated anatase. J. Photochem. Photobio.: A Chem. 2004, 167:127-135
    [162]. Inagaki M, Kojin F, Tryba B, Toyoda M, Carbon-coated anatase: the role of the carbon layer for photocatalytic performance. Carbon, 2005, 43:1652-1659
    [163]. Tryba B, Toyoda M, Morawski A W, Inagaki M. Modification of carbon-coated TiO_2 by iron to increase adsorptivity and photoactivity for phenol. Chemosphere, 60 (2005) 477-484
    [164]. Lin L, Lin W, Zhu Y X, Zhao B Y, Xie Y C, He Y. Uniform carbon-covered titania and its photocatalytic property. J. Mol. Catal. A: Chem. 2005, 236:46-53
    [165]. Janus M, Tryba B, Inagaki M, Morawski A W. New preparation of a carbon-TiO_2 photocatalyst by carbonization of n-hexane deposited on TiO_2. Appl. Catal.: B Environ. 2004, 52:61-67
    [166]. Irie H, Watanabe Y, Hashimoto K, Carbon-doped anatase TiO_2 powders as a visible-light sensitive photocatalyst.Chem. Lett., 2003, 32:772-773
    [167]. Barnes P R F, Randeniya L K, Murphy, A B, et al. TiO_2 photoelectrodes for water splitting: Carbon doping by flame pyrolysis? Developments in Chemical Engineering and Mineral Processing, 2006, 14(1-2): 51-70
    [168]. Li Y Z, Hwang D S, Lee N H, Kim S J. Synthesis and characterization of carbon-doped titania as an artificial solar light sensitive photocataly. Chem. Phys. Lett., 2005, 404:25-29
    [169]. Burda C, Lou Y B, Chen X B, et al. Enhanced Nitrogen Doping in TiO_2 Nanoparticles. Nano-Letters, 2003, 3(8): 1049-1051
    [170]. Irie H., Watanabe Y, Hashimoto K. Nitrogen-Concentration Dependence on Photocatalytic Activity of TiO_(2-x)N_x Powders. J. Phys. Chem: B, 2003, 107(23): 5483-5486
    [171]. Asahi R, Morikawa T, Ohwakl T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science, 2001, 293: 269-271
    [172]. Mokawa T, Asahi R, Ohwaki T, et al. Band-gap narrowing of titanium dioxide by nitrogen doping. Jpn. J. Appl. Phys. Part. 2, 2001, 40(6A): 561-563
    [173]. Yin S, Zhang Q W, Saito F, et al. Preparation of visible light-activated titania photocatalyst by mechanochemical method. Chem Lett., 2003, 32(4): 358-359
    [174]. Sato S. Photocatalytic activity of NO_x-doped TiO_2 in the visible light region. Chem. Phys. Lett.,1986, 123(1-2): 126-128
    [175]. Nakano Y, Morikawa T, Ohwaki T, Takeshi Y. Deep-level optical spectroscopy investigation of N-doped TiO_2 films. Appl. Phys. Lett., 2005, 86(13): 132104
    [176]. Ryuhei Nakamura, Tomoaki Tanaka, Yoshihiro Nakato. Mechanism for visible light responses in anodic photocurrents at N-doped TiO_2 film electrodes. J Phys Chem: B, 2004, 108(30):10617-10620
    [177]. Umebayashi T, Yamaki T, Itoh H, et al. Band gap narrowing of titanium dioxide by sulfur doping.Appl. Phys. Lett., 2002, 81(3): 454-456
    [178]. Umebayashi T, Yamaki T, Tanaka S, et al. Visible light-induced degradation of methylene blue on S-doped TiO_2. Chem Lett., 2003, 32(4): 330-331
    [179]. Umebayashi T, Yamaki T, Yamamoto S, et al. Sulfur-doping of rutile-titanium dioxide by ion implantation: Photocurrent spectroscopy and first-principles band calculation studies. J. Appl. Phys.,2003, 93(9): 5156-5160
    [180]. Ohno T, Mitsui T, Matsumura M. Photocatalytic activity of S-doped TiO_2 photocatalyst under visible light. Chem Lett., 2003, 32(4): 364-365
    [181]. Shahed U M Khan, Mofareh Al Shahry, William B Ingler. Efficient photochemical water splitting by a chemical modified n-TiO_2. Science, 2002, 297: 2243-2245
    [182]. Irie H, Watanabe Y, Hashimoto K. Carbon-doped anatase TiO_2 powders as a visible-light sensitive photocatalyst. Chem Lett., 1998, 32(8): 772-773
    [183]. Sakthivel S, Kisch H. Daylight Photocatalysis by Carbon-Modified Titanium Dioxide. Angew.Chem. Int. Ed. 2003, 42: 4908-4911
    [184]. Zhao Wei, Ma W, Chen C, et al. Efficient degradation of toxic organic pollutants with Ni_2O_3/TiO_(2-x)B_x under visible irradiation. J. Am. Chem. Soc, 2004, 126 (15): 4782-4783
    [185]. Hattori A, Tada H. High photocatalytic activity of F-doped TiO_2 film on glass. J. Sol-Gel Sci.Tech., 2001, 22(1/2): 47-52
    [186]. Hattori A, Yamamoto M, Tada H, et al. A promoting effect of NH_4F addition on the photocatalytic activity of sol-gel TiO_2 films. Chem. Lett., 1998, 27(8): 707-708
    [187]. Yamaki T, Sumita T, Yamamoto S. Formation of TiO_(2-x)F_x compounds in fluorine-implanted TiO_2. J Mater Sci Lett., 2002, 21 (1): 33-35
    [188]. Jimmy C Yu, Yu J G, Wingkei Ho, et al. Effects of F-doping on the photocatalytic activity and microstructures of nanocrystalline TiO_2 powders. Chem. Mater., 2002, 14(9): 3808-3816
    [189]. Nukumizu Kohta, Nunoshige J, Takata T, et al. TiN_xO_yF_z as a stable photocatalyst for water oxidation in visible light (<570 nm). Chem Lett., 2003, 32 (2): 196-197
    [190] 唐玉朝,李薇,胡春等.TiO_2形态结构与光催化活性关系的研究.化学进展,2003,15:378-384.
    [191] Imai H, Morimoto H, Tominogo A et al. Structural changes in sol-gel derived SiO_2 and TiO_2 films by exposure to water vapor. J. Sol-Ge.l Sci. Tech., 1997, 10: 45-54.
    [192] Imai H, Hirashima H. Preparation of porous anatase coating from sol-gel-derived titanium dioxide and titanium dioxide-silica by water-vapor exposure. J. Am. Ceram. Soc., 1999, 82: 2301-2304.
    [193] Imai H, Hirashima H, Awazu K. Alternative modification methods for sol-gel coatings of silica, titania and silica-titania using ultraviolet irradiation and water vapor. Thin Solid Films, 1999, 351: 91-94.
    [194] Langlet M, Kim A, Audier Met al. Sol-gel preparation of photocatalytic TiO_2 films on polymer substrates. J. Sol-Ge.l Sci. Tech., 2002, 25: 223-234.
    [195] Langlet M, Burgos M, Courier C. Low temperature preparation of high refractive index and mechanically resistant sol-gel TiO_2 films for multilayer antireflective coating applications. J. Sol-Gel.Sci. Tech., 2001, 22: 139-150.
    [196] Langlet M, Jenouvrier P, Kim A et al. Functionality of aerosol-gel deposited TiO_2 thin films processed at low temperature. J. Sol-Gel. Sci. Tech., 2003, 26: 759-763.
    [197] Coutier C, Audier M, Fick J et al. Aerosol-gel preparation of optically active layers in the system Er/SiO_2-TiO_2. Thin Solid Films, 2000, 372:177-189
    [198] Langlet M, Kim A, Audier M et al. Liquid phase processing and thin film deposition of titania nanocrystallites for photocatalytic applications on thermally sensitive substrates. J. Mate.r Sci., 2003, 38: 3945-3953.
    [199] Kazumichi, Yanagisawa, James O. Crystallization of anatase from amorphous titania using the hydrothermal technique: Effects of starting material and temperature. J. Phys. Chem: B., 1999, 103: 7781-7787.
    [200] So W W, Park S B, Kim K J et al. Phase Transformation Behavior at Low Temperature in Hydrothermal Treatment of Stable and Unstable Titania Sol. J. Colloid Interface Sci., 1997, 191: 398-406
    [201] Wang C C, Ying Y J. Sol-gel synthesis and hydrothermal processing of anatase and rutile titania nanocrystals. Chem. Mater, 1999, 11 : 3113-3120
    [202] Tan R Q, He Y, Zhu Y F. Hydrothermal preparation of mesoporous TiO_2 powder from Ti(SO_4)_2 with poly(ethylene glycol) as template. J. Mater Sci., 2003, 38:3973-3978
    [203] Gopal M, Moberly C W J, Jonghe L C D. Room temperature synthesis of crystalline metal oxides. J. Mater Sci., 1997, 32:6001-6008
    [204] Watson S S, Beydoum D, Scott J A et al. The effect of preparation method on the photoactivity of crystalline titanium dioxide particles. Chem. Eng. J., 2003, 95:213-220
    [205] So W W, Park S B, Moon S J. The Crystalline Phase of Titania Particles Prepared at Room Temperature by a Sol-gel Method. J. Mater. Sci. Lett., 1998, 17:1219-1222
    [206] So W W, Park S B, Kim K J et al. The crystalline phase stability of titania particles prepared at room temperature by the sol-gel method. J. Mater Sci., 2001, 36:4299-4309
    [207] Li Y, Lim S H, White T. LB controlled nanophase development in photocatalytic titania. Mater Trans., 2003, 44:1328-1332
    [208] Li Y, White T J, Lim S H. Low-temperature synthesis and microstructural control of titania nano-particles. J Solid State Chem., 2004, 177:1372-1381
    [209] Liu X H, Yang J, Wang L et al. An improvement on sol-gel method for preparing ultrafine and crystallized titania powder. Mater Sci. Eng. A., 2001, 289:241-245
    [210] Kotani Y, Matsuda A, Tatsumisago M et al. Formation of anatase nanocrystals in sol-gel derived TiO_2-SiO_2 thin films with hot water treatment. J. Sol-Gel. Sci. Tech., 2000, 19: 585-588.
    [211] Matsuda A, Kotani Y, Kogure T et al. Transparent anatase nanocomposite films by the sol-gel process at low temperatures. J. Am. Ceram. Soc., 2000, 83:229-231
    [212] Kotani Y, Matsuda A, Kogure T et al. Effects of addition of poly(ethylene glycol) on the formation of anatase nanocrystals in SiO_2-TiO_2 gel films with hot water treatment. Chem. Mater., 2001, 13:2144-2149
    [213] Kotani Y, Matoda T, Matsuda A et al. Anatase nanocrystal-dispersed thin films via sol-gel process with hot water treatment: effects of poly(ethylene glycol) addition on photocatalytic activities of the films. J. Mater Chem., 2001, 11:2045-2048
    [214] Matsuda A, Kotani Y, Kogure T et al. Photocatalytic decomposition of acetaldehyde with anatase nanocrystals-dispersed silica films prepared by the sol-gel process with hot water treatment. J. Sol-Gel. Sci. Tech., 2001, 22:41-46
    [215] Matsuda A, Matoda T, Kogure T et al. Evaluation of photocatalytic activity of transparent anatase nanocrystals-dispersed silica films prepared by the sol-gel process with hot water treatment. J. Sol-Gel. Sci. Tech., 2003, 26:517-521
    [216] Matsuda A, Matoda T, Kogure T et al. Formation of anatase nanocrystals-precipitated silica coatings on plastic substrates by the sol-gel process with hot water treatment. J. Sol-Gel. Sci. Tech., 2003, 27:61-69
    [217] Djaoued Y, Badilescu S, Ashrit P V et al. Low temperature sol-gel preparation of nanocrystalline TiO2 thin films. J. Sol-Gel. Sci. Tech., 2002, 24:247-254
    [218] Iketani K, Sun R D, Toki M et al. Sol-gel-derived TiO_2/poly(dimethylsiloxane) hybrid films and their photocatalytic activities. J. Phys. Chem. Solids., 2003, 64:507-513
    [219] Yin S, Hasegawa H, Sato T. Phase-compositional and morphological control of titania nanoparticles via low temperature dissolution-reprecipitation process in liquid media. Chem. Lett.,2002:564-565
    [220] Yin S, Li R X, He Q L et al. Low temperature synthesis of nanosize rutile titania crystal in liquid media. Mater. Chem. Phys., 2002, 75:76-80
    [221] Yin S, Hasegawa H, Maeda P et al. Synthesis of visible-light-active nanosize rutile titania photocatalyst by low temperature dissolution-reprecipitation process, J. Photochem. Photobiol: A Chem., 2004, 163:1-8
    [222] Shin H, Jung H S, Hong K S et al. Crystallization process of TiO_2 nanoparticles in an acidic solution. Chem. Lett., 2004, 33:1382-1383
    [223] Lee D S, Liu T K. Preparation of TiO_2 sol using TiCl_4 as a precursor. J. Sol-Gel. Sci. Tech., 2002,25:121-136
    [224] Xie Y B, Yuan C W. Photocatalytic activity and recycle application of titanium dioxide sol for X-3B photodegradation. J. Mol. Catal. A: Chem, 2003, 206:419-428
    [225] Dhage S R, Choube V D, Samuel V et al. Synthesis of nanocrystalline TiO_2 at 100 ℃. Mater. Lett., 2004, 58:2310-2313
    [226] 殷澍,王金淑,左藤次雄. 功能材料,2004(增刊):2503-2505
    [227] 赵敬哲,王子忱,刘艳华等.液相一步合成金红石型超细TiO_2.高等学校化学学报,1999,20:467-469
    [228] 龙震,黄喜明,钟家柽等.纳米金红石型二氧化钛的低温制备及表征.功能材料,2004,35:311-313
    [229] Nagayama H, Honda H, Kawahara H. New process for silica coating. J. Electrochem. Soc., 1988, 135:2013-2016
    [230] Shimizu K, Imai H, Hirashima H et al. Low-temperature synthesis of anatase thin films on glass and organic substrates by direct deposition from aqueous solutions. Thin Solid Films, 1999, 351: 220-224
    [231] Imai H, Shimizu Y, Matsuda M et al. Direct preparation of anatase TiO_2 nanotubes in porous alumina membranes. J. Mater. Chem., 1999, 9:2971-2972
    [232] Imai H, Matsuda M, Shimizu K et al. Preparation of TiO_2 fibers with well-organized structures. J. Mater. Chem., 2000, 10:2005-2006
    [233] Yang H G, Zeng H H. Control of nucleation in solution growth ofanatase TiO_2 on glass substrate. J. Phys. Chem. B., 2003, 107:12244-12255
    [234] Deki S, Aoi Y, Hiroi O et al. Titanium(Ⅳ) Oxide Thin Films Prepared from Aqueous Solution. Chem Lett., 1996:433-434
    [235] Kishimoto H, Takahama K, Hashimoto N et al. Photocatalytic activity of titanium oxide prepared by liquid phase deposition (LPD). J. Mater. Chem., 1998, 8, 2019-2024
    [236] Deki S, Aoi Y, Yanagimoto H et al. Preparation and characterization of Au-dispersed TiO_2 thin films by a liquid-phase deposition method. J. Mater. Chem., 1996, 6:1879-1882
    [237] 赵文宽,方佑龄.光催化活性TiO_2薄膜的低温制备.物理化学学报,2002,18:368-371.
    [238] 周磊,赵文宽,方佑龄.液相沉积法制备光催化活性TiO_2薄膜.应用化学,2002,19:919-922
    [239] 赵文宽,周磊,刘昌等.液相沉积法制备光催化活性TiO_2薄膜和纳米粉体.化学学报,2003.61:699-704
    [240] Dutschke A, Diegelmann C, Lobmann P. Preparation of TiO_2 thin films on polystyrene by liquid phase deposition. J. Mater. Chem., 2003, 13:1058-1063
    [241] Koumato K, Seo S, Sugiyama T et al. Micropatterning of titanium dioxide on self-assembled monolayers using a liquid-phase deposition process. Chem Mater., 1999, 11: 2305-2309.
    [242] Deki S, Aoi Y, Yanagimoto H et al. Monitoring the growth of titanium oxide thin films by the liquid-phase deposition method with a quartz crystal microbalance. J. Mater Chem., 1997, 7:733-736
    [243] Pizem H, Sukenik C N. Effects of substrate surface functionality on solution-deposited titania films. Chem Mater., 2002, 14:2476-2485
    [244] Vigil E, Saadoun L, Ayllon J. TiO_2 thin film deposition from solution using microwave heating. Thin Solid Films, 2000, 365:12-18
    [245] 周磊,刘昌,赵文宽等.液相沉积法制备光催化活性掺铁TiO_2薄膜.催化学报.,2003,24:359-363
    [246] 张长远,张金龙.液相沉积法制备光催化TiO_2/SiO_2复合薄膜及其表征.感光科学与光化学,2004,22:108-113
    [247] 王晓萍,于云,高濂 等.TiO_2薄膜的液相沉积法制备及其性能表征.无机材料学报.,2000,15:573-576
    [248] 王晓萍,于云,胡行为 等.液相沉积法制备氧化物薄膜.功能材料.,2000,31:341-343
    [249] Nam H D, Lee B H, Kim S J et al. Preparation of ultrafine crystalline TiO_2 powders from aqueous TiCl_4 solution by precipitation. Jpn. J. Appl. Phys., 1998, 37:4603-4608
    [250] Kim S J, Park S D, Jeon Y H. Homogeneous precipitation of TiO_2 ultrafine powders from aqueous TiOCl_2 solution. J. Am. Ceram. Soc., 1999, 82:927-932
    [251] Park S D, Cho Y H, Kim W W et al. Understanding of Homogeneous Spontaneous Precipitation for Monodispersed TiO_2 Ultrafine Powders with Rutile Phase around Room Temperature. J. Solid. State. Chem., 1999, 146:230-238
    [252] Kim S J, Lee E G., Park S D et al. Photocatalytic effects of rutile phase TiO_2 ultrafine powder with high specific surface area obtained by a homogeneous precipitation process at low temperatures. J. Sol-Gel, Sci. Tech., 2001, 22:63-74
    [253] Zhang Q H, Gao L, Guo J K. Preparation and characterization of nanosized TiO_2 powders from aqueous TiCl_4 solution. Nanostruct. Mater., 1999, 11 : 1293-1300.
    [254] 张青红,高濂,郭景坤.四氯化钛水解法制备纳米氧化钛超细粉体.无机材料学报,2000, 15:21-25
    [255] Zhang Q H, Gao L, Gu J K. Effects of calcination on the photocatalytic properties of nanosized TiO_2 powders prepared by TiCl_4 hydrolysis. Appl. Catal. B: Envirionm., 2000, 26:207-215
    [256] 孙静,高濂,张青红,制备具有光催化活性的金红石相纳米氧化钛粉体.化学学报,2003,61:74-77
    [257] 孙静,高濂.TiCl_4水解条件对相转变的影响.无机材料学报.,2003,18:505-508.
    [258] Kim K J, Benkstein K D, Lagemaat J et al. Characteristics of low-temperature annealed TiO_2 films deposited by precipitation from hydrolyzed TiCl_4 solutions. Chem. Mater., 2002, 14: 1042-1047
    [259] Niesen T P, Bill J, Aldinger F. Deposition of titania thin films by a peroxide route on different functionalized organic self-assembled monolayers. Chem. Mater., 2001, 13:1552-1559
    [260] Masuda Y, Jinbo Y, Yonezawa T et al. Templated site-selective deposition of titanium dioxide on self-assembled monolayers. Chem. Mater., 2002, 14:1236-1241
    [261] Park N G., Lagemaat J, Frank A J. Comparison of dye-sensitized rutile- and anatase-based TiO_2 solar cells. J. Phys. Chem. B., 2000, 104:8989-8994
    [262] Park N G, Schlichthorl G., van de Lagemaat J. et al. Dye-densitized TiO_2 solar cells: Structural and photoelectrochemical characterization of nanocrystalline electrodes formed from the hydrolysis of TiCl_4. J. Phys. Chem. B., 1999, 103:3308-3314
    [263] Yamabi S, Imai H. Fabrication of rutile TiO_2 foils with high specific surface area via heterogeneous nucleation in aqueous solutions. Chem. Lett., 2001:220-221
    [264] Yamabi S, Imai H. Synthesis of rutile and anatase films with high surface areas in aqueous solutions containing urea. Thin Solid Films, 2003, 434:86-93
    [265] Vigil E, Ayllon J A. TiO_2 layers grown from flowing precursor solutions using microwave heating. Langmuir, 2001, 17:891-896
    [266] 唐子龙,张俊英,成哲等.纳米金红石型TiO_2的低温制备.功能材料.,2002,33:342-344
    [267] 张霞,赵岩,张彩碚 等.低温制备锐钛矿结构的纳米TiO_2.材料科学与工程学报.,2004,22:328-332
    [268] Niederberger M, Bartl M H, Stucky G D. Benzyl alcohol and titanium tetrachloride-A versatile reaction system for the nonaqueous and low-temperature preparation of crystalline and luminescent titania nanoparticles. Chem. Mater., 2002, 14:4364-4370
    [269] Niederberger M, Bartl M H, Stueky G D. Benzyl alcohol and transition metal chlorides as a versatile reaction system for the nonaqueous and low-temperature synthesis of crystalline nano-objects with controlled dimensionality. J. Am. Chem. Soc., 2002, 124:13642-13643
    [270] Niederberger M, Gamweitner G, Krumeich F et al. Tailoring the surface and solubility properties of nanocrystalline titania by a nonaqueous in situ functionalization process. Chem. Mater., 2004, 16: 1202-1208
    [271] Cozzoli P D, Komowski A, Weller H. Low-temperature synthesis of soluble and processable organic-capped anatase TiO_2 nanorods. J. Am. Chem. Soc., 2003, 125:14539-14548
    [272] Wu J M, Zhang T W. Photodegradation of rhodamine B in water assisted by titania films prepared through a novel procedure. J. Photochem. Photobiol: A Chem., 2004, 162:171-177