子宫内膜CD82和S1OOA1O/Annexin A2的表达调控及与内膜接受态相关性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一、目的
     胚胎植入是十分复杂的过程,需要子宫内膜与胚胎在时间和空间上的同步协调。一方面,胚胎发育至胚泡阶段;另一方面,子宫内膜发育到允许胚胎侵入的接受态。在着床窗口期,子宫内膜经历一系列的形态学和生化改变,有利于胚胎植入。细胞表面糖蛋白介导细胞与细胞之间,细胞与细胞外基质之间的黏附。CD82糖蛋白属于跨膜四糖蛋白,可以抑制细胞的转移和迁移。研究表明:人类母胎界面的蜕膜细胞大量表达CD82蛋白,提示CD82可能参与胚胎植入。
     子宫内膜的周期性变化受到卵巢激素的调控。在这些激素中,孕激素对于人类妊娠的的建立和维持起到决定性的作用。同时,接受态的子宫内膜与胚胎之间的黏附也受到孕激素的调控。孕激素受体是很多避孕药的靶位点。米非司酮(RU486)是一种孕激素受体的拮抗剂,被认为是一种常用的避孕药物。RU486的避孕机制甚多,但是其与着床窗口期的标志性分子岩藻糖基转移酶IV (FUT4)之间的关系尚无报道。
     子宫内膜从非接受态向接受态转变的过程中,许多特异性的分子及其在子宫内膜表面的受体或者配体出现时空特异性的表达,有利于胚胎着床。S100A10及其配体Annexin A2形成异四聚体移位到细胞膜上,发挥多种生物学作用。研究发现,S100A10在早期妊娠的小鼠及恒河猴的植入位点显著上调。而Annexin A2蛋白在妊娠期的母胎界面持续增高。提示我们S100A10/Annexin A2可能参与胚胎植入。
     本文通过对CD82,S100A10以及Annexin A2四个着床相关分子在人类月经周期不同阶段的表达和调控的研究,进一步探讨它们在生殖过程中的功能和作用机制,为阐明它们在生殖中的作用提供理论依据。同时,对生殖疾病的治疗以及辅助生殖中妊娠成功率的提高具有一定的意义。
     二、方法
     1.采用免疫组织化学检测CD82,S100A10,Annexin A2蛋白的表达及定位。
     2.利用脂质体转染法将重组的CD82过表达质粒或CD82干扰质粒(CD82-siRNA)转染至人子宫内膜细胞系(RL95-2/HEC-1A)中。其中,RL95-2细胞系和HEC-1A细胞系分别代表高/低接受态的子宫内膜上皮细胞。
     3.采用RT-PCR方法检测CD82,FUT4基因表达。
     4.采用real-time PCR方法检测S100A10,Annexin A2基因表达。
     5.采用Western blot检测CD82,FUT4,S100A10,Annexin A2蛋白表达。
     6.采用间接免疫荧光方法检测CD82的表达。
     7.利用黏附实验观察和分析胚胎细胞与子宫内膜细胞之间的黏附情况。
     三、结果
     (一)CD82在月经周期及不同接受态子宫内膜细胞中的差异性表达分析
     1.通过免疫组化方法检测到CD82在着床窗口期的人类子宫内膜中的表达出现峰值。
     2.应用RT-PCR、Western blot和间接免疫荧光方法检测到RL95-2细胞CD82的表达高于HEC-1A细胞。
     3.应用RT-PCR和Western blot发现孕激素可以刺激CD82在RL95-2细胞和HEC-1A细胞中的表达。
     4. CD82干扰质粒抑制胚胎细胞与RL95-2细胞的黏附率;CD82过表达质粒促进胚胎细胞与HEC-1A细胞的黏附率;CD82抗体封闭RL95-2或者HEC-1A细胞,可抑制胚胎细胞与子宫内膜细胞的黏附率。
     5. CD82干扰质粒可以抑制RL95-2细胞中FAK信号通路的激活,CD82过表达质粒可以激活HEC-1A细胞中FAK信号通路。
     (二)米非司酮(RU486)通过调节CD82抑制岩藻糖基转移酶IV的表达抑制胚胎体外黏附
     1. RU486抑制JAR细胞与RL95-2单层之间的黏附。
     2.采用RT-PCR筛选RL95-2细胞中的FUT家族基因,发现RU486对于FUT4基因表达的抑制最为明显。
     3.应用RT-PCR和Western blot检测到RU486抑制RL95-2细胞以及流产妇女子宫内膜中FUT4的表达。
     4. RU486抑制RL95-2细胞中CD82的基因以及蛋白表达。
     5. CD82干扰质粒抑制RL95-2细胞中FUT4的表达,CD82过表达质粒促进RL95-2细胞中FUT4的表达。
     6. RU486通过RU486/CD82/FUT4信号通路抑制胚胎与子宫内膜细胞的黏附。
     (三)S100A10及其配体Annexin A2在人类月经周期子宫内膜中的表达变化
     1.通过免疫组化和Western blot检测到S100A10和Annexin A2蛋白均在着床窗口期的人类子宫内膜中出现表达峰值。主要定位于腔上皮和腺上皮的胞浆、胞膜上。
     2.应用real-time PCR检测到S100A10和Annexin A2的mRNA均在着床窗口期的人类子宫内膜中出现表达峰值。
     四、结论
     (一)CD82在月经周期及不同接受态子宫内膜细胞中的差异性表达分析
     1.CD82在着床窗口期的人类子宫内膜中的表达呈现峰值。同时,CD82在高接受态的子宫内膜细胞系RL95-2中表达高于其在低接受态子宫内膜细胞系HEC-1A中。提示CD82可以作为子宫内膜接受态的标志物。
     2.孕激素可以刺激CD82的表达。上调或抑制细胞中CD82表达,可以影响胚胎与子宫内膜的黏附率。说明CD82在胚胎植入的过程中发挥作用。
     3.CD82通过调节RL95-2以及HEC-1A细胞中FAK信号通路的激活,参与胚胎植入。
     (二)米非司酮(RU486)通过调节CD82抑制岩藻糖基转移酶IV的表达抑制胚胎体外黏附
     1. RU486能够明显抑制RL95-2细胞中FUT4的表达。而且,服用RU486流产妇女的子宫内膜中FUT4的表达较物理性流产的妇女更低。表明FUT4受孕激素受体的调控,从而在胚胎植入过程中发挥作用。
     2.上调或抑制RL95-2细胞中CD82的表达,可以调节RL95-2细胞中FUT4的合成水平,进而影响胚胎与子宫内膜的黏附率。结果表明CD82介导FUT4在胚胎植入过程中的作用。
     3. RU486抑制CD82的表达,RU486通过RU486/CD82/FUT4信号通路抑制胚胎与子宫内膜的黏附。
     (三)S100A10及其配体Annexin A2在人类月经周期子宫内膜中的表达变化
     1. S100A10蛋白及mRNA在增生期和分泌期的子宫内膜中持续表达,分泌期的表达明显高于增生期。其表达峰出现在着床窗口期。说明CD82在胚胎植入的过程中发挥作用,可以作为子宫内膜接受态的标志物。
     2. Annexin A2蛋白及mRNA在增生期不表达,在分泌中晚期的表达较高,与着床窗口期相一致。提示AnnexinA2可能是子宫内膜接受态的建立所必须的,可以成为评价内膜接受性的标志物。
I. Objective
     Embryo implantation is a process that requires both temporal and spatialsynchronisation of the uterine endometrium and the embryo. A series of molecules inthe endometrium change dynamically in menstrual cycles. Especially during thewindow of implantation, expression of some molecules facilitates the process of embryoimplantation. Glycoproteins, found on cell surfaces, are involved the adhesion of cellsto other cells, and adhesion of cells to the extracellular matrix. CD82is a glycoproteinthat belongs to the transmembrane4superfamily and it can inhibit metastasis. Decidualcells at the maternal-fetal interface express a significant amount of CD82, indicating thatCD82may participate in embryo implantation.
     The endometrial cycle is regulated by estrogen and progesterone. Indeed,progesterone plays critical roles for the embryo implantation and is required for themaintenance of pregnancy. In humans, the receptivity of endometrium for embryoadhesion is regulated closely by progesterone. Progesterone and the progesteronereceptor are the targets of many contraceptive drugs. Mifepristone (RU486) is acommon contraceptive drug that acts as a competitive progesterone receptor antagonist.There are many contraceptive mechanisms of RU486, but the relationship betweenRU486and fucosyltransferase IV which is a marker of endometrial receptivity has notbeen reported.
     The S100A10is also called Annexin A2ligand. S100A10/Annexin A2tetramertransfers into cell membranes and is involved in many biological functions. It has beenreported that S100A10is highly expressed at implantation sites in mice and rhesus monkeys of early pregnancy. Annexin A2increases progressively during gestation inhuman fetomaternal interface.
     In this study, we research the expression and regulation of CD82, S100A10andAnnexin A2on cell surface, and evaluate their roles on cell surface during implantation.The study will promte the further elucidation of the mechanism in embryo implantaion.
     II. Methods
     1. Expression and localization of CD82, S100A10and Annexin A2in the humanendometrium were analysed by immunohistochemistry.
     2. The recombinant vector was transfected into cells.
     3. The expression of CD82and FUT4were detected by the methods of RT-PCR.
     4. The expression of S100A10and Annexin A2were detected by the methods ofreal-time PCR.
     5. The expression of CD82, FUT4, S100A10and Annexin A2were detected bythe method of Western blot
     6. Indirect immunofluorescence staining was used to detect CD82protein.
     7. Detect the percent adhesion of JAR cell adhesion to RL95-2or HEC-1A cellmonolayer.
     III. Results
     (I) CD82expression alters with human endometrial cycles and affects the uterineendometrial receptivity in vitro
     1. Immunohistochemistry found that the highest expression of CD82occurred inmid-and late-secretory phases which are considered the window of implantation.
     2. The expression of CD82on RL95-2cells was also higher than on HEC-1A cellsby RT-PCR, Western blot and indirect immunofluorescence staining.
     3. Progesterone induced the expression of CD82in both RL95-2and HEC-1Acells by RT-PCR and Western blot
     4. RT-PCR, Western blot and indirect immunofluorescence staining found that theexpression of CD82was dramatically decreased by CD82-siRNA transfection incomparison to untransfected controls. The percent adhesion of JAR cells to RL95-2cellmonolayer was inhibited by CD82-siRNA or CD82antibody. Inversely, the percentadhesion of JAR cells to HEC-1A cell monolayer was promoted by CD82expressionplasmid.
     5. To study the effect of CD82expression on FAK signaling pathway, tyrosinephosphorylation of FAK and pTYr was assessed by Western blot. In RL95-2cells, CD82knocking down cells expressed less pFAK and pTYr. Meanwhile, overexpressionof CD82in HEC-1A cells could increase the synthesis of pFAK and pTYr.
     (II) Mifepristone(RU486) decreases the expression of fucosyltransferase
     IV mediated by CD82and inhibits the adhesion of embryos in vitro
     1. RU486inhibited the adhesion of JAR cells to RL95-2monolayer
     2. RT-PCR detected the inhibition of RU486on the expression profile of variousFUTs in RL95-2cells. RU486predominantly decreased FUT4mRNA expression.
     3. RU486inhibited the expression of FUT4in RL95-2cells and in humanendometrial tissues by RT-PCR and Western blot.
     4. RU486inhibited the expression of CD82in RL95-2cells by RT-PCR andWestern blot.
     5. CD82-siRNA inhibited the expression of FUT4in RL95-2cells. Meanwhile,overexpression of CD82increased the expression of FUT4in RL95-2cells.
     6. Inhibition of embryonic adhesion by RU486correlated with RU486/CD82/FUT4signaling pathway.
     (III) Cyclic changes of S100A10and Annexin A2expression in humanendometrium
     1. Immunohistochemistry and Western blot found that the highest expression ofS100A10and Annexin A2protein occurred in mid-secretory phases in the cytoplasmand cytomembrane of the luminal and glandular epithelia, scatteredly and weakly instromal cells.
     2. Relative mRNA quantity of S100A10and Annexin A2was analyzed byreal-time PCR. S100A10and Annexin A2mRNA was significantly up-regulated duringmid-secretory phases of the menstrual cycle compared with other stages.
     IV. Conclusions
     (I) CD82expression alters with human endometrial cycles and affects the uterineendometrial receptivity in vitro
     1. The highest expression of CD82occurred in the window of implantation.Meanwhile, the expression CD82on RL95-2cells is higher than which on HEC-1Acells. The results indicate that CD82may been considered as an endometrial receptivitymarker.
     2. Progesterone facilitates embryo implantation by up-regulating CD82-dependentembryo-endometrial adhesion. Therefore, CD82plays a role in embryo implantation.
     3. CD82can regulate the FAK signaling pathway in RL95-2and HEC-1A cells and participates embryo implantation.
     (II)Mifepristone(RU486) decreases the expression of fucosyltransferase IVmediated by CD82and inhibits the adhesion of embryos in vitro
     1. FUT4is regulated by progesterone recepter and participates embryoimplantation.
     2. CD82facilitates embryo implantation by up-regulating FUT4-dependentembryo-endometrial adhesion.
     3. RU486inhibits embryonic adhesion through an RU486/CD82/FUT4pathway.
     (III) Cyclic changes of S100A10and Annexin A2expression in humanendometrium
     1. The highest expression of S100A10occurred in the window of implantation.The results indicate that S100A10may been considered as an endometrial receptivitymarker.
     2. Annexin A2is necessary for establishment of endometrial receptivity and maybeen considered as a marker.
引文
1. Dominguez F, Yá ez-Mó M, Sanchez-Madrid F, Simón C. Embryonic implantation and leukocytetransendothelial migration: different processes with similar players? FASEB J.2005;19:1056-60.
    2. Simon A, Safran A, Revel A, Aizenman E, Reubinoff B, Porat-Katz A, Lewin A, Laufer N.Hyaluronic acid can successfully replace albumin as the sole macromolecule in a human embryotransfer medium. Fertil Steril.2003;79:1434-8.
    3. Pafilis J, Batistatou A, Iliopoulou A, Tsanou E, Bakogiannis A, Dassopoulos G, CharalabopoulosK. Expression of adhesion molecules during normal pregnancy. Cell Tissue Res.2007;329:1-11.
    4. Hongyan Kang, Yubo Fan, Anqiang Sun and Xiaoyan Deng. Compositional or charge densitymodification of the endothelial glycocalyx accelerates flow-dependent concentration polarizationof low-density lipoproteins. Exp Biol Med.2011;236:800-7.
    5. Bienstock RJ, Barrett JC. KAI1, a prostate metastasis suppressor: prediction of solvated structureand interactions with binding partners; integrins, cadherins, and cell-surface receptor proteins.Mol Carcinog.2001;32:139-53.
    6. Liu WM, Zhang XA. KAI1/CD82, a tumor metastasis suppressor. Cancer Lett.2006;240:183-94.
    7. Shibagaki N, Hanada K, Yamashita H, Shimada S, Hamada H. Overexpression of CD82onhuman T cells enhances LFA-1/ICAM-1-mediated cell-cell adhesion: functionalassociationbetween CD82and LFA-1in T cell activation. Eur J Immunol1999;29:4081-91.
    8. He B, Liu L, Cook GA, Grgurevich S, Jennings LK, Zhang XA. Tetraspanin CD82attenuatescellular morphogenesis through down-regulating integrin alpha6-mediated cell adhesion. J BiolChem.2005;280:3346-54.
    9. Liu FS, Dong JT, Chen JT, Hsieh YT, Ho ES, Hung MJ, Lu CH, Chiou LC. KAI1metastasissuppressor protein is down-regulated during the progression of human endometrial cancer. ClinCancer Res.2003;9:1393-8.
    10.White A, Lamb PW, Barrett JC. Frequent downregulation of the KAI1(CD82) metastasissuppressor protein in human cancer cell lines. Oncogene.1998;16:3143-9.
    11.Gellersen B, Briese J, Obernd rfer M, Redlin K, Samalecos A, Richter DU, L ning T, SchulteHM, Bamberger AM. Expression of the metastasis suppressor KAI1in decidual cells at thehuman maternal-fetal interface: Regulation and functional implications. Am J Pathol.2007;170:126-39.
    12.Nikas G, Drakakis P, Loutradis D, Mara-Skoufari C, Koumantakis E, Michalas S, Psychoyos A.Uterine pinopodes as markers of the 'nidation window' in cycling women receiving exogenousoestradiol and progesterone. Hum Reprod.1995;10:1208-13.
    13.Lessey BA, Yeh I, Castelbaum AJ, Fritz MA, Ilesanmi AO, Korzeniowski P, Sun J, Chwalisz K.Endometrial progesterone receptors and markers of uterinereceptivity in the window ofimplantation. Fertil Steril.1996;65:477-83.
    14.Kolibianakis EM, Venetis CA, Papanikolaou EG, Diedrich K, Tarlatzis BC, Griesinger G.Estrogen addition to progesterone for luteal phase support in cycles stimulated with GnRHanalogues and gonadotrophins for IVF: a systematic review and meta-analysis. Hum Reprod.2008;23:1346-54.
    15.Haas DM, Ramsey PS. Progestogen for preventing miscarriage. Cochrane Database Syst Rev.2008;(2):CD003511.
    16.Lenton EA, Sulaiman R, Sobowale O, Cooke ID. The human menstrual cycle: plasmaconcentrations of prolactin, LH, FSH, oestradiol and progesterone in conceiving and non-conceiving women. J Reprod Fertil.1982;65:131-9.
    17.Tamm K, R m M, Salumets A, Metsis M. Genes targeted by the estrogen and progesteronereceptors in the human endometrial cell lines HEC-1A and RL95-2. Reprod Biol Endocrinol.2009;7:150.
    18.Harduf H, Goldman S, Shalev E. Human uterine epithelial RL95-2and HEC-1A cell-lineadhesiveness: the role of plexin B1. Fertil Steril.2007;87:1419-27.
    19.Martín JC, Jasper MJ, Valbuena D, Meseguer M, Remohí J, Pellicer A, Simón C. Increasedadhesiveness in cultured endometrial-derived cells is related to the absence of moesin expression.Biol Reprod.2000;63:1370-6.
    20.Thie M, Harrach-Ruprecht B, Sauer H, Fuchs P, Albers A, Denker HW. Cell adhesion to theapical pole of epithelium: a function of cell polarity. Eur J Cell Biol.1995;66:180-91.
    21.John NJ, Linke M, Denker HW. Quantitation of human choriocarcinoma spheroid attachment touterine epithelial cell monolayers. In Vitro Cell Dev Biol Anim.1993;29:461-8.
    22.Thie M, R spel R, Dettmann W, Benoit M, Ludwig M, Gaub HE, Denker HW. Interactionsbetween trophoblast and uterine epithelium: monitoring of adhesive forces. Hum Reprod.1998;13:3211-9.
    23.Cavagna M, Mantese JC. Biomarkers of endometrial receptivity--a review. Placenta.2003;24:39-47.
    24.Tranguch S, Daikoku T, Guo Y, Wang H, Dey SK. Molecular complexity in establishing uterinereceptivity and implantation. Cell Mol Life Sci.2005;62:1964-73.
    25.Creus M, Ordi J, Fábregues F, Casamitjana R, Ferrer B, Coll E, Vanrell JA, Balasch J.Alphavbeta3integrin expression and pinopod formation in normal and out-of-phase endometriaof fertile and infertile women. Hum Reprod.2002;17:2279-86.
    26.Casals G, Ordi J, Creus M, Fábregues F, Casamitjana R, Quinto L, Campo E, Balasch J.Osteopontin and alphavbeta3integrin expression in the endometrium of infertile and fertilewomen. Reprod Biomed Online.2008;16:808-16.
    27.Casals G, Ordi J, Creus M, Fábregues F, Carmona F, Casamitjana R, Balasch J. Osteopontin andalphavbeta3integrin as markers of endometrial receptivity: the effect of different hormonetherapies. Reprod Biomed Online.2010;21:349-59.
    28.Tonoli H, Barrett JC. CD82metastasis suppressor gene: a potential target for new therapeutics?Trends Mol Med.2005;11:563-70.
    29.Wright MD, Moseley GW, van Spriel AB. Tetraspanin microdomains in immune cell signallingand malignant disease. Tissue Antigens.2004;64:533-42.
    30.Bandyopadhyay S, Zhan R, Chaudhuri A, Watabe M, Pai SK, Hirota S, Hosobe S, Tsukada T,Miura K, Takano Y, Saito K, Pauza ME, Hayashi S, Wang Y, Mohinta S, Mashimo T, Iiizumi M,Furuta E, Watabe K. Interaction of KAI1on tumor cells with DARC on vascular endotheliumleads to metastasis suppression. Nat Med.2006;12:933-8.
    31.Paria BC, Reese J, Das SK, Dey SK. Deciphering the cross-talk of implantation: advances andchallenges. Science.2002;296:2185-8.
    32.Qu X, Yang M, Zhang W, Liang L, Yang Y, Zhang Y, Deng B, Gao W, Liu J, Yang Q, Kong B,Gong F. Osteopontin expression in human decidua is associated with decidual natural killer cellsrecruitment and regulated by progesterone. In Vivo.2008;22:55-61.
    33.Lessey BA, Ilesanmi AO, Castelbaum AJ, Yuan L, Somkuti SG, Chwalisz K, Satyaswaroop PG.Characterization of the functional progesterone receptor in an endometrial adenocarcinoma cellline (Ishikawa): progesterone-induced expression of the alpha1integrin. J Steroid Biochem MolBiol.1996;59:31-9.
    34.Wen L, Chen LH, Li HY, Chang SP, Liao CY, Tsui KH, Sung YJ, Chao KC. Roles of estrogenand progesterone in endometrial hemodynamics and vascular endothelial growth factorproduction. J Chin Med Assoc.2009;72:188-93.
    35.Kotani Y, Iwase A, Ando H, Mizutani S. Oxytocin-induced prostaglandin E2(PGE2) synthesis isregulated by progesterone via oxytocinase in Ishikawa cells. Horm Metab Res.2005;37:4-9.
    36.Livasy CA, Moore D, Cance WG, Lininger RA. Focal adhesion kinase overexpression inendometrial neoplasia. Appl Immunohistochem Mol Morphol.2004;12:342-5.
    37.Avizienyte E, Frame MC. Src and FAK signalling controls adhesion fate and the epithelial-to-mesenchymal transition. Curr Opin Cell Biol.2005;17:542-7.
    38.Shibagaki N, Hanada K, Yamaguchi S, Yamashita H, Shimada S, Hamada H. Functional analysisof CD82in the early phase of T cell activation: roles in cell adhesion and signal transduction.Eur J Immunol.1998;28:1125-33.
    39.Malik FA, Sanders AJ, Kayani MA, Jiang WG. Effect of expressional alteration of KAI1onbreast cancer cell growth, adhesion, migration and invasion. Cancer Genomics Proteomics.2009;6:205-13.
    40.Jee B, Jin K, Hahn JH, Song HG, Lee H. Metastasis-suppressor KAI1/CD82induces homotypicaggregation of human prostate cancer cells through Src-dependent pathway. Exp Mol Med.2003;35:30-7.
    41.Ruseva Z, Geiger PX, Hutzler P, Kotzsch M, Luber B, Schmitt M, Gross E, Reuning U. Tumorsuppressor KAI1affects integrin alphavbeta3-mediated ovarian cancer cell adhesion, motility,and proliferation. Exp Cell Res.2009;315:1759-71.
    42.Zhang D, Wei J, Wang J, Liu S, Wang X, Yan Q. Difucosylated oligosaccharide Lewis Y iscontained within integrin αvβ3on RL95-2cells and required for endometrial receptivity. FertilSteril.2011;95:1446-51.
    1. Mihm M, Gangooly S, and Muttukrishna S.The normal menstrual cycle in women. Anim ReprodSci.2011;124:229-236.
    2. Paulson RJ. Hormonal induction of endometrial receptivity. Fertil Steril.2011;96:530-535.
    3. Haas DM and Ramsey PS. Progestogen for preventing miscarriage. Cochrane Database Syst Rev.2008;(2): CD003511.
    4. Young SL and Lessey BA. Progesterone function in human endometrium: clinical perspectives.Semin Reprod Med.2010;28:5-16.
    5. Lopez LM, Edelman A, Chen-Mok M, Trussell J, and Helmerhorst FM.Progestin-onlycontraceptives: effects on weight. Cochrane Database Syst Rev.2011;(4): CD008815.
    6. Chabbert-Buffet N, Ouzounian S, Kairis AP, and Bouchard P. Contraceptive applications ofprogesterone receptor modulators. Eur J Contracept Reprod Health Care.2008;13:222-230.
    7. Pei K, Xiao B, Jing X, Lu S, Wei L, and Zhao H.Weekly contraception. with mifepristone.Contraception.2007;75:40-44.
    8. Godfrey EM, Mawson JT, Stanwood NL, Fielding SL, and Schaff EA. Low-dose mifepristone forcontraception: a weekly versus planned postcoital randomized pilot study.Contraception.2004;70:41-46.
    9. Ledger WL, Sweeting VM, Hillier H, and Baird DT. Inhibition. of ovulation by low-dosemifepristone (RU486). Hum Reprod.1992;7:945-950.
    10.Roblero LS, and Croxatto HB. Effect of RU486on development and implantation of rat embryos.Mol Reprod Dev.1991;29:342-346.
    11.Danielsson KG, Marions L, and Bygdeman M. Effects of mifepristone on endometrialreceptivity.Steroids.2003;68:1069-1075.
    12.Dockery P, Ismail RM, Li TC, Warren MA, and Cooke ID. The effect of a single dose ofmifepristone (RU486) on the fine structure of the human endometrium during the early lutealphase. Hum Reprod.1997;12:1778-1784.
    13.Catalano RD, Yanaihara A, Evans AL, Rocha D, Prentice A, Saidi S, Print CG, Charnock-JonesDS, Sharkey AM, and Smith SK. The effect of RU486on the gene expression profile in anendometrial explant model. Mol HumReprod.2003;9:465-473.
    14.Palcic MM. Glycosyltransferases as biocatalysts. Curr Opin Chem Biol.2011;15:226-233.
    15.Lowe JB. Glycan-dependent leukocyte adhesion and recruitment in inflamma-tion. Curr OpinCell Biol.2003;15:531-538.
    16.Carson DD. The glycobiology of implantation. Front Biosci.2002;7:1535-1544.
    17.Dennis JW, Granovsky M, Warren CE. Glycoprotein glycosylation and cancer progression.Biochim Biophys Acta.1999;1473:21-34.
    18.Javaud C, Dupuy F, Maftah A, Julien R, and Petit JM. The fucosyltransferase gene family: anamazing summary of the underlying mechanisms of gene evolution. Genetica.2003;118:157-170.
    19.Mollicone R, Moore SE, Bovin N, Garcia-Rosasco M, CandelierJJ,Martinez-Duncker I, and OriolR. Activity, splice variants, conserved peptide motifs, and phylogeny of two new alpha1,3-fucosyltransferase families (FUT10and FUT11). J Biol Chem.2009;284:4723-4738.
    20.Mollicone R, Cailleau A, and Oriol R. Molecular genetics of H, Se, Lewis and otherfucosyltransferase genes. Transfus Clin Biol.1995;2:235-242.
    21.Clarke JL, and Watkins W. Alpha1,3-L-fucosyltransferase expression indeveloping human myeloid cells. Antigenic,enzymatic, and mRNA analyses. J Biol Chem.1996;271:10317-10328.
    22.Wiederschain GY, Koul O, Aucoin JM, Smith FI, and McCluer RH. Alpha1,3Fucosyltransferase,alpha-L-fucosidase, alpha-D-galactosidase, beta-D-galactosidase, and Le(x) glycoconjugates indeveloping rat brain. Glycoconj J.1998;15:379-388.
    23.Lowe JB. Selectin ligands, leukocyte trafficking, and fucosyltransferase genes.Kidney Int.1997;51:1418-1426.
    24.Blander JM, Visintin I, Janeway CA Jr, and Medzhitov R. Alpha(1,3)-fucosyltransferase VII andalpha (2,3)-sialyltransferase IV are up-regulated in activated CD4T cells andmaintained aftertheir differentiation into Th1and migration into inflammatorysites. J Immunol.1999;163:3746-3752.
    25.Huang MC, Z llner O, Moll T, Maly P, Thall AD, Lowe JB, and Vestweber D.P-selectinglycoprotein ligand-1and E-selectin ligand-1are differentially modified byfucosyltransferases Fuc-TIV and Fuc-TVII in mouse neutrophils. J Biol Chem.2000;275:31353-31360.
    26.Zhang Y, Liu S, Liu Y, Wang Z, Wang X, Yan Q. Overexpression of fucosyltransferase VII(FUT7) promotes embryo adhesion and implantation. Fertil Steril.2009;91:908-914.
    27.White S, Kimber SJ. Changes in alpha (1-2)-fucosyltransferase activity in the murineendometrial epithelium during the estrous cycle, early pregnancy and after ovariectomy andhormone replacement. Biol Reprod.1994;50:73-81.
    28.Yang XS, Liu S, Liu YJ, Liu JW, Liu TJ, Wang XQ, Yan Q. Overexpression offucosyltransferase IV promotes A431cell proliferation through activating MAPK and PI3K/Aktsignaling pathways. J Cell Physiol.2010;225:612-9.
    29.Ponnampalam AP, Rogers PA. Expression and regulation of fucosyltransferase4in humanendometrium. Reproduction.2008;136:117-123.
    30.Liu S, Yang X, Wang J, Wei J, Zhang D, Wang X, and Yan Q. Differential expression of LeYand fucosyltransferase IV correlates with the receptivity of RL95-2and HEC-1A human uterineepithelial cells. Cell Biol Int.2011;Epub2011Dec6.
    31.Liu WM, and Zhang XA. KAI1/CD82, a tumor metastasis suppressor. Cancer Lett.2006;240:183-194.
    32.Shibagaki N, Hanada K, Yamashita H, Shimada S, and Hamada H. Over expression of CD82onhuman T cells enhances LFA-1/ICAM-1-mediated cell-cell adhesion: functionalassociationbetween CD82and LFA-1in T cell activation. Eur J Immunol.1999;29:4081-4091.
    33.He B, Liu L, Cook GA, Grgurevich S, Jennings LK, and Zhang XA. Tetraspanin CD82attenuatescellular morphogenesis through down-regulating integrin alpha6-mediated cell adhesion. J BiolChem.2005;280:3346-3354.
    34.Gellersen B, Briese J, Obernd rfer M, Redlin K, Samalecos A, Richter DU, L ning T, SchulteHM, and Bamberger AM. Expression of the metastasis suppressor KAI1in decidual cells at thehuman maternal-fetal interface: Regulation and functional implications. Am J Pathol.2007;170:126-139.
    35.Abe M, Sugiura T, Takahashi M, Ishii K, Shimoda M, Shirasuna K. A novel function ofCD82/KAI-1on E-cadherin-mediated homophilic cellular adhesion of cancer cells. Cancer Lett.2008;266:163-170.
    36.Wei X, Liu S, Wang X, Yan Q. CD82expression alters with human endometrial cycles andaffects the uterine endometrial receptivity in vitro. Exp Biol Med (Maywood).2012;237:254-62.
    37.Harduf H, Goldman S, and Shalev E. Human uterine epithelial RL95-2and HEC-1A cell-lineadhesiveness: the role of plexin B1. Fertil Steril.2007;87:1419-1427.
    38.Martín JC, Jasper MJ, Valbuena D, Meseguer M, Remohí J, Pellicer A, and Simón C. Increasedadhesiveness in cultured endometrial-derived cells is related to the absence of moesin expression.Biol Reprod.2000;63:1370-1376.
    39.Thie M, Harrach-Ruprecht B, Sauer H, Fuchs P, Albers A, and Denker HW. Cell adhesion to theapical pole of epithelium: a function of cell polarity. Eur J Cell Biol.1995;66:180-191.
    40.Chan CC, Lao TT, Ho PC, Sung EO, Cheung AN. The effect of mifepristone on the expression ofsteroid hormone receptors in human decidua and placenta: a randomized placebo controlleddouble-blind study. J Clin Endocrinol Metab.2003;88:5846-5850.
    41.John NJ, Linke M, Denker HW. Quantitation of human choriocarcinoma spheroid attachment touterine epithelial cell monolayer. In Vitro Cell Dev Biol Anim.1993;29:461-468.
    42.Zhang Z, Sun P, Liu J, Fu L, Yan J, Liu Y, Yu L, Wang X, and Yan Q. Suppression ofFUT1/FUT4expression by siRNA inhibits tumor growth. Biochim Biophys Acta.2008;1783:287-296.
    43.Lalitkumar PG, Lalitkumar S, Meng CX, Stavreus-Evers A, Hambiliki F, Bentin-Ley U,Gemzell-Danielsson K. Mifepristone, but not levonorgestrel, inhibits human blastocystattachment to an in vitro endometrial three-dimensional cell culture model. Hum Reprod.2007;22:3031-3037.
    44.Zhu ZM, Wang XQ. Role for cell surface oligosaccharide in cell-cell recognition duringimplantation. Mol Hum Reprod.1998;4:735-738.
    45.Genbacev OD, Prakobphol A, Foulk RA, Krtolica AR, Ilic D, Singer MS, Yang ZQ, KiesslingLL, Rosen SD, Fisher SJ. Trophoblast L-selectin-mediated adhesion at the maternal-fetalinterface. Science2003;299:405–408.
    46.Zhu ZM, Kojima N, Stroud MR, Hakomori S, and Fenderson BA. Monoclonal antibody directedto LeYoligosaccharide inhibits implantation in the mouse. Biol Reprod.1995;52:903–912.
    47.Cailleau-Thomas A, Coullin P, Candelier JJ, Balanzino L, Mennesson B, Oriol R, Mollicone R.FUT4and FUT9genes are expressed early in human embryogenesis. Glycobiology.2000;10:789-802.
    48.Pafilis J, Batistatou A, Iliopoulou A, Tsanou E, Bakogiannis A, Dassopoulos G, andCharalabopoulos K. Expression of adhesion molecules during normal pregnancy.Cell TissueRes.2007;329:1-11.
    49.Aplin JD, Jones CJ, McGinlay PB, Croxatto HB, and Fazleabas AT. Progesterone regulatesglycosylation in endometrium. Biochem Soc Trans.1997;25:1184-1187.
    50.Ramachandran S, Song MQ, Lowe E, Dominguez CE, Parthasarathy S, and Murphy AA. RU486inhibits expression of lysophosphatidic acid induced glycodelin. Am J Obstet Gynecol.2005;192:1285-93; discussion1293-4.
    51.Taylor RN, Savouret JF, Vaisse C, Vigne JL, Ryan I, Hornung D, Sepp l M, and Milgrom E.Promegestone (R5020) and mifepristone (RU486) both function as progestational agonists ofhuman glycodelin gene expression in isolated human epithelial cells. J Clin Endocrinol Metab.1998;83:4006-4012.
    52.Haendler B, Yamanouchi H, Lessey BA, Chwalisz K, and Hess-Stumpp H. Cycle-dependentendometrial expression and hormonal regulation ofthe fibulin1gene. Mol Reprod Dev.2004;68:279-287
    53.Shibagaki N, Hanada K, Yamaguchi S, Yamashita H, Shimada S, and Hamada H. Functionalanalysis of CD82in the early phase of T cell activation: roles in cell adhesion and signaltransduction. Eur J Immunol.1998;28:1125-1133.
    54.Jee BK, Park KM, Surendran S, Lee WK, Han CW, Kim YS, Lim Y. KAI1/CD82suppressestumor invasion by MMP9inactivation via TIMP1up-regulation in the H1299human lungcarcinoma cell line. Biochem Biophys Res Commun.2006;342:655-661.
    55.Ruseva Z, Geiger PX, Hutzler P, Kotzsch M, Luber B, Schmitt M, Gross E, and Reuning U.Tumor suppressor KAI1affects integrin alphavbeta3-mediated ovarian cancer cell adhesion,motility, and proliferation. Exp Cell Res.2009;315:1759-1771.
    56.Matsuda S, Fujita T, Kajiya M, Takeda K, Shiba H, Kawaguchi H, Kurihara H. Brain-derivedneurotrophic factor induces migration of endothelial cells through a TrkB-ERK-integrinαVβ3-FAK cascade. J Cell Physiol.2012;227:2123-2129.
    57.Meng CX, Andersson KL, Bentin-Ley U, Gemzell-Danielsson K, Lalitkumar PG. Effect oflevonorgestrel and mifepristone on endometrial receptivity markers in a three-dimensionalhuman endometrial cell culture model. Fertil Steril.2009;91:256-64.
    58.Choi UJ, Jee BK, Lim Y, and Lee KH. KAI1/CD82decreases Rac1expression and cellproliferation through PI3K/Akt/mTOR pathway in H1299lung carcinoma cells. Cell BiochemFunct.2009;27:40-47.
    1. Mihm M, Gangooly S, and Muttukrishna S. The normal menstrual cycle in women. Anim ReprodSci2011;124:229-236.
    2. Wilcox AJ, Baird DD,Weinberg CR. Time of implantation of the conceptus and loss of pregnancy.N Engl J Med1999;340:1796–1799.
    3. Cavagna M, Mantese JC. Biomarkers of endometrial receptivity--a review. Placenta(2003).24:39-47.
    4. Deora AB, Kreitzer G, Jacovina AT, Hajjar KA An annexin2phosphorylation switch mediatesp11-dependent translocation of annexin2to the cell surface. J Biol Chem(2004).279:43411-43418.
    5. Yamada A, Irie K, Hirota T, Ooshio T, Fukuhara A, Takai Y. Involvement of the annexinII-S100A10complex in the formation of E-cadherin-based adherens junctions in Madin-Darbycanine kidney cells. J Biol Chem2005.;280:6016-6027.
    6. Miles LA, Parmer RJ. S100A10: a complex inflammatory role. Blood.2010;116:1022-1024.
    7. Rescher U, Gerke V. S100A10/p11: family, friends and functions. Pflugers Arch.2008;455:575-582.
    8. Kapoor M, Zhou Q, Otero F, Myers CA, Bates A, Belani R, Liu J, Luo JK, Tzima E, Zhang DE,Yang XL, Schimmel P. Evidence for annexin II-S100A10complex and plasmin in mobilizationof cytokine activity of human TrpRS. J Biol Chem2008;283:2070-2077.
    9. Chen Zhiqiang, Liu Jing, Li Feixue, Sun Xiaoyang, Zhang Huaiyun, Wang YanlingExpression of S100A10gene and its regulation by sex hormones in mouse uterus. Progress inNatural Science2005;15:902-907
    10.Sun XY, Li FX, Li J, Tan YF, Piao YS, Tang S, Wang YL Determination of genes involved inthe early process of embryonic implantation in rhesus monkey (Macaca mulatta) by suppressionsubtractive hybridization. Biol Reprod2004;70:1365-1373.
    11.Liu J, Vishwanatha JK. Regulation of nucleo-cytoplasmic shuttling of human annexin A2: aproposed mechanism. Mol Cell Biochem2007;303:211-20.
    12.Jung Y, Wang J, Song J, Shiozawa Y, Wang J, Havens A, Wang Z, Sun YX, Emerson SG,Krebsbach PH, Taichman RS. Annexin II expressed by osteoblasts and endothelial cellsregulates stem cell adhesion, homing, and engraftment following transplantation. Blood2007;110:82-90.
    13.Kundranda MN, Ray S, Saria M, Friedman D, Matrisian LM, Lukyanov P, Ochieng J. Annexinsexpressed on the cell surface serve as receptors for adhesion to immobilized fetuin-A. Mol CellResearch2004;1693:111-123.
    14.Gillette JM, Chan DC, Nielsen-Preiss SM. Annexin2expression is reduced in humanosteosarcoma metastases. J Cell Biochem2004;92:820-832.
    15.Oliferenko S, Paiha K, Harder T, Gerke V, Schw rzler C, Schwarz H, Beug H, Günthert U,Huber LA. Analysis of CD44-containing lipid rafts: Recruitment of annexin II and stabilizationby the actin cytoskeleton. J Cell Biol1999;146:843-854.
    16.Falsey RR, Marron MT, Gunaherath GM, Shirahatti N, Mahadevan D, Gunatilaka AA, WhitesellL. Actin microfilament aggregation induced by withaferin A is mediated by annexin II. NatChem Biol2006;2:33-38.
    17.Domínguez F, Garrido-Gómez T, López JA, Camafeita E, Qui onero A, Pellicer A, Simón C.Proteomic analysis of the human receptive versus non-receptive endometrium using differentialin-gel electrophoresis and MALDI-MS unveils stathmin1and annexin A2as differentiallyregulated. Hum Reprod2009;24:2607-2617.
    18.Thie M, R spel R, Dettmann W, Benoit M, Ludwig M, Gaub HE, Denker HW. Interactionsbetween trophoblast and uterine epithelium: monitoring of adhesive forces. Hum Reprod1998;13:3211-3219.
    19.Tranguch S, Daikoku T, Guo Y, Wang H, Dey SK. Molecular complexity in establishing uterinereceptivity and implantation. Cell Mol Life Sci2005;62:1964-1973.
    20.Casals G, Ordi J, Creus M, Fábregues F, Carmona F, Casamitjana R, Balasch J. Osteopontin andalphavbeta3integrin as markers of endometrial receptivity: the effect of different hormonetherapies. Reprod Biomed Online2010;21:349-359.
    21.Li J, Tan Z, Li M, Xia T, Liu P, Yu W.. Proteomic analysis of endometrium in fertile womenduring the prereceptive and receptive phases after luteinizing hormone surge. Fertil Steril.2011;95:1161-1163
    22.Mirkin S, Arslan M, Churikov D, Corica A, Diaz JI, Williams S, Bocca S, Oehninger S. In searchof candidate genes critically expressed in the human endometrium during the window ofimplantation. Hum Reprod.2005;20:2104-2117.
    23.Kao LC, Tulac S, Lobo S, Imani B, Yang JP, Germeyer A, Osteen K, Taylor RN, Lessey BA,Giudice LC. Global gene profiling in human endometrium during the window of implantation.Endocrinology2002;143:2119-2138.
    24.Marenholz I, Heizmann CW, Fritz G. S100proteins in mouse and man: from evolution tofunction and pathology. Biochem Biophys Res Commun2004;322:1111-1122.
    25.Hao J, Wang K, Yue Y, Tian T, Xu A, Hao J, Xiao X, He D. Selective expression of S100A11inlung cancer and its role in regulating proliferation of adenocarcinomas cells. Mol Cell Biochem2012;359:323-332.
    26.Hanaue M, Miwa N, Uebi T, Fukuda Y, Katagiri Y, Takamatsu K. Characterization of S100A11,a suppressive factor of fertilization, in the mouse female reproductive tract. Mol Reprod Dev2011;78:91-103.
    27.Passey RJ, Williams E, Lichanska AM, Wells C, Hu S, Geczy CL, Little MH, Hume DA. A nullmutation in the inflammation-associated S100protein S100A8causes early resorption of themouse embryo. J Immunol1999;163:2209-2216.
    28.Tong XM, Lin XN, Song T, Liu L, Zhang SY. Calcium-binding protein S100P is highlyexpressed during the implantation window in human endometrium. Fertil Steril2010;94:1510-1518.
    29.Friel LA, Romero R, Edwin S, Nien JK, Gomez R, Chaiworapongsa T, Kusanovic JP, Tolosa JE,Hassan SS, Espinoza J. The calcium binding protein, S100B, is increased in the amniotic fluid ofwomen with intra-amniotic infection/inflammation and preterm labor with intact or rupturedmembranes. J Perinat Med.2007;35:385-393.
    30.Michetti F, Gazzolo D. S100B testing in pregnancy. Clin Chim Acta2003;335:1-7.
    31.Liu JW, Shen JJ, Tanzillo-Swarts A, Bhatia B, Maldonado CM, Person MD, Lau SS, Tang DG.Annexin II expression is reduced or lost in prostate cancer cells and its re-expression inhibitsprostate cancer cell migration. Oncogene.2003;22:1475-1485.
    32.Liu SH, Lin CY, Peng SY, Jeng YM, Pan HW, Lai PL, Liu CL, Hsu HC. Down-regulation ofannexin A10in hepatocellular carcinoma is associated with vascular invasion, early recurrence,and poor prognosis in synergy with p53mutation.Am J Pathol2002;160:1831-1837.
    33.Schwartz-Albiez R, Koretz K, M ller P, Wirl G. Differential expression of annexins I and II innormal and malignant human mammary epithelial cells. Differentiation.1993;52:229-237.
    34.Bennett P, Slater D, Berger L, Moor G. The expression of phospholipase A2and lipocortins(annexins) I, II and V in human fetal membranes and placenta in association with labour.Prostaglandins1994;48:81-90.
    35.Sun M, Liu Y, Gibb W. Distribution of annexin I and II in term human fetal membranes, deciduaand placenta. Placenta1996;17:181-184.
    36.Ponnampalam AP, Rogers PA. Cyclic changes and hormonal regulation of annexin IV mRNAand protein in human endometrium. Mol Hum Reprod2006;12:661-669.
    37.Matsubayashi H, Arai T, Izumi S, Sugi T, McIntyre JA, Makino T. Anti-annexin V antibodies inpatients with early pregnancy loss or implantation failures. Fertil Steril.2001;76:694-699.
    38.Hoogendijk CF, Kruger TF, Bouic PJ, Henkel RR. A novel approach for the selection of humansperm using annexin V-binding and flow cytometry. Fertil Steril.2009;91:1285-1292.
    39.Srivastava M, Atwater I, Glasman M, Leighton X, Goping G, Caohuy H, Miller G, Pichel J,Westphal H, Mears D, Rojas E, Pollard HB. Defects in inositol1,4,5-trisphosphate receptorexpression, Ca(2+) signaling, and insulin secretion in the anx7(+/-) knockout mouse. Proc NatlAcad Sci.1999;96:13783-13788.
    40.MacLeod TJ, Kwon M, Filipenko NR, Waisman DM. Phospholipid-associated annexinA2-S100A10heterotetramer and its subunits: characterization of the interaction with tissueplasminogen activator, plasminogen, and plasmin. J Biol Chem.2003;278:25577-25584.
    41.Emoto K, Sawada H, Yamada Y, Fujimoto H, Takahama Y, Ueno M, Takayama T, Uchida H,Kamada K, Naito A, Hirao S, Nakajima Y. Annexin II overexpression is correlated with poorprognosis in human gastric carcinoma. Anticancer Res2001;21:1339-1345.
    42.He KL, Deora AB, Xiong H, Ling Q, Weksler BB, Niesvizky R, Hajjar KA. Endothelial cellannexin A2regulates polyubiquitination and degradation of its binding partner S100A10/p11. JBiol Chem2008;283:19192-19200.
    43.Paria BC, Reese J, Das SK, Dey SK. Deciphering the cross-talk of implantation: advances andchallenges. Science2002;296:2185-2188.
    44.Qu X, Yang M, Zhang W, Liang L, Yang Y, Zhang Y, Deng B, Gao W, Liu J, Yang Q, Kong B,Gong F. Osteopontin expression in human decidua is associated with decidual natural killer cellsrecruitment and regulated by progesterone. In Vivo.2008;22:55-61.
    45.Lessey BA, Ilesanmi AO, Castelbaum AJ, Yuan L, Somkuti SG, Chwalisz K, Satyaswaroop PG.Characterization of the functional progesterone receptor in an endometrial adenocarcinoma cellline (Ishikawa): progesterone-induced expression of the alpha1integrin. J Steroid Biochem MolBiol1996;59:31-39.
    46.Wen L, Chen LH, Li HY, Chang SP, Liao CY, Tsui KH, Sung YJ, Chao KC. Roles of estrogenand progesterone in endometrial hemodynamics and vascular endothelial growth factorproduction. J Chin Med Assoc2009;72:188-193.
    47.Kotani Y, Iwase A, Ando H, Mizutani S. Oxytocin-induced prostaglandin E2(PGE2) synthesis isregulated by progesterone via oxytocinase in Ishikawa cells. Horm Metab Res2005;37:4-9.
    48.Cai WJ, Li MB, Wu X, Wu S, Zhu W, Chen D, Luo M, Eitenmüller I, Kampmann A, Schaper J,Schaper W. Activation of the integrins alpha5beta1and alpha v beta3and focal adhesionkinase (FAK) during arteriogenesis. Mol Cell Biochem2009;322:161-169.
    49.Siever DA, Erickson HP. Extracellular annexin II. Int J Biochem Cell Biol1997;29:1219-1223.
    50.Hayes MJ, Shao D, Bailly M, Moss SE Regulation of actin dynamics by annexin2. EMBO J2006;25:1816-1826.
    1. Valles CS, Domínguez F. Embryo-endometrial interaction.Chang Gung Med J.2006,29(1):9-14.
    2. Nikas G. Cell-surface morphological events relevant to human implantation. Hum Reprod.1999Dec;14Suppl2:37-44.
    3. Stavreus-Evers A, Nikas G, Sahlin L, Eriksson H, Landgren BM. Formation of pinopodes inhuman endometrium is associated with the concentrations of progesterone and progesteronereceptors. Fertil Steril.2001Oct;76(4):782-91.
    4. Huang DM, Nardo LG, Huang GY, Lu FE, Liu YJ. Effect of a single dose of mifepristone onexpression of pinopodes in endometrial surface of mice. Acta Pharmacol Sin.2005Feb;26(2):212-9.
    5. Nikas G. Pinopodes as markers of endometrial receptivity in clinical practice. Hum Reprod.1999Dec;14Suppl2:99-106.
    6. Salehnia M. Different pattern of pinopodes expression in stimulated mouse endometrium. ExpAnim.2005Jul;54(4):349-52.
    7. Nikas G, Aghajanova L. Endometrial pinopodes: some more understanding on humanimplantation? Reprod Biomed Online.2002;4Suppl3:18-23.
    8. Bentin-Ley U, Lopata A. In vitro models of human blastocyst implantation. Baillieres Best PractRes Clin Obstet Gynaecol2000;14:765–774.
    9. Enders AC, Nelson DM. Pinocytotic activity of the uterus of the rat. Am J Anat1973;138:277–299.
    10.Parr MB, Parr EL. Uterine luminal epithelium: protrusions mediate endocytosis, not apocrinesecretion, in the rat. Biol Reprod1974;11:220–233.
    11.Parr MB, Parr EL. Endocytosis in the uterine epithelium of the mouse. J Reprod Fertil1977;50:151–153.
    12.Kabir-Salmani M, Nikzad H, Shiokawa S, Akimoto Y, Iwashita M. Secretory role for humanuterodomes (pinopods): secretion of LIF. Mol Hum Reprod2005;11:553–559.
    13.Psychoyos. A.. Endocrine control of egg implantation. In Handbook of Physiology.1973;187–215.
    14.Yoshinaga, K. Uterine receptivity for blastocyst implantation. Ann. N.Y. Acad.Sci1988;541:424–431.
    15.Parr M B, E.L Parr. The implantation reaction. In Biology of the Uterus.1989;233–277.
    16.Weitlauf, H.M. Biology of implantation. In The Physiology of Reproduction1994;391–440.
    17.Strauss, J.F, E. gurpide. The endometrium: regulation and dysfunction. In ReproductiveEndocrinology1991;309–356.
    18.Kalra, S.P. Temporal interrelationships among circulating levels of estradiol, progesterone andLH during the rat estrous cycle: effects of exogenous progesterone. Endocrinology1974;95:1711–1718.
    19.Wiest, W.G. Progesterone and20α Ηydroxypregn-4-en-3-one in plasma, ovaries and uteri duringpregnancy in the rat. Endocrinology1970;87:43–48.
    20.Yoshinaga K, Hawkins RA, Stocker JF. Estrogen secretion by the rat ovary in vivo during theestrous cycle and pregnancy. Endocrinology.1969Jul;85(1):103-12.
    21.Mulac-Jericevic, B., Mullinax, R. A., DeMayo, F. J., Lydon, J. P.,Conneely, O. M. Subgroup ofreproductive functions of progesterone mediated by progesterone receptor-B-isoform. Science2000;289,1751–1754.
    22.Dey SK, Lim H, Das SK, Reese J, Paria BC, Daikoku T, Wang H. Molecular cues to implantation.Endocr Rev.2004Jun;25(3):341-73.
    23.Evans, R.M. The steroid and thyroid hormone receptor superfamily. Science1988;240:889–895.
    24.Beato, M. Gene regulation by steroid hormones. Cell1989;56:335–344.
    25.Tsai MJ, O'Malley BW. Molecular mechanisms of action of steroid/thyroid receptor superfamilymembers. Annu Rev Biochem.1994;63:451-86.
    26.Lubahn DB, Moyer JS, Golding TS, Couse JF, Korach KS, Smithies O. Alteration ofreproductive function but not prenatal sexual development after insertional disruption of themouse estrogen receptor gene. Proc Natl Acad Sci U S A.1993Dec1;90(23):11162-6.
    27.Curtis, S. W., Clark, J., Myers, P, Korach, K. S.Disruption of estrogen signaling does not preventprogesterone action in the estrogen receptor α knockout mouse uterus. Proc. Natl Acad. Sci.USA1999;96:3646–3651.
    28.Paria, B. C,Tan, J,Lubahn, D. B, Dey, S. K, Das, S. K. Uterine decidual response occurs inestrogen receptor-α-deficient mice. Endocrinology1999;140,2704–2710.
    29.McMaster MT, Dey SK and Andrews GK. Association of monocytes and neutrophils with earlyevents of blastocyst implantation in mice. J Reprod Fertil1993;99:561–569.
    30.Chakraborty I, Das SK, Wang J and Dey SK. Developmental expression of the cyclo-oxygenase-1and cyclo-oxygenase-2genes in the periimplantation mouse uterus and their differentialregulation by the blastocyst and ovarian steroids. J Mol Endocrinol1996;16:107–122.
    31.Espey LL.Current status of the hypothesis that mammalian ovulation is comparable to aninflammatory reaction. Biol Reprod1994;50:233–238.
    32.Song H, Lim H, Paria BC, Matsumoto H, Swift LL, Morrow J, Bonventre JV and DeySK.Cytosolic phospholipase A2alpha is crucial correction of A2alpha deficiency is crucial] for‘on-time’ embryo implantation that directs subsequent development. Development2002;129:2879–2889.
    33.Ye X, Hama K. LPA3-mediated lysophosphatidic acid signalling in embryo implantation andspacing. Nature2005;435:104–108.
    34.Smith WL and Dewitt DL. Prostaglandin endoperoxide H synthases-1and-2. Adv Immunol1996;62:167–215.
    35.Vane JR, Bakhle YS and Botting RM. Cyclooxygenases1and2. Annu Rev Pharmacol Toxicol1998;38:97–120.
    36.Chandrasekharan NV, Dai H, Roos KL, Evanson NK, Tomsik J, Elton TS and SimmonsDL.COX-3, a cyclooxygenase-1variant inhibited by acetaminophen and other analgesic/antipyretic drugs: cloning, structure, and expression. Proc Natl Acad Sci USA2002;99:13926–13931.
    37.Milne SA, Perchick GB, Boddy SC and Jabbour HN. Expression, localization, signalling ofPGE(2) and EP2/EP4receptors in human nonpregnant endometrium across the menstrual cycle.J Clin Endocrinol Metab2001;86:4453–4459.
    38.Milne SA and Jabbour HN. Prostaglandin (PG) F(2alpha) receptor expression and signalling inhuman endometrium: role of PGF(2alpha) in epithelial cell proliferation. J Clin EndocrinolMetab2003;88:1825–1832.
    39.Battersby S, Critchley HO, de Brum-Fernandes AJ and Jabbour HN.Temporal expression andsignalling of prostacyclin receptor in the human endometrium across the menstrual cycle.Reproduction2004;127:79–86.
    40.Rees MC, Parry DM, Anderson AB,Turnbull AC. Immunohistochemical localisation ofcyclooxygenase in the human uterus. Prostaglandins1982;23:207–214.
    41.Rees MC, Anderson AB, Demers LM and Turnbull AC. Endometrial and myometrialprostaglandin release during the menstrual cycle in relation to menstrual blood loss. J ClinEndocrinol Metab1984;58:813–818.
    42.Marions L and Danielsson KG. Expression of cyclo-oxygenase in human endometrium during theimplantation period. Mol Hum Reprod1999;5:961–965.
    43.Schuster VL.Molecular mechanisms of prostaglandin transport. Annu Rev Physiol1998;60:221–242.
    44.Schuster VL.Prostaglandin transport.Prostaglandins Other Lipid Med2002;68–69,633–647.
    45.Coleman RA, Smith WL and Narumiya S. International Union of Pharmacology classification ofprostanoid receptors: properties, distribution, and structure of the receptors and their subtypes.Pharmacol Rev1994;46:205–229.
    46.Ota H, Igarashi S, Sasaki M and Tanaka T. Distribution of cyclooxygenase-2in eutopic andectopic endometrium in endometriosis and adenomyosis. Hum Reprod2001;16:561–566.
    47.Matsuzaki S, Canis M, Pouly JL, Wattiez A, Okamura K and Mage G. Cyclooxygenase-2expression in deep endometriosis and matched eutopic endometrium. Fertil Steril2004;82:1309–1315.
    48.Wu MH, Wang CA, Lin CC, Chen LC, Chang WC and Tsai SJ.Distinct regulation ofcyclooxygenase-2by interleukin-1beta in normal and endometriotic stromal cells. J ClinEndocrinol Metab2005;90:286–295.
    49.Foster GV, Baghdiantz A, Kumar A, Slack E, Soliman HA, MacIntyre I.Thyroid origin ofcalcitonin. Nature1964;202:1303–1305.
    50.Fischer JA, Tobler PH, Kaufmann M, Born W, Henke H, Cooper PE, Sagar SM, MartinJB.Calcitonin: regional distribution of the hormone and its binding sites in the human brain andpituitary. Proc Natl Acad Sci1981;78:7801–7805.
    51.Ding YQ, Zhu LJ, Bagchi MK&Bagchi IC. Progesterone stimulates calcitonin gene expressionin the uterus during implantation. Endocrinology1994;135:2265–2274.
    52.Kumar S, Zhu LJ, Polihronis M, Cameron ST, Baird ST, Schatz F, Dua A, Ying YK, Bagchi MK,Bagchi IC.Progesterone induces calcitonin gene expression in human endometrium within theputative window of implantation. J Clin Endocrinol Metab1998;83:4443–4450.
    53.Zhu LJ, Cullinan-Bove K, Polihronis M, Bagchi MK&Bagchi IC.Calcitonin is a progesterone-regulated marker that forecasts the receptive state of endometrium during implantation.Endocrinology1998;139:3923–3935.
    54.Lafond J, Simoneau L, Savard R, Lajeunesse D. Calcitonin receptor in human placentalsyncytiotrophoblast brush border and basal plasma membranes. Mol Cell Endocrinol.1994Mar;99(2):285-92.
    55.Hamada S, Kawane T, Akeno N, Igarashi H, Horiuchi N. Regulation of small intestinal transit bycentral nervous calcitonin receptor. Horm Metab Res.1999Sep;31(9):499-504.
    56.Tolcos M, Tikellis C, Rees S, Cooper M, Wookey P. Ontogeny of calcitonin receptor mRNA andprotein in the developing central nervous system of the rat. J Comp Neurol.2003Jan27;456(1):29-38.
    57.Hagner S, Knauer J, Haberberger R, G ke B, Voigt K, McGregor GP. Calcitonin receptor-likereceptor is expressed on gastrointestinal immune cells. Digestion.2002;66(4):197-203.
    58.Sexton PM, Houssami S, Hilton JM, O’Keef LM, Center RJ, Gillespie MT, Darcy P, Findlay DM.Identification of brain isoforms of the rat calcitonin receptor. Mol Endocrinol1993;7:815–821.
    59.Martin TJ, Findlay DM, Houssami S, Ikegame M, Rakopoulos M, Moseley JM,SextonPM.Heterogeneity of calcitonin receptor functional aspects in osteoclasts and other sites. JNutrition1995;2009S–2014S.
    60.Carson DD, Bagchi I, Dey SK, Enders AC, Fazleabas AT, Lessey BA, Yoshinaga K. Embryoimplantation. Dev Biol.2000Jul15;223(2):217-37.
    61.Wang J, Rout UK, Bagchi IC, Armant DR. Expression of calcitonin receptors in mousepreimplantation embryos and their function in the regulation of blastocyst differentiation bycalcitonin. Development1998;125:4293–4302.
    62.Sato S, Kume K, Takan T, Mutoh H, Taketani Y, Shimizu T. Up-regulation of the intracellularCa2+signaling and mRNA expression of platelet-activating factor receptor by estradiol inhuman uterine endometrial cells. Adv Exp Med Biol.1996;416:95-100.
    63.Sengupta J, Ghosh D. Role of progesterone on peri-implantation stage endometrium-embryointeraction in the primate. Steroids2000;65(10-11):753-62.
    64.Hilton DJ. LIF: lots of interesting functions.Trends in Biochemical Sciences1992;17:72–76.
    65.Stewart CL.The role of leukemia inhibitory factor (LIF) and other cytokines in regulatingimplantation in mammals. Annals of the New York Academy of Sciences1994;734:157–165.
    66.Shiokawa S, Yoshimura Y, Nagamatsu S, Sawa H, Hanashi H, Oda T, Katsumata Y, Koyama N,Nakamura Y. Expression of beta1integrins in human endometrial stromal and decidual cells. JClin Endocrinol Metab.1996Apr;81(4):1533-40.
    67.Cheng JG, Rodriguez CI, Stewart CL. Control of uterine receptivity and embryo implantation bysteroid hormone regulation of LIF production and LIF receptor activity: towards a molecularunderstanding of "the window of implantation".Rev Endocr Metab Disord.2002May;3(2):119-26.
    68.Laird SM, Tuckerman EM, Dalton CF, Dunphy BC, Li TC, Zhang X. The production ofleukaemia inhibitory factor by human endometrium: presence in uterine flushings and productionby cells in culture. Human Reproduction1997;12569–574.
    69.Duval D, Reinhardt B, Kedinger C, Boeuf H. Role of suppressors of cytokine signaling (Socs) inleukemia inhibitory factor (LIF)-dependent embryonic stem cell survival. FASEB Journal2000;14:1577–1584.
    70.Ware CB, Horowitz MC, Renshaw BR, Hunt JS, Liggitt D, Koblar SA, Gliniak BC, McKenna HJ,Papayannopoulou T, Thoma B. Targeted disruption of the low-affinity leukemia inhibitory factorreceptor gene causes placental, skeletal, neural and metabolic defects and results in perinataldeath. Development1995;121:1283–1299.
    71.Stewart CL, Kaspar P, Brunet LJ, Bhatt H, Gadi I, Kontgen F, Abbondanzo SJ. Blastocystimplantation depends on maternal expression of leukaemia inhibitory factor. Nature1992;359:76–79.
    72.Wang W, Van De Water T, Lufkin T. Inner ear and maternal reproductive defects in mice lackingthe Hmx3homeobox gene. Development1998;125:621–634.
    73.Ernst M, Inglese M, Waring P, Campbell IK, Bao S, Clay FJ, Alexander WS, Wicks IP, TarlintonDM, Novak U. Defective gp130-mediated signal transducer and activator of transcription (STAT)signaling results in degenerative joint disease, gastrointestinal ulceration, and failure of uterineimplantation.Journal of Experimental Medicine2001;194:189–203.
    74.Ni H, Ding NZ, Harper MJ, Yang ZM. Expression of leukemia inhibitory factor receptor and gp130in mouse uterus during early pregnancy. Molecular Reproduction and Development2002;63:143–150.
    75.Dimitriadis E, Nie G, Hannan N, Paiva P, Salamonsen LA. Local regulation of implantation atthe human fetal–maternal interface. International Journal of Developmental Biology2010;54:313–322.
    76.Charnock-Jones DS, Sharkey AM, Fenwick P, Smith SK. Leukaemia inhibitory factor mRNAconcentration peaks in human endometrium at the time of implantation and the blastocystcontains mRNA for the receptor at this time. Journal of Reproduction and Fertility1994;101:421–426.
    77.Arici A, Engin O, Attar E, Olive DL. Modulation of leukemia inhibitory factor gene expressionand protein biosynthesis in human endometrium. Journal of Clinical Endocrinology andMetabolism1995;80:1908–1915.
    78.Serafini PC, Silva ID, Smith GD, Motta EL, Rocha AM, Baracat EC. Endometrial claudin-4andleukemia inhibitory factor are associated with assisted reproduction outcome. ReproductiveBiology and Endocrinology2009;7:30.
    79.Brinsden PR, Alam V, de Moustier B, Engrand P. Recombinant human leukemia inhibitory factordoes not improve implantation and pregnancy outcomes after assisted reproductive techniques inwomen with recurrent unexplained implantation failure. Fertility and Sterility2009;91:1445–1447.
    80.Vogiagis D, Marsh MM, Fry RC, Salamonsen LA. Leukaemia inhibitory factor in humanendometrium throughout the menstrual cycle.J Endocrinol1996Jan;148(1):95-102.
    81.Nachtigall MJ, Kliman HJ, Feinberg RF, Olive DL, Engin O, Arici A. The effect of leukemiainhibitory factor (LIF) on trophoblast differentiation: a potential role in human implantation. JClin Endocrinol Metab1996;81:801–806.
    82.Sharkey AM, King A, Clark DE, Burrows TD, Jokhi PP, Charnock-Jones DS, Loke YW, SmithSK.Localization of leukemia inhibitory factor and its receptor in human placenta throughoutpregnancy. Biol Reprod1999;60:355–364.
    83.Carpenter G. Receptor for epidermal growth factor and other polypeptide mitogens. Ann RevBiochem1987;56:881–914.
    84.Massague J, Pandiella A. Membrane-anchored growth factors. Ann Rev Biochem1993;62:515–541.
    85.Riese DJ II, Stern DF. Specificity within the EGF family/ErbB receptor family signaling network.BioEssays1998;20:41–48.
    86.Yoo HJ, Barlow DH, Mardon HJ. Temporal and spatial regulation of expression of heparin-binding epidermal growth factor-like growth factor in the human endometrium: a possible role inblastocyst implantation. Developmental Genetics1997;21:102–108.
    87.Wang XN, Das SK, Damm D, Klagsbrun M, Abraham JA, Dey SK. Differential regulation ofheparin-binding epidermal growth factor-like growth factor in the adult ovariectomized mouseuterus by progesterone and estrogen. Endocrinology1994;135:1264–1271.
    88.Leach RE, Khalifa R, Ramirez ND, Das SK, Wang J, Dey SK, Romero R, Armant DR. Multipleroles for heparin-binding epidermal growth factor-like growth factor are suggested by itscell-specific expression during the human endometrial cycle and early placentation. J ClinEndocrinol Metab1999;84:3355–3363.
    89.Simon C, Martin JC, Pellicer A. Paracrine regulators of implantation. Baillie`re’s ClinicalObstetrics and Gynaecology2000;14:815–826.
    90.Birdsall MA, Hopkisson JF, Grant KE, Barlow DH, Mardon HJ. Expression of heparin-bindingepidermal growth factor messenger RNA in the human endometrium. Molecular HumanReproduction1996;2:31–34.
    91.Lessey BA, Gui Y, Apparao KB, Young SL, Mulholland J. Regulated expression of heparin-binding EGF-like growth factor (HB-EGF) in the human endometrium: a potential paracrine roleduring implantation. Molecular Reproduction and Development2002;62:446–455.
    92.Leach RE, Romero R, Kim YM, Chaiworapongsa T, Kilburn B, Das SK, Dey SK, Johnson A,Qureshi F, Jacques S, Armant DR. Pre-eclampsia and expression of heparin-binding EGF-likegrowth factor. Lancet2002;360:1215–1219.
    93.Das SK,Wang XN, Paria BC, Damm D, Abraham JA, Klagsbrun M, Andrews GK, Dey SK.Heparin-binding EGF-like growth factor gene is induced in the mouse uterus temporally by theblastocyst solely at the site of its apposition: a possible ligand for interaction with blastocystEGF-receptor in implantation. Development1994;1201071–1083.
    94.Paria BC, Ma W, Tan J, Raja S, Das SK, Dey SK, Hogan BL. Cellular and molecular responsesof the uterus to embryo implantation can be elicited by locally applied growth factors. PNAS2001;98:1047–1052.
    95.Hamatani T, Daikoku T, Wang H, Matsumoto H, Carter MG, Ko MS,Dey SK. Global geneexpression analysis identifies molecular pathways distinguishing blastocyst dormancy andactivation. PNAS2004;101:10326–10331.
    96.Xie H, Wang H, Tranguch S, Iwamoto R, Mekada E, Demayo FJ, Lydon JP,Das SK, Dey SK.Maternal heparin-binding-EGF deficiency limits pregnancy success in mice. PNAS2007;104:18315–18320.
    97.Martin KL, Barlow DH, Sargent IL. Heparin-binding epidermal growth factor significantlyimproves human blastocyst development and hatching in serum-free medium. HumanReproduction1998;13:1645–1652.
    98.Stavreus-Evers A, Aghajanova L, Brismar H, Eriksson H, Landgren BM, Hovatta O.Co-existence of heparin-binding epidermal growth factor-like growth factor and pinopodes inhuman endometrium at the time of implantation. Molecular Human Reproduction2002;8:765–769.
    99.Ma L, Benson GV, Lim H, Dey SK, Maas RL. Abdominal B (AbdB) Hoxa genes: regulation inadult uterus by estrogen and progesterone and repression in mullerian duct by the syntheticestrogen diethylstilbestrol (DES). Dev Biol1998;197:141–154.
    100.Daftary GS, Taylor HS. Molecular markers of implantation: clinical implications. Curr OpinObstet Gynecol2001;13:269–274.
    101.Taylor HS, Bagot C, Kardana A, Olive D, Arici A. HOX gene expression is altered in theendometrium of women with endometriosis. Hum Reprod1999;14:1328–1331.
    102.Satokata I, Benson G, Maas R. Sexually dimorphic sterility phenotypes in Hoxa10deficientmice. Nature1995;374:460–463.
    103.Hsieh-Li HM, Witte DP, Weinstein M, Brandford W, Li H, Small K, Potter SS. Hoxa11structure, extensive antisense transcription, and function in male and female infertility.Development1995;121:1373–1385.
    104.Benson GV, Lim H, Paria BC, Satokata I, Dey SK, Maas RL. Mechanisms of reduced fertility inHoxa-10mutant mice: uterine homeosis and loss of maternal Hoxa-10expression. Development1996;12:2687–2696.
    105.Bagot CN, Troy PJ, Taylor HS. Alteration of maternal HOXA10expression by in vivo genetransfection affects implantation. Gene Ther2000;7:1378–1384.
    106.Taylor HS, Van den Heuvel GB, Igarahi P. A conserved Hox axis in the mouse and humanfemale reproductive system: late establishment and persistent adult expression of the Hoxacluster genes. Biol Reprod1997;57:1338–1345.
    107.Taylor HS, Arici A, Olive D, Igarashi P. HOXA10is expressed in response to sex steroids at thetime of implantation in the human endometrium. J Clin Invest1998;101:1379-1384.
    108.Taylor HS, Igarashi P, Olive DL, Arici A. Sex steroids mediate HOXA11expression in thehuman peri-implantation endometrium. J Clin Endocrinol Metab1999;84:1129-1135.