RNA干扰抑制人肺癌细胞HMGB1基因表达的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景和目的
     肺癌是严重威胁人类健康和生命的恶性肿瘤,其发病率将在相当长时期内呈现显著上升趋势,已成为引起世界上癌症死亡率最主要原因~1。高迁移率族蛋白B1(high mobility group box B 1,HMGB1),是一种存在于真核生物细胞内的非组蛋白染色体结合蛋白,参与多种生物学过程包括诸如基因转录、DNA修复等功能。HMGB 1过表达有抑制细胞凋亡,诱导细胞分化、细胞迁移、细胞增殖等作用~2。最近研究表明它不但是一种转录因子和促生长因子,而且是一种重要的炎性细胞因子,并与肿瘤的发生、浸润、转移等生物学行为关系密切,有很大的临床价值~3。HMGB1在肺癌中的研究处于起步和探索阶段。国内外并无其他关于HMGB1在肺癌中全方位系统性研究的文献报道。本研究在人肺鳞癌细胞株YTMLC-9、人肺腺癌细胞株A549、人大细胞肺癌细胞株L9981及人小细胞癌细胞株NCI-H446中筛选高表达HMGB1的细胞株,作为人肺癌细胞HMGB1基因研究的理想材料,为下一步进行的RNAi实验研究的细胞模型的选择奠定了基础;设计针对HMGB1为靶点的siRNA,观察通过RNA干扰抑制HMGB1基因表达后,高表达HMGB1的人肺癌细胞株L9981增殖和侵袭能力的改变,体外验证HMGB1基因做为治疗靶点的可行性;为临床开发应用和探索肿瘤治疗的新途径提供实验和理论基础;应用RNA干扰联合基因芯片技术检测HMGB1表达下调后肺癌细胞基因表达谱的差异情况,筛选与HMGB1相互作用的基因及可能的信号通路,探讨HMGB1基因在肺癌中的作用机制。
     方法
     1、常规培养人肺鳞癌细胞株YTMLC-9、人肺腺癌细胞株A549、人大细胞肺癌细胞株L9981及人小细胞癌细胞株NCI-H446,采用实时荧光定量PCR和Westernblot方法对人肺癌细胞HMGB1基因在4株细胞中的mRNA和蛋白水平的表达进行检测,筛选出高表达HMGB1基因的人肺癌细胞株。
     2、根据siRNA设计原则,设计合成靶向HMGB1基因的siRNA,采用阳离子脂质体试剂瞬时转染已经筛选出的高表达HMGB1的人大细胞肺癌细胞株L9981,利用实时荧光定量PCR和Western blot检测RNA干扰后HMGB1基因的沉默效果,评价siRNA设计的合理性及RNA干扰抑制HMGB1表达的有效性;确定RNA干扰抑制HMGB1表达确实有效后,培养人大细胞肺癌细胞株L9981,分为3组进行RNA干扰研究,分别为转染靶向HMGB1基因的siRNA组,转染无关序列组和空白对照组,于RNA干扰后48小时,用细胞活力计数仪测定3组细胞活力;分别在RNA干扰后24、48、72和96小时应用MTT实验检测3组细胞生存状态,计算生长抑制率并绘制生长曲线;应用boyden chamber法检测3组侵袭能力的差异。
     3、采用阳离子脂质体试剂向人肺癌细胞L9981转染靶向HMGB1基因的siRNA,下调HMGB1的表达。应用Affymetrix HU133 plus 2基因芯片检测人肺癌细胞L9981 HMGB1基因表达下调后,全基因表达谱的变化,并应用GCOS(Gene-ChipOperation Software)软件分析筛查数据,对相关基因和信号通路进行综合分析。
     结果:
     1、人肺鳞癌细胞株YTMLC-9、人肺腺癌细胞株A549、人大细胞肺癌细胞株L9981及人小细胞癌细胞株NCI-H446中均有HMGB1基因表达,其中人大细胞肺癌细胞株L9981表达水平最高,mRNA是表达量最低的人肺腺癌细胞株A549mRNA表达量的10.3倍,人大细胞肺癌细胞株L9981与其它3种人肺癌细胞株比较差异有统计学意义(P<0.01)
     2、靶向HMGB1的siRNA成功抑制人大细胞肺癌细胞株L9981中HMGB1基因及蛋白表达(P=0.000),细胞活力检测仪测定RNA干扰48小时后,空白对照组和阴性对照组细胞活力显著大于siRNA转染组;MTT测定siRNA转染组细胞生长抑制率显著大于空白对照组和阴性对照组;boyden chamber小室细胞侵袭实验结果siRNA转染组穿膜细胞数明显减少,与空白对照组和阴性对照组比较,差异有显著性(P<0.05)。
     3、RNA干扰抑制人大细胞肺癌细胞株L9981HMGB1基因表达后,GCOS软件分析基因芯片分析其表达谱的变化。结果发现1433个探针表达明显改变,对应有明确名称的基因为879个,其中上调的基因有295个,下调的有584个;EST序列216个,其中上调96个,下调120个。差异基因共涉及131个信号通路,主要为肺癌、钙信号通路、细胞通讯、细胞因子受体相互作用、ErbB信号通路、细胞基质黏附、细胞迁移、细胞信号转导、Jak-STAT信号通路、MAPK信号通路、p53信号通路、细胞周期、细胞凋亡以及Wnt信号通路等相关通路。经过Milano网站分析,其中678个基因有报道。在这678个基因中,与肺癌(检索词lung cancer)有相关文献报道的有209个,与癌症(检索词cancer)有相关报道的有526个,与侵袭(检索词invasion)有相关报道的有170个,或转移(检索词metastasis)有相关报道的有194个。
     结论:
     1、本研究在国内外首次报道HMGB1在人肺鳞癌细胞株、腺癌细胞株、大细胞癌细胞株及小细胞癌细胞株等4株肺癌细胞中的表达水平,筛选出HMGB1高表达的人肺癌细胞株L9981,HMGB1低表达的人肺癌细胞株A549,人大细胞肺癌L9981细胞株为HMGB1高表达细胞株,可作为进行肺癌细胞中研究HMGB1的实验材料。
     2、成功设计了靶向HMGB1的siRNA,应用RNA干扰技术在国内外首次将靶向HMGB1的siRNA转染至筛选出的高表达HMGB1的肺癌细胞株中,并成功的高效地下调人肺癌细胞L9981HMGB1基因的表达,成功构建了转染HMGB1的siRNA的肺癌细胞株和转染无关序列的肺癌细胞株。人肺癌细胞L9981HMGB1基因下调后,细胞增值和侵袭能力显著被抑制,表明HMGB1可作为人肺癌基因治疗潜在的靶点。
     3、本研究在国内外首先应用表达谱芯片研究人肺癌细胞L9981HMGB1基因下调后,其细胞基因表达谱变化情况,确定表达差异基因879个,主要涉及肺癌、钙信号通路、细胞通讯、细胞因子受体相互作用、ErbB信号通路、细胞基质黏附、细胞迁移、细胞信号转导、Jak-STAT信号通路、MAPK信号通路、p53信号通路、细胞周期、细胞凋亡以及Wnt信号通路等方面。经过Milano网站分析,其中678个基因有报道。在这678个基因中,与肺癌(检索词lung cancer)、侵袭和转移(检索词metastasis)报道较多的基因中。筛选出与肺癌、侵袭和转移相关报道较多的基因进行分析,其中上调的基因功能主要有血管形成、细胞通讯、抗凋亡、细胞增殖正调控和细胞迁移正调控等;在下调的基因中,主要功能与信号转导、细胞之间信号联系、细胞粘附、细胞与基质黏附、细胞周期调控、DNA修复、DNA复制、细胞迁移、细胞分化、细胞生长、细胞增殖和钙离子通道有关。表明HMGB1基因表达受很多相关基因及信号通路的调控,与肺癌的侵袭、转移及肺癌形成等生物学过程密切相关,其分子机制有待进一步深入探讨。
Objective:
     Lung cancer is a type of malignant tumor which theats human health and life.Itsmorbidity will increase dramatically in a long period.Lung cancer is the leadingcause of cancer all over the world.HMGBl(high mobility group box B 1)is anon-histone chromsone binding protein locates in the cells.It takes part in manybiological processions including gene transcription and DNA repair.HMGBloverexpression can results in cell apoptosis,cell diffrenial,cell metastisis and cellprolifration.Recent studys indicates it is not only a transciption factor but also aimportant factor that relate to tumor development,infiltration and metastasis.Thestudy of HMGB1 in lung cancer is in the beginning step around the world.There arenot literatures about systemic reseach of HMGB 1 in lung cancer.The main purpose ofthis study is detect the HMGB1 expression of 4 lung cancer cell lines to select themost suitable cell line to do the work next step.Then to suppress HMGB1 geneexpression by RNA interference in lung cancer cell,to research the invasion andmigration behavior of lung cancer ceil after HMGB l gene silence.Then we further tostudy the molecular mechanisms of the invasion of lung cancer cell by genechip.
     Methods:
     1.Four lung cancer cell lines were cultured by normal method,Western blot andreal-time quantitative PCR were used to verify the expression level of HMGB1.Select the cell line which HMGB 1 over-expressed.
     2.siRNA targeting HMGB1 were designed and synthesized.The siRNA wastransiently transfected into L9981 cell line which was selected that HMGB1over-epressed via cationic liposome Lipofectamine 2000,Western Blot andreal-time quantitative PCR were used to verify the interference efficiency of HMGB 1protein and mRNA expression levels.After HMGB1 was down-regulated in lungcancer cell line L9981 by RNAi,Determination and analysis of cell viability forL9981 cell line with HMGB1 gene silencing;.the ability of cell invasion was measured by Boyden chamber,
     3.The alteration of gene expression profiles after HMGB1 gene silencing wasinvestigated through Affymetrix HU133 plus 2 gene chip,and bioinformatics wasused to analysize data.
     Results:
     1.HMGB1 expressed in all 4 lung cancer cell lines,The cell line L9981 is themost highly expressed cell line(P<0.01).
     2.HMGB1 gene mRNA and protein expression levels of lung cancer cell lineL9981 were both dramatically decreased by RNA interference(P<0.01).AfterHMGB1 was down-regulated in lung cancer cell line L9981 by RNAi,both cellinvasion and migration ability were inhibited significantly(P<0.01).
     3.Microarray assay revealed that expression of 1433 probes were altered inresponse to HMGB1 gene silencing,including 879 genes and 216 ESTs.Among 879genes there are 295 up-regulated genes and 584 down-regulated genes.These genesare involved in cell cycle,apoptosis,cell signal transduction,cell adhesion,cellmigration and aging.
     Conclusion:
     1.All 4 lung cancer cell lines expree HMGB1 gene.As the HMGB1overexpression cell line,L9981 is an ideal material for follow-up research.
     2.RNAi can efficiently down-regulate the HMGB 1 gene in lung cancer cell lineL9981,The ability of growth and invasion of lung cancer cell line L9981 can beinhibited by HMGB1 silencing.HMGB1 can be regarded as a target for gene therapyof lung cancer.
     4.HMGB1 is an important gene to regulate cells′adhesion and invasion.Afterthe silence of HMGB1 gene,many genes had a significantly differential expression.These genes are involved in cell cycle,apoptosis,cell signal transduction,celladhesion,cell migration and aging.However,the present study still can not completely reveal the HMGB1 signal pathways and molecular mechanism;morestudies are needed to carry out.
引文
1 Wild P, Bourgkard E, Paris C. Lung cancer and exposure to metals: the epidemiological evidence. Methods Mol Biol, 2009,472:139-67.
    
    2 Stros M, Polanska E, Struncova S, et al. HMGB1 and HMGB2 proteins up-regulate cellular expression of human topoisomerase II {alpha}. Nucleic Acids Res, 2009.
    
    3 Faraco G, Fossati S, Bianchi ME, et al. High mobility group box 1 protein is released by neural cells upon different stresses and worsens ischemic neurodegeneration in vitro and in vivo. J Neurochem, 2007,103:590-603.
    
    4 Yan TD, Black D, Bannon PG, et al. Systematic Review and Meta-Analysis of Randomized and Nonrandomized Trials on Safety and Efficacy of Video-Assisted Thoracic Surgery Lobectomy for Early-Stage Non-Small-Cell Lung Cancer. J Clin Oncol, 2009.
    
    5 Lange SS, Mitchell DL, Vasquez KM. High mobility group protein B1 enhances DNA repair and chromatin modification after DNA damage. Proc Natl Acad Sci U S A, 2008,105:10320-5.
    
    6 Yan TD, Black D, Bannon PG, et al. Systematic Review and Meta-Analysis of Randomized and Nonrandomized Trials on Safety and Efficacy of Video-Assisted Thoracic Surgery Lobectomy for Early-Stage Non-Small-Cell Lung Cancer. J Clin Oncol, 2009.
    
    7 Priebsch A, Rompe F, Tonnies H, et al. Complete reversal of ABCG2-depending atypical multidrug resistance by RNA interference in human carcinoma cells.Oligonucleotides, 2006,16:263-74.
    
    8 Xiong H, Yu S, Hu G, et al. Effects of Survivin expression suppressed by short hairpin RNA on MCF-7 cells. J Huazhong Univ Sci Technolog Med Sci,2006,26:305-7.
    
    9 Huang C, Li M, Chen C, et al. Small interfering RNA therapy in cancer: mechanism,potential targets, and clinical applications. Expert Opin Ther Targets,2008,12:637-45.
    
    10 Waterer GW. High-mobility group box 1 (HMGB1) as a potential therapeutic target in sepsis—more questions than answers. Crit Care Med, 2007,35:1205-6.
    11 Taniguchi N, Yoshida K, Ito T, et al. Stage-specific secretion of HMGB1 in cartilage regulates endochondral ossification. Mol Cell Biol, 2007,27:5650-63.
    
    12 Klune JR, Dhupar R, Cardinal J, et al. HMGB1: endogenous danger signaling.Mol Med, 2008 Jul-Aug;14(7-8):476-84.
    
    13 van Beijnum JR, Dings RP, van der Linden E, et al. Gene expression of tumor angiogenesis dissected: specific targeting of colon cancer angiogenic vasculature.Blood, 2006,108:2339-48.
    
    14 Ulloa L, Messmer D. High-mobility group box 1 (HMGB1) protein: friend and foe.Cytokine Growth Factor Rev, 2006,17:189-201.
    
    15 Riuzzi F, Sorci G, Donato R. The amphoterin (HMGB1)/receptor for advanced glycation end products (RAGE) pair modulates myoblast proliferation, apoptosis,adhesiveness, migration, and invasiveness. Functional inactivation of RAGE in L6 myoblasts results in tumor formation in vivo. J Biol Chem, 2006,281:8242-53.
    
    16 Thorburn J, Frankel AE, Thorburn A. Regulation of HMGB1 release by autophagy.Autophagy, 2009,5:247-9
    
    17 Kalinowska-Herok M, Widlak P. High mobility group proteins stimulate DNA cleavage by apoptotic endonuclease DFF40/CAD due to HMG-box interactions with DNA. Acta Biochim Pol, 2008,55:21-6.
    
    18 Yu Y, Xie M, He YL, et al. [Role of high mobility group box 1 in adriamycin-induced apoptosis in leukemia K562 cells]. Ai Zheng, 2008,27:929-33.
    
    19 Kawahara N, Tanaka T, Yokomizo A,et al. Enhanced co-expression of thioredoxin and high mobility group protein 1 gene in human hepatocellular carcinoma and possible association with decreased sensitivity to cisplatin. Cancer Res,1996,56(23);5330-5333.
    
    20 Akaike H, Kono K, Sugai H, et al. Expression of high mobility group box chromosomal protein-1 (HMGB-1) in gastric cancer. Anticancer Res,2007,27:449-57.
    
    21 Sasahira T, Kirita T, Oue N, et al. High mobility group box-1-inducible melanoma inhibitory activity is associated with nodal metastasis and lymphangiogenesis in oral squamous cell carcinoma. Cancer Sci, 2008,99:1806-12.
    
    22 Volp K, Brezniceanu ML, Bosser S, et al. Increased expression of high mobility group box 1 (HMGB1) is associated with an elevated level of the antiapoptotic C-IAP2 protein in human colon carcinomas. Gut, 2006,55:234-42.
    
    23 Li J, Kokkola R, Tabibzadeh S, et al. Structural basis for the proin flammatory cytokine activity of high mobility group box 1 [ J ]. Mol Med, 2003, 9 (1-2) : 37-45.
    
    24 Sapatore B , Passalacuqua M , Picotti GB , et al. Exatracellular high mobility group 1 protein is essential for murine erythroleukaemia cell differentiation. Bio Chem, J, 1996,320(1):253-256.
    
    25 Breziceanu ML , Volp K, Bosser S,et al. HMGB1 inhibits cell death in yeast and mammalian cells and is abundantly expressed in human breast carcinoma.FASEB J,2003,17(10):1295-1297.
    
    26 Meyer A, Staratschek-Jox A, Springwald A, et al. Non-Hodgkin lymphoma expressing high levels of the danger-signalling protein HMGB1. Leuk Lymphoma.2008 Jun;49(6):1184-9
    
    27 Cheng BQ, Jia CQ, Liu CT, et al. Serum high mobility group box chromosomal protein 1 is associated with clinicopathologic features in patients with hepatocellular carcinoma. Dig Liver Dis, 2008,40:446-52.
    
    28 Campana L, Bosurgi L, Rovere-Querini P. HMGB1: a two-headed signal regulating tumor progression and immunity. Curr Opin Immunol, 2008,20:518-23.
    
    29 Tesniere A, Apetoh L, Ghiringhelli F, et al. Immunogenic cancer cell death: a key-lock paradigm. Curr Opin Immunol, 2008,20:504-11
    
    30 Lim SC, Kim SM, Choi JE, et al. Sodium salicylate switches glucose depletion-induced necrosis to autophagy and inhibits high mobility group box protein 1 release in A549 lung adenocarcinoma cells. Oncol Rep, 2008,19:1165-71.
    
    31 Schraml P, Bendik I, Ludwig CU. Differential messenger RNA and protein expression of the receptor for advanced glycosylated end products in normal lung and non-small cell lung carcinoma. Cancer Res, 1997,57:3669-71.
    
    32 Bartling B, Fuchs C, Silber RE, et al. Fibroblasts mediate induction of high mobility group box protein 1 in lung epithelial cancer cells by diffusible factors. Int J Mol Med, 2007,20:217-24.
    
    33 Peirson S N, Butler JN, Foster R G.Experimental validation of novel and conventional approaches to quatitative real-time PCR data analysis. Nucleic Acids Res,2003,31(14):73-79
    
    34 Evans R, Naber C, Steffler T, et al. Aurora A kinase RNAi and small molecule inhibition of Aurora kinases with VE-465 induce apoptotic death in multiple myeloma cells. Leuk Lymphoma, 2008,49:559-69.
    
    35 Numnum TM, Makhija S, Lu B, et al. Improved anti-tumor therapy based upon infectivity-enhanced adenoviral delivery of RNA interference in ovarian carcinoma cell lines. Gynecol Oncol, 2008,108:34-41.
    
    36 Tyner JW, Walters DK, Willis SG, et al. RNAi screening of the tyrosine kinome identifies therapeutic targets in acute myeloid leukemia. Blood, 2008,111:2238-45.
    
    37 Yamada T, Morishita S. Accelerated off2target search algorithm for siRNA. B ioinform atics, 2005, 21 (8): 1316 - 1324.
    
    38 Takasaki S, Kawamura Y, Konagaya A. Selecting effective siRNA sequences based on the self-organizing map and statistical techniques. Comput Biol Chem ,2006,30(3): 169-178.
    
    39 Dykxhoorn DM, Novina CD, Sharp PA. Killing the messenger: short RNAs that silence gene expression. Nat Rev Mol Cell Biol, 2003,4(6):457-467
    
    40 GongD, Ferrell JE. Picking a winner: new echanistic insights into the design of fective siRNAs. Trends B iotechnol, 2004,22(9):451- 454.
    
    41 Rieber N, Knapp B, Eils R, et al. RNAither, an automated pipeline for the statistical analysis of high-throughput RNAi screens. Bioinformatics,2009,25:678-679
    
    42 Bessette DC,Qiu D, Pallen CJ. PRL PTPs: mediators and markers of cancer progression. Cancer Metastasis Rev, 2008, 27 (2): 231 - 252.
    
    43 Radke I, GEtte M, Kersting C, et al. Expression and prognostic impact of the protein tyrosine phosphatases PRL21, PRL22, and PRL23 in breast cancer Br J Cancer, 2006, 95 (3): 347 - 354.
    
    44 Levenberg S, Golub J S , Amit M , et al. Endothelial cells derived from human embryonic stem cells. Proc Natl Acad Sci USA , 2002 ,99 (7): 439124396
    
    45 Yan SF, Ramasamy R, Schmidt AM. Receptor for AGE (RAGE) and its ligands-cast into leading roles in diabetes and the inflammatory response. J Mol Med,2009,87:235-47.
    46 Topalova D,Ugrinova I,Pashev IG,et al.HMGBI protein inhibits DNA replication in vitro:A role of the acetylation and the acidic tail.Int J Biochem Cell Biol,2008,40:1536-42.
    47 Ito N,DeMarco RA,Mailliard RB,et al.Cytolytic cells induce HMGB 1 release from melanoma cell lines.J Leukoc Bio,2007,81(1);75-83
    48 Kim JH,Kim SJ,Lee IS,et al.Bacterial endotoxin induces the release of high mobility group box 1 via the IFN-beta signaling pathway.J Immunol,2009,182:2458-66.
    49 Volp K,Brezniceanu ML,Bosser S,et al.Increased exp ression of high mobility group box 1(HMGB 1)is associated with an elevated level of antiapototic c-IAP2 protein in humancolon carcinomas.Gut,2 006,55(2):234-242.
    50 黄庆先,孙念峰,王国斌,等高迁移率族蛋白基因在胰腺癌组织中的表达及其临床意义实用癌症杂志,2004,19 (1);19-23
    51 黄庆先,王国斌,孙念峰等,高迁移族蛋白框1反义抑制人胰腺癌细胞系PCNA-1侵袭的研究。癌症,2004,23 (9);1036-1040
    52 Kuniyasu H,Chihara Y,Kondo H.Differential effects between amphoterin and advanced glycation end products on colon cancer.Cancer.2003,104(6);722-727
    53 Gnanasekar M,Thirugnanam S,Ramaswamy K.Short hairpin RNA (shRNA) constructs targeting high mobility group box-1 (HMGB1) expression leads to inhibition of prostate cancer cell survival and apoptosis.Int J Oncol,2009,34:425-31.
    54 Curtin JF,Liu N,Candolfi M,et al.HMGB1 mediates endogenous TLR2 activation and brain tumor regression.PLoS Med,2009,6:e10.
    55 Perelman E,Ploner A,Calza S,Pawitan Y.Detecting differential expression in microarray data:comparison of optimal procedures.BMC Bioinformatics,2007,8:28.
    56 Grant GR,Liu JM,Stoeckert CJ.A practical false discovery rate approach to identifying patterns of differential expression in microarray data.Bioinformatics,2005,21(11):2684-2690.
    57 Zhou W,Du W,Cao H,et all Detection of gyrA and parC mutations associated with ciprofloxacin resistance in Neisseria gonorrhoeae by use of oligonucleotide biochip technology.J Clini Microbio,2004,42(12):58191
    58 Slater E P , Diehl S M , Langer P , et all Analysis by cDNA microarrays of gene expression patterns of human adrenocortical tumor .1 European J Endocrinol, 2006 ,154(4):5871
    
    59 Kim SY, Lee JW, Sohn IS. Comparison of various statistical methods for identifying differential gene expression in replicated microarray data. Stat Methods Med Res, 2006,15(1): 3-20.
    
    60 Dudoit S, Yang YH, Speed TP, Callow MJ. Statistical methods for identifying differentially expressed genes in replicated cDNA microarray experiments. Stat Sin,2002, 12: 111-139
    
    61 Yao KC , Komata T , Kondo Y, et al. Molecular response of human glioblastoma multiforme cells to ionizing radiation : cell cycle arrest, modulation of the expression of cyclin dependent kinase inhibitors , and autophagy. J Neuro surg , 2003 , 98 (2):3782384
    
    62 Hu J, Liu S, Wang J, et al. Overexpression of the N-terminal end of the p55gamma regulatory subunit of phosphatidylinositol 3-kinase blocks cell cycle progression in gastric carcinoma cells. Int J Oncol, 2005, 26( 5): 1321- 1327.
    
    63 Iodugno I, Tagliabue E , Ardini E , et al. P53-depent downregulation of metastasis associated laminin receptor. Oncogene,2002 ,21 (49) :7478 - 7487
    
    64 Tanaka K, Miki C , Wakuda R, et al. Circulating level of hepatocyte growth factor as a useful tumor marker in patients with early stage gastric carcinoma . Scand J Gast roenterol,2004 ,39 (8) :7542760.
    
    65 Kook SH, Son YO, Jang YS, et al. Inhibition of c-Jun N-terminal kinase sensitizes tumor cells to flavonoid-induced apoptosis through down-regulation of JunD. Toxicol Appl Pharmacol, 2008,227:468-76
    
    66 Pio R, Martimez A, Unsworth EJ,et al. Complement factor H is a serum binding protein for adrenomadullin. The resulting complex modulates the bioactivities of both partners. Biol Chem.2000,176:12292-12300
    
    67 Hata K, Takebayashi Y, Akiba S, et al. Expression of the adrenomadullin gene in epithelial ovarian cancer. Mol Hum Repro,2000,6(10);867-872
    
    68 Davinder S, Theti, Ann Jackman. The Role of a-Folate Receptor-Mediated Transport in the Antitumor Activity of Antifolate Drugs.Clinical CancerResearch,2004;10 (1) :1080—1089.
    
    69 Christopher P, Leamon, Philip S. Low,Folate-mediated targeting:from diagnosticsto drug and gene delivery.Drug Discovery Today,2001,6(1): 44-51.
    
    70 Vanbrocklin MW, Verhaegen M, Soengas MS, et al. Mitogen-Activated Protein Kinase Inhibition Induces Translocation of Bmf to Promote Apoptosis in Melanoma.Cancer Res, 2009.
    
    71 Magnani E, Fan J, Gasparini L, et al. Interaction of tau protein with the dynactin complex, EMBO J, 2007, 26(21): 4546-4554
    
    72 Sinpitaksakul SN, Pimkhaokham A, Sanchavanakit N, et al. TGF-beta1 induced MMP-9 expression in HNSCC cell lines via Smad/MLCK pathway. Biochem Biophys Res Commun, 2008,371:713-8.
    
    73 Choi MC, Lee YU, Kim SH, et al. A-kinase anchoring protein 12 regulates the completion of cytokinesis. Biochem Biophys Res Commun, 2008,373:85-9.
    
    74 Bentov I, Narla G, Schayek H, et al. Insulin-like growth factor-i regulates Kruppel-like factor-6 gene expression in a p53-dependent manner. Endocrinology,2008,149:1890-7.
    
    75 Hung PS, Kao SY, Shih YH, et al. Insulin-like growth factor binding protein-5 (IGFBP-5) suppresses the tumourigenesis of head and neck squamous cell carcinoma.J Pathol, 2008,214:368-76.
    
    76 Aishima S, Basaki Y, Oda Y, et al. High expression of insulin-like growth factor binding protein-3 is correlated with lower portal invasion and better prognosis in human hepatocellular carcinoma. Cancer Sci, 2006,97:1182-90.
    
    77 Ma LL, Sun WJ, Wang Zh, et al. Effects of silencing of mutant p53 gene in human lung adenocarcinoma cell line Anip973. J Exp Clin Cancer Res, 2006,25:585-92.
    
    78 Mano Y, Takahashi K, Ishikawa N, et al. Fibroblast growth factor receptor 1 oncogene partner as a novel prognostic biomarker and therapeutic target for lung cancer. Cancer Sci, 2007,98:1902-13.
    
    79 Zhu X, Asa SL, Ezzat S. Fibroblast growth factor 2 and estrogen control the balance of histone 3 modifications targeting MAGE-A3 in pituitary neoplasia. Clin Cancer Res, 2008,14:1984-96
    
    80 Kondo T, Zheng L, Liu W, et al. Epigenetically controlled fibroblast growth factor receptor 2 signaling imposes on the RAS/BRAF/mitogen-activated protein kinase pathway to modulate thyroid cancer progression. Cancer Res, 2007,67:5461-70.
    
    81 Culjkovic B , Topisirovic I, Borden K L. Cont rolling gene expression t hrough RNA regulons : t he role of the eukaryotict ranslation initiation factor eIF4E[ J ] .Cell Cycle , 2007 ,6(1) :65 - 69.
    
    82 Subramaniam V, Vincent IR, Gardner H, et al. CD44 regulates cell migration in human colon cancer cells via Lyn kinase and AKT phosphorylation. Exp Mol Pathol,2007,83:207-15.
    
    83 Iczkowski KA, Omara-Opyene AL, Shah GV. The predominant CD44 splice variant in prostate cancer binds fibronectin, and calcitonin stimulates its expression.Anticancer Res, 2006,26:2863-72.
    
    84 Law AY, Lai KP, Ip CK, et al. Epigenetic and HIF-1 regulation of stanniocalcin-2 expression in human cancer cells. Exp Cell Res, 2008,314:1823-30.
    
    85 Esseghir S, Kennedy A, Seedhar P, et al. Identification of NTN4, TRA1, and STC2 as prognostic markers in breast cancer in a screen for signal sequence encoding proteins. Clin Cancer Res, 2007,13:3164-73.
    1 Dickgreber NJ,Fink TH,Latz JE,et al.Phase I and Pharmacokinetic Study of Pemetrexed plus Cisplatin in Chemonaive Patients with Locally Advanced or Metastatic Malignant Pleural Mesothelioma or Non-Small Cell Lung Cancer.Clin Cancer Res, 2009, 15:382-389.
    
    2 Sanborn RE, Lally BE. Adjuvant therapy for non-small cell lung cancer with mediastinal nodal involvement. Thorac Surg Clin, 2008,18:423-435.
    
    3 Liu H, Zhang T, Li X, et al. Predictive value of MMP-7 expression for response to chemotherapy and survival in patients with non-small cell lung cancer. Cancer Sci, 2008, 99:2185-2192.
    
    4 Bhuvarahamurthy V, Kristiansen GO, Johannsen M, et al. In situ gene expression and localization of metalloproteinases MMP1, MMP2, MMP3,MMP9, and their inhibitors TIMP1 and TIMP2 in human renal cell carcinoma .Oncol Rep, 2006, 15(5):1379-1384.
    
    5 Mitsiades N, Yu WH, Poulaki V, et al. Matrix metalloproteinase-7-mediated cleavage of Fas Ligant protects tumor cells from chemothera-peutic drug cytotoxicity.Cancer Res, 2001,61(2):577-581.
    
    6 Visse R, Nagase H. Matrix metaloproteinases and tissue inhibitors of metaloproteinases : structure, function, and biochemistry . Circ Res, 2003,92:827-839.
    
    7 Darnton SJ, Hardie LJ, Muc RS, et al. Tissue inhibitor of metalloproteinase 3 (TIMP3) gene is methylated in the development of esophageal adenocarcinoma: loss of expression correlates with poor prognosis. Int J Cancer, 2005, 115(3):351-358.
    
    8 Sauter W, Rosenberger A, Beckmann L, et al. Matrix Metalloproteinase 1 (MMP1) Is Associated with Early-Onset Lung Cancer. Cancer Epidemiol Biomarkers Prev, 2008, 17:1127-1135.
    
    9 Reckamp KL, Gardner BK, Figlin RA, et al. Tumor response to combination celecoxib and erlotinib therapy in non-small cell lung cancer is associated with a low baseline matrix metalloproteinase-9 and a decline in serum-soluble E-cadherin. J Thorac Oncol, 2008, 3:117-124.
    
    10 Schutz A, Schneidenbach D, Aust G, et al. Differential expression and activity status of MMP-1,MMP-2 and MMP-9 in tumor and stromal cells of squamous cell carcinomas of the lung.Tumour Biol,2002, 23 (2): 179-184.
    11 Leinonen T, Pirinen R, Bohm J, et al. Increased expression of matrix metalloproteinase-2 (MMP-2) predicts tumour recurrence and unfavourable outcome in non-small cell lung cancer. Histol Histopathol, 2008,23: 693-700.
    
    12 Ma W, Chen J, Xue X, et al. Alteration in gene expression profile and biological behavior in human lung cancer cell line NL9980 by nm23-H1 gene silencing. Biochem Biophys Res Commun, 2008, 371:425-430.
    
    13 Indinnimeo M,Cilcchini C,Tazi A, et al.Nm23-Hl protein expression in anal carcinoma:does it correlate with prognosis.T Surg Oncol,2000,74(2) :163-166.
    
    14 Heist RS,Christiani D. EGFR-targeted therapies in lung cancer: predictors of response and toxicity. Pharmacogenomics, 2009,10:59-68.
    
    15 Salgia R, Skarin AT. Molecular abnormalities in lung cancer. J Clin Oncol,1998,16(3):1207-1217
    
    16 Aifa S, Rebai A. ErbB antagonists patenting: "playing chess with cancer".Recent Pat Biotechnol, 2008, 2 :181-187.
    
    17 Fukuhara T,Saijo Y,Sakakibara T, et al. Successful treatment of carcinomatous meningitis with gefitinib in a patient with lung adenocarcinoma harboring a mutated EGF receptor gene. Tohoku J Exp Med,2008,214:359-363.
    
    18 Eng C, Peacocke M.PTEN and inherited hamartoma-cancer syr-dromes.Nat Genet, 1998,19:223-228.
    
    19 Fei G, Ebert MP, Mawrin C,et al. Reduced PTEN expression in gastric cancer and in the gastric mucosa of gastric cancer relatives.Eur J Gastroenterol Hepatol, 2002,14(3):297.
    
    20 Soria JC, Lee JI .Lack of PTEN expression in non-small cell lung cancer could be related to promotor methylation. Clinical Cancer Research,2002,8:1178-1184.
    
    21 Noro R, Gemma A, Miyanaga A, et al. PTEN inactivation in lung cancer cells and the effect of its recovery on treatment with epidermal growth factor receptor tyrosine kinase inhibitors. Int J Oncol, 2007, 31:1157-1163.
    
    22 Sos ML, Zander T, Thomas RK, et al. Expression of signaling mediators downstream of EGF-receptor predict sensitivity to small molecule inhibitors directed against the EGF-receptor pathway. J Thorac Oncol, 2008,3:170-173.
    
    23 Steck PA, Pershouse MA, Jasser SA, et al. Identification of a candidate tumor suppressor gene,MMACl at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat Genet,1997,15(4):356-362.
    
    24 Yanagi S, Kishimoto H, Kawahara K, et al. Pten controls lung morphogenesis, bronchioalveolar stem cells, and onset of lung adenocarcinomas in mice. J Clin Invest, 2007, 117:2929-2940.
    
    25 Iwao k, Watanabe T,Fujiwara Y,et al.Isolation of a novel human lung specific gene, LUNX, a potential molecular marker for detection of micrometastasis in non-small cell lung cancer. Int J Cancer, 2001, 91:433-437.
    
    26 Mitas M,Hoover L, Silvestri G,et al. Lunx is a superior molecular marker for detection of non-small cell lung cancer in peripheral blood. J Mol Diagn,2003,5: 237-242.
    
    27 Ito M,Minamiya Y, Kawai H,et al. Intraoperative detection of lymph node micrometastasis with flow cytometry in non-small cell lung cancer .J Thorac Cardio vasc Surg,2005,130:753-758.
    
    28 Wang WB, Cui YG, Yao SY. [Message RNA expression of LUNX, CK19 and CEA genes in NSCLC with micrometastasis in lymph nodes]. Zhonghua Zhong Liu Za Zhi, 2008, 30:121-124.
    
    29 Passlick B, Kubuschok B,Izbicki JR,et al. Isolated tumor cells in bone marrow predict reduced survival in node-negative non-small cell lung cancer.Ann Thorac Surg,1999,68:2053-2058.
    
    30 Huang TH, Wang Z, Li Q, et al. [Clinical significance of enrichment and detection of circulating tumor cells in NSCLC patients with immunomagnetic beads]. Zhonghua Zhong Liu Za Zhi, 2007, 29:676-680.
    
    31 Nosotti M,Falleni M,Palleschi A,et al.Quantitative real-time polymerase chain reaction detection of lymph node lung cancer micrometastasis using carcinoembryon-ic antigen marker.Chest,2005, 128:1539-1544.
    
    32 Tokuhara T, Hasegawa H, Hattori N, et al. Clinical significance of CD151 gene expression in non-small cell lung cancer. Clin Cancer Res, 2001,7:4109-4114.
    
    33 Alix D,Cecile LG,Michel RP,et al.Rho GTPases link cytoskeletal rearrangements and activation processes induced by via the tetraspanin CD82in T lymphocytes.J Cell Sci,2002,115:433-443.
    
    34 Lijovic M,Somers G, Frauman AG.KAIl/CD82protein expression in primary prostate cancer and in BPH associated with cancer. Cancer Detect Prev,2002,26:69-77.
    
    35 Choi UJ, Jee BK, Lim Y, et al. KAI1/CD82 decreases Racl expression and cell proliferation through PI3K/Akt/mTOR pathway in H1299 lung carcinoma cells. Cell Biochem Funct, 2009, 27:40-47.
    
    36 Higashiyama M, Kodamak, Yokouchi H, et al. KAI1/CD82 expression in nonsmall cell lung carcinoma is a novel, favorable prognostic factor: an immunohistochemical analysis.Cancer, 1998, 83 (3): 466 - 474.
    
    37 Adachi M, Taki T, Ieki Y, et al. Correlation of KA11/CD82 gene expression with good prognosis in patients with non-small cell lung cancer.Cancer Res, 1996, 56(8): 1751-1755.
    
    38 Yang JM, Peng ZH, Si SH, et al. KAI1 gene suppresses invasion and metastasis of hepatocellular carcinoma MHCC97-H cells in vitro and in animal models. Liver Int, 2008, 28:132-139.
    
    39 Shinohara T,Nishimura N,Hanibuchi M,et al. Transduction of KAIl/CD82cDNA promotes hematogenous spread of human lung-cancer cells in natural killer cell-depleted SCID mice. Int J Cancer,2001,94:16-23.
    
    40 1 Itahana K,Dimri GP,Hara E,et al. A role for p53 in maintaining and establishing the quiescence growth arrest in human cells.J Biol Chem,2002,277 (20) : 18206-18214.
    
    41 Murdoch WJ,Van Kirk EA. Steroid hormonal regulation of proliferative, p53 tumor suppressor, and apoptotic responses of sheep ovarian surface epithelial cells.Mol Cell Endocrinol,2002,186 (1) :61-67.
    
    42 Kohno T.How many tumor suppressor genes are involved in human lung carcinogenesis. Carcinogenesis 1999, 20 (20): 1403.
    43 Hashimoto T, Ishikawa Y, Ishikawa Y.Prognostic value of genetically diagnosed lymph node micrometastasis in non-small cell lung carcinoma cases. Cancer Res, 2000, 22 (60) :6472-6478.
    
    44 Marchetti A, Merlo G, Merlo G. P53 alterations in non-small cell lung cancers correlate with metastatic involvement of hilar and mediastinal lymph nodes. Cancer Res, 1997,53:2846-2851.
    
    45 Ayadi W, Karray-Hakim H, Khabir A, et al. Aberrant methylation of p16,DLEC1, BLU and E-cadherin gene promoters in nasopharyngeal carcinoma biopsies from Tunisian patients. Anticancer Res,2008,28:2161-7.
    
    46 Okamoto A,Jiang W,Kim SJ,et al.Over expression of human cyclin Dreduce the transgorming growth factor beta (TGF-beta) type II receptor and growth inhibition by TGF-beta in an immortalized human esophageal cell line. Proc Natal Acad Sei USA,1994,24 (23) :11045-11049.
    
    47 Ruggeri BA,Huang L,Wood M,et al.Amplification and overexpression of the AKT2 oncogene in a subset of human pancreatic ductal adenocarcinomas.Mol Carcinog,1998,21(2):81-86.
    
    48 Bellacosa A, de Feo D,Godwin AK,et al.Molecular alterations of the AKT2 oncogene in ovarian and breast carcinomas.Int J Cancer,1995,64(4):280-285.
    
    49 Yuan ZQ, Sun M, Feldman RI,et al.Frequent activation of AKT2 and induction of apoptosis by inhibition of phosphoinositide-3-OH kinase/Akt pathway in human ovarian cancer.Oncogene, 2000, 19(19): 2324-2330.
    
    50 Roy HK, Olusola BF, Clemens DL, et al.AKT proto-oncogene overexpression is an early event during sporadic colon carcinogenesis.Carcinogenesis,2002,23(1):201-205.
    
    51 Arboleda MJ,Lyons JF,Kabbinavar FF,et al.Overexpression of AKT2/protein kinase Bbeta leads to up-regulation of betal integrins,increased invasion,and metastasis of human breast and ovarian cancer cells.Cancer Res,2003,63(1):196-206.
    
    52 Ruhul Amin AR,Senga T,Oo ML,et al.Secretion of matrix metalloproteinase-9 by the proinflammatory cytokine,IL-1beta:a role for the dual signalling pathways,Akt and Erk.Genes Cells,2003,8(6):515-523.
    
    53 Pei L,Melmed S.Isolation and characterization of a pituitary tumor transforming gene(PTTG).Mol Endocrinol,1997,11(4):433-441.
    
    54 McCabe CJ, Boelaert K,Tannahill LA, et al. Vascular endothelial growth factor,its receptor KDR/Flk-1,and pituitary tumor transforming gene in pituitary tumors.Clin Endocrinol Metab,2002,87(9):4238-4244.
    
    55 David G. New molecular markers for the study of tumor lymph angiogenesis.Anticancer Res, 2001,21 (9):4 279.
    
    56 Salehi F,Kovacs K,Scheithauer BW,et al. Pituitary tumor-transforming gene in endocrine and other neoplasms: a review and update. Endocr Relat Cancer,2008, 15:721-743.
    
    57 Wang SH, Liu NH, Wang J, et al. Critical role of deltaDNMT3B4/2 in regulating RASSFIA promoter-specific DNA methylation in non-small cell lung cancer. Chin Med J (Engl), 2008, 121: 1712 -1721.
    
    58 Kim DH, Kim JS, Park JH ,et al. Relationship of RAS association domain family 1 methylation and K-RAS mutation in primary non-small cell lung cancer. Cancer Res,2003,63(19):6206-6211.
    
    59 Baldi A, Esposito V, De Luca A, et al. Differential expression of pRb2/p130 and p107 in normal human tissues and in primary lung cancer. Clin Cancer Res,1997,3(10):1691.
    
    60 Campioni M, Ambrogi V, Pompeo E, et al. Identification of genes down-regulated during lung cancer progression: a cDNA array study. J Exp Clin Cancer Res, 2008, 27:38.
    
    61 Cortinovis DL, Andriani F, Livio A, et al. FHIT and p53 status and response to platinum-based treatment in advanced non-small cell lung cancer. Curr Cancer Drug Targets, 2008, 8:342-348.
    
    62 Zochbauer-Muller S, Fong KM, Maitra A, et al.5'CpG island methylation of the FHIT gene is correlated with loss of gene expression in lung and breast cancer.CancerRes,2001,61(9):3581-3585.
    
    63 Geradts J,Fong KM,Zimmerman PV,et al.Loss of FHIT expression in non-small-cell lung cancer: correlation with molecular genetic abnormalities and clinicopathological features.Br J Cancer,2000,82(6):1191-1197.
    
    64 Krajewska M, Kitada S, Winter JN, et al. Bcl-B expression in human epithelial and nonepithelial malignancies. Clin Cancer Res, 2008,14:3011-3021.
    
    65 Krecicki T, Fraczek M,Kozlak J,et al.Bcl-xL protein expression in laryngeal squamous cell carcinoma.Clin Otolaryngol Allied Sci,2004,29(1):55.
    
    66 Fukuda T, Sumi T, Nobeyama H, et al. Multiple organ failure of tumor-bearing rabbits in cancer cachexia is caused by apoptosis of normal organ cells. Int J Oncol, 2009,34:61-7.
    
    67 Leite KR, Mitteldorf CA, Srougi M, et al. Cdx2, cytokeratin 20, thyroid transcription factor 1, and prostate-specific antigen expression in unusual subtypes of prostate cancer. Ann Diagn Pathol, 2008, 12: 260-266.
    
    68 Sung HJ, Cho JY. Biomarkers for the lung cancer diagnosis and their advances in proteomics. BMB Rep, 2008,41:615-25.
    
    69 Holdenrieder S, von Pawel J, Dankelmann E, et al. Nucleosomes, ProGRP,NSE, CYFRA 21-1, and CEA in monitoring first-line chemotherapy of small cell lung cancer. Clin Cancer Res, 2008, 14:7813-7821.
    
    70 Ouyang WW, Lu B, Fu HY, et al. [Detection of regional lymph node micrometastasis and its impact on long-term survival of non-small cell lung cancer (NSCLC) patients]. Ai Zheng, 2008, 27:756-760.
    
    71 Takamochi K, Nagai K, Yoshida J, et al.Pathologic No status in pulmonary adenocarcinoma is predictable by combining serum carcinoembryonic antigen level and computed tomographic findings.J Thorac Cardiovasc Surg,2001,122(2):325-330.
    
    72 Sugai S, Satoh Y, Komatsu M, et al. Recurrence pattern and rapid intraoperative detection of carcinoembryonic antigen (CEA) mRNA in pleural lavage in patients with non-small cell lung cancer (NSCLC). Rinsho Byori,2008,56:851-857.
    73 Takamochi K, Nagai K,Yoshida J, et al.Clinical predictors of N2 disease in non-small cell lung cancer.Chest,2000,117:1577-1582.
    
    74 Dziadziuszko R, Camidge DR., Hirsch FR. The insulin-like growth factor pathway in lung cancer. J Thorac Oncol, 2008,3:815-818.
    
    75 Sasaki T, Tanno S, Shibukawa K, et al. Administration of VEGF receptor tyrosine kinase inhibitor increases VEGF production causing angiogenesis in human small-cell lung cancer xenografts. Int J Oncol, 2008, 33:525-532.
    
    76 Skrzypski M, Jassem E, Taron M, et al. Three-gene expression signature predicts survival in early-stage squamous cell carcinoma of the lung. Clin Cancer Res, 2008, 14:4794-4799.
    
    77 Zuo S, Ji Y, Wang J, et al. Expression and clinical implication of HIF-1 alpha and VEGF-C in non-small cell lung cancer. J Huazhong Univ Sci Technolog Med Sci, 2008,28:674-676.
    
    78 Sandstrom K, Nestor M, Ekberg T, et al. Targeting CD44v6 expressed in head and neck squamous cell carcinoma: preclinical characterization of an 111 In-labeled monoclonal antibody. Tumour Biol, 2008,2 9 :137-144.
    
    79 Liu D, Li WM, Mo XM, et al. Multiparametric flow cytometry analyzes the expressions of I mmunophenotype CD133, CD34, CD44 in lung cancer naive cells. Sichuan Da Xue Xue Bao Yi Xue Ban, 2008, 39:827-831.
    
    80 Xu HT,Li QC,Zhang YX, et al. Connexin 43 recruits E-cadherin expression and inhibits the malignant behaviour of lung cancer cells. Folia Histochem Cytobiol, 2008,46:315-321.
    
    81 Ayadi W,Karray-Hakim H, Khabir A, et al. Aberrant methylation of p16,DLEC1, BLU and E-cadherin gene promoters in nasopharyngeal carcinoma biopsies from Tunisian patients. Anticancer Res, 2008, 28 :2161-2167.
    
    82 Xu HT, Li QC, Zhang YX, et al. Connexin 43 recruits E-cadherin expression and inhibits the malignant behaviour of lung cancer cells. Folia Histochem Cytobiol, 2008,46:315-21.
    
    83 Cho S, Sung SW, Jheon S, et al. Risk of recurrence in surgically resected stage I adenocarcinoma of the lung: histopathologic and immunohistochemical analysis. Lung, 2008, 186:411-419.
    84 Liu XQ, Ren HX, Wu ZP. Detecting MUC-1 mRNA for Diagnosing Peripheral Blood Micro-metastasis in Non-small Cell Lung Cancer Patients.Ai Zheng, 2008, 27:1267-1270.
    
    85 Sun B, Zhang S, Zhang D, et al. Identification of metastasis-related proteins and their clinical relevance to triple-negative human breast cancer. Clin Cancer Res, 2008, 14:7050-7059.
    
    86 Niu Linlin, Zang Jialan, Cai Li, et al. Relationship of clusterin expression with Bax and p53 expression in non small cell lung cancer. Chin J Lung Cancer,2007,8(4):482-484.
    
    87 Couet J,Li S, Okamoto T, et al.Identification of peptide and protein ligands for the caveolin-scaffolding domain. Implications for the interaction of caveolin with caveolae-associated proteins. J Biol Chem, 1997, 272: 6525-6533.
    
    88 Liu J, Wang XB, Park DS, et al.Caveolin-1 expression enhances endothelial capillary tubule formation.J Biol Chem, 2002, 277:10661-10668.
    
    89 Racine C, Belanger M,Hirabayashi H,et al.Reduction of caveolin 1 gene expression in lung carcinoma cell lines. Biochem Biophys Res Commun,1999,255:580-586.
    
    90 Yoo SH, Park YS, Kim HR, et al.Expression of caveolin-1 is associated with poor prognosis of patients with squamous cell carcinoma of the lung. Lung Cancer, 2003,42:195-202.
    
    91 Ho CC, Huang PH, Huang HY, et al.Up-regulated caveolin-1 accentuates the metastasis capability of lung adenocarcinoma by inducing filopodia formation. Am J Pathol, 2002,161:1647-1656.
    
    92 Chopin D, Barei-Moniri R, Mallie P,et al. Humanuri-nary bladder transitional cell carcinonas acquire the functional Fas ligand during tumor progression.Am J Pathol,2003,162:1139-1149.
    
    93 Tazzari PL, Tabellini G, Ricci F, et al. Synergistic proapoptotic activity of recombinant TRAIL plus the Akt inhibitor Perifosine in acute myelogenous leukemia cells. Cancer Res, 2008, 68:9394-9403.
    
    94 Lin Y, Liu X, Yue P, et al. Involvement of c-FLIP and survivin down-regulation in flexible heteroarotinoid-induced apoptosis and enhancement of TRAIL-initiated apoptosis in lung cancer cells. Mol Cancer Ther, 2008, 7:3556-3565.
    
    95 Rodriguez NI, Hoots WK, Koshkina NV, et al. COX-2 expression correlates with survival in patients with osteosarcoma lung metastases. J Pediatr Hematol Oncol, 2008, 30:507-512.
    
    96 Zhu YM, Azahri NS, Yu DC, et al. Effects of COX-2 inhibition on expression of vascular endothelial growth factor and interleukin-8 in lung cancer cells. BMC Cancer, 2008, 8:218.
    
    97 Surowiak P, Pawelczyk K, Maciejczyk A, et al. Positive correlation between cyclooxygenase 2 and the expression of ABC transporters in non-small cell lung cancer. Anticancer Res, 2008, 28:2967-2974.
    
    98 Csiki I, Morrow JD, Sandier A, et al.Targeting cyclooxygenase -2 in recurrent non-small cell lung cancer:a phase II trial of celecoxib and docetaxel.Clin Cancer Res,2005,11 (18):6634-6640.
    
    99 Ulivi P, Mercatali L, Zoli W, et al. Serum free DNA and COX-2 mRNA expression in peripheral blood for lung cancer detection. Thorax, 2008,63:843-844.
    
    100 Burke B, Tang N, Corke KP, et al. Expression of HIF-1 alpha by human macrophages: implications for the use of macrophages in hypoxia-regulated cancer gene therapy. J Pathol, 2002, 196:204-212.
    
    101 Koukourakis MI,Giatromanolaki A,Sivridis E,et al.Hypoxia-inducible factor(HIF1 A and HIF2A), angiogenesis, and chemoradiotherapy outcome of squamous cell head and neck cancer.Int J Radiat Oncol Biol Phys,2002,53(5):1192-1202.
    
    102 Adriana A,Francesca T,Roberto B,et al.Tumor Inflammatory Angiogenesis and Its Chemoprevention. Cancer Res, 2005,65(23):10637-10641.
    
    103 Breiteneder-Geleff S, Soleiman A, Horvat R, et al.Podoplanin-a specific marker for lymphatic endothelium expressed in angiosarcoma. Verh Dtsch Ges Pathol, 1999,83:270-275.
    
    104 Kenmotsu H, Ishii G, Nagai K, et al. Pleomorphic carcinoma of the lung expressing podoplanin and calretinin. Pathol Int, 2008,58:771-774.
    105 李鸿茹,陈愉生,陈刚,等.livin在肺癌组织中的表达及与caspase23的相关性初步探讨.中国肺癌杂志,2007,10(6):486-490.
    106 Yagihashi A,Ohmura T,Asanuma K,et al.Detection of autoantibodies to survivin and Livin in sera from patients with breast cancer.Clin Chim Acta,2005,362(1):125-130.
    107 Yagihashi A,Asanuma K,Tsuji N,et al.Detection of anti-Livin antibody in gastrointestinal cancer patients.Clin Chem,2003,49(7):1206-1208.
    108 Yagihashi A,Asanuma K,Kobayashi D,et al.Detection of autoantibodies to Livin and survivin in Sera from lung cancer patients.Lung Cancer,2005,48(2):217-221.
    109 Hariu H,Hirohashi Y,Torigoe T,et al.Aberrant expression and potency as a cancer immunotherapy target of inhibitor of apoptosis protein family,Livin/ML-IAP in lung cancer.Clin Cancer Res,2005,11(3):1000-1009.
    110 Viallard JF,lacombe F,Belloc F,et al.Molecular mechanisms controlling the cell cycle:fundamental aspects and implications for oncology.Cancer Radiother,2001,5(2):109-129.
    111 宋娜,赵志龙,刘云鹏,等.survivin和COX-2在非小细胞肺癌中的表达及意义.中国肺癌杂志,2007,10 (2):133-137.
    112 Altieri DC.Validating Survivin as a cancer therapeutic target.Nat Rev Cancer,2003,3(1):46.
    113 Falleni M,Pellegrini C,Marchetti A,et al.Survivin gene expression nearly stage non-small cell lung cancer.J Pathol,2003,5 (5):620-626.
    114 Garrett SC,Varney KM,Weber DJ,et al.S-100A4,a mediator of metastasis.J Biol Chem,2006,281(2):677-680.
    115 Emberley ED,Murphy LC,Watson PH.S 100 proteins and their influence on pro-survival pathways in cancer.Biochem Cell Biol,2004,4(4):508-515.
    116 Cho YG,Nam SW,Kim TY.et al.Overexpression of S-100A4 is closely related to the aggressiveness of gastric cancer.APMIS,2003,5(5):539-545.
    117 Cui JF,Liu YK,Pan BS,et al.Differential proteomic analysis of human hepatocellular carcinoma cell line metastasis-associated proteins.J Cancer Res Clin Oncol,2004, 10(10):615 -622.
    
    118 De Silva, Rudland S, Martin L, Roshanlall C, et al. Association of S-100A4 and osteopontin with specific prognostic factors and survival of patients with minimally invasive breast cancer Clin Cancer Res,2006,12(4):1192-1200.
    
    119 Kimura K, Endo Y, Yonemura Y, et al. Clinical significance of S100A4 and E-cadherin-related adhesion molecules in non-small cell lung cancer. Int J Oncol,2000,16(6):1125.