类人机器人非规则运动规划与抗干扰控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非规则运动是指参与运动的自由度数目较多、约束条件复杂且运动过程具有非周期性和随机性等特点的运动。它是类人机器人研究领域中的一个前沿应用课题,在康复医疗、家庭服务、星际探险、体育娱乐等领域有着极其广泛的应用前景。
     相对周期性的步行运动而言,类人机器人实现非规则运动所遇到的最大挑战在于其适应性,包括任务的适应性和环境的适应性。因此,如何面对给定任务和环境而保持或提高机器人的运动能力显得至关重要,其关键就是如何进行运动规划和控制。类人机器人是一个多变量、强耦合、非线性和变结构的复杂动力学系统,其变结构的不稳定性和产生稳定运动所需解决的动态平衡问题,对于控制理论和动力学问题的研究来说具有很大的挑战性。
     本文以提高类人机器人的运动能力为出发点,对类人机器人非规则运动的动力学建模、运动规划及抗干扰控制方法等关键问题进行了研究,提出了一些新的方法并做了大量的仿真和实验验证。论文主要工作及贡献如下:
     1)本文针对类人机器人非规则运动的特点,分析了非规则运动在类人机器人动力学建模中所存在的主要问题及其解决方法。介绍了利用Kane方程对非规则运动中简单非完整约束问题进行求解的主要过程,给出了非完整偏速度和偏角速度以及非完整广义主动力和惯性力的推导过程,并说明了非完整系统与完整系统在建模过程中的联系与区别。类人机器人运动学和动力学方程的建立,不仅可以用来计算关节运动的驱动力矩,还为步态和非步态运动规划提供了重要依据。
     2)在非规则运动规划中,本文提出了基于状态转换的运动规划方法,即根据给定任务的关键运动状态为类人机器人生成满足动力学约束要求的、稳定的运动轨迹。该方法通过建立类人机器人运动的状态空间,将连续的运动采用离散的状态来表示,再通过相邻状态之间的转换(即状态转换)来实现各种复杂的非规则运动。其中关键运动状态的获取是状态转换运动规划方法的基本要素之一。为了替代传统的HMCD运动数据获取方法,本文基于遗传算法提出了一种新的状态生成方法,该方法可以在没有任何参考运动数据的条件下,通过自由指定各种约束条件,生成稳定的且满足约束条件要求的机器人运动状态。与HMCD法相比,该方法是一种更为直接、有效的运动状态生成方法,极大地提高了类人机器人非规则运动数据的获取效率。另外在状态转换运动规划中,状态转换过程可以划分为状态内转换和状态间转换,通过状态转换的识别对其加以区分。在状态转换识别方法上,本文提出了接触点集合的概念,对接触状态的变化进行逻辑上的表达;再结合接触点集合的变化情况,通过设定接触力阀值来实现对状态转换的识别。
     3)根据给定的状态转换轨迹进行局部的跟踪控制,是本文实现类人机器人非规则运动的另一个重要研究内容。本文针对运动中受小幅外力干扰作用的情况,对类人机器人轨迹跟踪的抗干扰控制方法进行了研究。提出了利用逆动力学控制和ZMP平面的加速度映射相结合的抗干扰策略,在对运动轨迹进行精确跟踪的同时保证系统整体的动态平衡性,解决了经典轨迹跟踪控制方法在抗干扰及稳定性保持等方面的不足。
     4)为验证本文所提出方法的有效性,分别构建了非规则运动规划与抗干扰控制算法的实验平台,详细地介绍了运动生成和运动执行系统的设计与构成。整个系统为本文通过实验验证所提出的运动规划及抗干扰控制算法提供了前提和基础,也是研制类人机器人非规则运动系统的关键实现技术之一。
     本文有关类人机器人非规则运动的运动规划和抗干扰控制的相关研究,将有助于提高机器人的拟人程度和运动能力,拓展机器人的应用领域,在理论和应用上都具有一定的借鉴作用和参考价值。
Non-regular motions are referring to the ones that involve great degrees of freedom (DOFs), complex constraint conditions, and characteristics of non-periodicity and randomness. As a front research topic in the humanoid robot field, they have well application foreground in fields of rehabilitation treatment, house works, interstellar exploration and sports entertainment.
     Relative to the periodic biped motion, the challenges for non-regular motions consist in the applicability, especially the applicability for tasks and environments. It’s very important for the humanoid robot facing a given task or environment to keep or promote the motion capability. The essential problems are motion planning and motion control. Humanoid robot is a multivariable, strongly coupled, nonlinear and varying structure dynamic system. Its instability due to the varying posture structure and the dynamic stability for a stable movement is very challenging for control theory and dynamics molding.
     In order to improve the humanoid versatility, this dissertation concentrates on some key problems relate to the non-regular motion, including the dynamic modeling, motion planning and disturbance rejection control. Simulations and experiments have also been performed to test the methods presented in the dissertation. We have mainly done the following research work:
     1) In this dissertation, some main factors appearing in the modeling process are analyzed according to the characteristics of the non-regular humanoid motion. In addition, the solution for simple nonholonomic constraints appearing in the non-regular motion is presented by using Kane’s method. And the nonholonomic partial velocities and the partial angular velocities as well as the nonholonomic generalized active and inertia forces are derived to illustrate the relationships between the nonholonomic and the holonomic systems. Apparently, in addition to the calculation of the controlling torques, an important support for gait and non-gait planning is also provided by the dynamics model of the robot.
     2) In the term of non-regular motion planning, a state transition method is presented for humanoid robot, that is to generate dynamically stable trajectories according to the key motion states of the given task. In this method, motion planning is simplified by introducing a state-space to describe the whole motion series. And by means of transitions between the neighboring states, i.e. state transitions, all kinds of complex motions can be realized. Since the original motion data are one of the basic elements for the state transition motion planning, this dissertation proposes a new state generation theory to replace the conventional HMCD method. And a state generator is developed based on genetic algorithm (GA), which enables users to generate various motion states without using any reference motion data. By specifying various types of constraints such as configuration constraints and contact constraints, the state generator can generate the desired motion states that are stable as well as satisfy the constraint conditions. Compared with the HMCD method, our approach provides a more direct way to acquire the non-regular motion data. In addition, the state transition process is classified into intra-transition and inter-transition categories. In order to distinguish these two types of transitions, a state recognition method is introduced. We firstly propose a variable contact set in which the contact points on the robot body are defined to represent the alternation of the contact states logically. Then, by predefining thresholds for the contact forces, the state transition can be well recognized.
     3) As another research topic, the local tracking control according to the pre-acquired state transition trajectories plays an important role in realizing the non-regular motion for the humanoid robot. In this thesis, a control strategy for the trajectory tracking under external disturbance forces is presented. The method combines the inverse dynamics control with the ZMP-plane acceleration projection, whereby the whole body stability of the robot can be considered simultaneously when tracking the predefined trajectories. With this method, the inapplicability existing in the classical control methods in the terms of disturbance rejection and stability maintenance is solved.
     4) Finally, in order to verify the proposed methods, experiment platforms for the motion planning and disturbance rejection control are constructed respectively. And the motion generation and the execution system are introduced in detail. The platforms provide the premise and basis for verifying the proposed motion planning and disturbance rejection control algorithms by experiments. And it is also one of the key implementation technologies for the non-regular motion system of the humanoid robot.
     The contribution of the dissertation consists in improving the human-like versatility and motion capability of the humanoid robot, widening application field and its reference value on the theory and application.
引文
[1]谢涛,徐建峰,张永学,强文义.仿人机器人的研究历史、现状及展望.机器人, 2002, 24(4), 367-374
    [2] Hirai K., Hirose M., Takenada T. The development of Honda humanoid robot In, IEEE International Conference on Robotics and Automation, Leuven, Belgium, 1998, 1321-1326
    [3] http://www.androidworld.com/.
    [4] Hirose M., Kyokai J., Imeji Z. Bipedal Humanoid Robot ASIMO. Journal of the Institute of Image Information and Television Engineers, 2003, 57(1), 43-49
    [5] Hirose M., Takenaka T. Development of Humanoid Robot ASIMO. Honda R&D Tech Rev, 2001, 13(1), 1-6
    [6] Hirai K. Current and future perspective of Honda humamoid robot. In, Proceedings of IEEE/RSJ International Conference onIntelligent Robots and Systems, 1997, 500-508
    [7] Hirai K. Honda humanoid robot: Development and future perspective. Industrial Robot, 1999, 26(4), 260-266
    [8]马宏绪,张彭,张良起.两足步行机器人研究.高技术通讯, 1995, 9, 17-20
    [9] http://www.is.aist.go.jp/humanoid/,
    [10] http://www.kawada.co.jp/ams/hrp-2/index.html,
    [11] http://www.plyojump.com/hrp.html,
    [12] Kanehiro F., Kaneko K., Fujiwara K., Harada K. A. H. K., et al. The first humanoid robot that has the same size as a human and that can lie down and get up. In, Kaneko, Proceedings of IEEE International Conference onRobotics and Automation, 2003, 1633-1639
    [13] Fumio K., Kenji K., Kiyoshi F. The first humanoid robot that has the same size as a human and that can lie down and get up. Proceedings of the 2003 IEEE International Conference on Robotics & Automation. Taipei, Taiwan, 2003, 1633-1639
    [14] Kuroki Y., Blank B., Mikami T., Mayeux P. A. M. P., et al. Motion creating system for a small biped entertainment robot. In, Blank, Proceedings of International Conference on Intelligent Robots and Systems, 2003, 1394-1399
    [15] Kuroki Y., Fukushima T., Nagasaka K., Moridaira T. A. M. T., et al. A small biped entertainment robot exploring human-robot interactive applications. In, Fukushima, Proceedings of IEEE International Workshop onRobot and Human Interactive Communication, 2003, 303-308
    [16] Iribe M., Fukushima T., Yamaguchi J., Kuroki Y. A. K. Y. Development of a new actuator for a small biped entertainment robot which has suitable functions for humanoid robots. In, Fukushima, 30th Annual Conference of IEEE on Industrial Electronics Society 2004, 2762-2767
    [17] Park I.-W., Kim J.-Y., Oh J.-H. Online Walking Pattern Generation and Its Application to a Biped Humanoid Robot KHR-3 (HUBO). Advanced Robotics, 2008, 22, 159-190
    [18] Ill-Woo P., Jung-Yup K., Jun-Ho O. Online Biped Walking Pattern Generation for Humanoid Robot KHR-3(KAIST Humanoid Robot - 3: HUBO). In, Jung-Yup, Proceedings of IEEE-RAS International Conference onHumanoid Robots, 2006, 398-403
    [19] Ill-Woo P., Jung-Yup K., Jungho L., Jun-Ho Oh A. J.-H. O. Mechanical design of humanoid robot platform KHR-3 (KAIST humanoid robot - 3: HUBO). In, Jung-Yup, Proceedings of IEEE-RAS International Conference on Humanoid Robots, 2005, 321-326
    [20] Espiau B., Sardain P. The anthropomorphic biped robot BIP2000. In, Sardain, Proceedings of IEEE International Conference onRobotics and Automation, 2000, 3996-4001
    [21] Pfeiffer F., Loffler K., Gienger M. The concept of jogging JOHNNIE. In, Loffler, Proceedings of IEEE International Conference onRobotics and Automation, 2002, 3129-3135
    [22] Friedrich P., Klaus L., Michael G., Heinzul U. Sensor and Control Aspects of Biped Robot "Jonnie". International Journal of Humanoid Robotics 2004, 1(3),
    [23] Nishiwaki K., Kuffner J., Kagami S., Inaba M., et al. The experimental humanoid robot H7: a research platform for autonomous behaviour. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2007, 365(1850), 79-107
    [24] http://www.jsk.t.u-tokyo.ac.jp/research/h6/,
    [25] http://jp.fujitsu.com/group/automation/en/services/humanoid-robot/hoap2/,
    [26]李允明.国外仿人机器人发展概况.机器人, 2005, 27(6), 561-568
    [27]纪红军. HIT-III双足步行机器人的步态规划研究. [学位论文],哈尔滨,哈尔滨工业大学, 2000
    [28]纪军红. HIT-III双足步行机器人步态规划研究. [学位论文],哈尔滨工业大学博士论文, 1991
    [29]刘志远.两足机器人的动态行走研究. [学位论文],哈尔滨,哈尔滨工业大学, 1991
    [30]张永学.双足机器人步态规划及步行控制研究. [学位论文],哈尔滨,哈尔滨工业大学, 2001
    [31]胡洪志.仿人步行机器人的运动规划方法研究. [学位论文],长沙,国防科技大学, 2002
    [32]马宏绪.两足步行机器人动态步行研究. [学位论文],长沙,国防科技大学, 1995
    [33]马宏绪,应伟福,张彭.两足步行机器人姿态稳定性分析.计算技术与自动化, 1997, 16(3), 14-18
    [34]马宏绪,张彭,张良起.两足步行机器人动态步行姿态稳定性及姿态控制.机器人, 1997, 19(3), 180-186
    [35]马宏绪,张彭,张良起.两足步行机器人动态步行的步态控制与实时时位控制方法.机器人, 1998, 20(1), 1-8
    [36]赵晓军,黄强,彭朝琴,张利格, et al.基于人体运动的仿人型机器人动作的运动学匹配.机器人, 2007, 27(7), 358-361
    [37]张?,黄强,李光日,赵玉灿, et al.具有7自由度和双球型髋关节的仿人机器人下肢运动分析与规划.机器人, 2007, 29(6), 558-562
    [38]张利格,黄强,杨洁,时有, et al.仿人机器人复杂动态动作设计及相似性研究.自动化学报, 2007, 33(5), 522-528
    [39]汪光,黄强,李科杰.基于仿人机器人自身约束条件的行为调节步行控制.探测与控制学报, 2003, 25(3), 48-51
    [40]徐凯,陈恳,刘莉,杨东超.基于主支撑腿运动优化的仿人机器人快速步态规划算法.机器人, 2005, 27(3), 203-209
    [41]徐凯,陈恳,刘莉,杨东超.基于六维力/力矩传感器和关节力矩的仿人机器人步态补偿算法.机器人, 2006, 28(2), 213-218
    [42]付成龙.平面双足机器人动态步行的截面映射稳定性判据与应用. [学位论文],北京,清华大学精密仪器与机械学系, 2007
    [43]赵冬斌,易建强,张文增,陈强, et al.拟人机器人TH-1手臂运动学.机器人, 2002, 24(6), 502-507
    [44]刘莉,汪劲松. THBIP-I拟人机器人研究进展.机器人, 2002, 24(3), 262-267
    [45]杨东超,刘莉,徐凯,汪劲松, et al.拟人机器人运动学分析.机械工程学报, 2003, 39(9), 70-74
    [46]杨东超,赵明国.拟人机器人自由度的分析.中国机械工程, 2003, 14(6), 453-456
    [47]姜山,包志军, et al.基于多目标遗传算法的仿人机器人中枢神经运动控制器的设计.机器人, 2001, 23(1), 58-62
    [48]窦瑞军,谢玲, et al.两足机器人步态的参数化设计及优化.机械工程学报, 2002, 38(4), 36-39
    [49]窦瑞军,谢玲, et al.两足机器人JFHR的参数化步态设计.机械设计与研究, 2001, 17(3), 21-23
    [50]包志军.仿人型机器人运动特性研究. [学位论文],上海交通大学博士论文, 2000
    [51]包志军,马培荪,王春雨, et al.用Zero Moment Point描述类人型机器人步行稳定的不完善性探讨.上海交通大学学报, 2001, 35(1), 68-71
    [52]程建,王东泉,施鹏飞.基于图像技术的三维步态运动测量.上海交通大学学报, 1998, 32(4), 59-64
    [53] Thomas B., Moeslund, Erik G. A Survey of Computer Vision-Based Human Motion Capture. Computer Vision and Image Understanding, 2001, 8, 231-268
    [54] Dasgupta A., Nakamura Y. Making feasible walking motion of humanoid robots from human motion capture data. In, Nakamura, Proceedings of IEEE International Conference on Robotics and Automation, 1999, 1044-1049
    [55]石宗英,徐文立, et al.仿人型机器人动态步行控制方法.机器人, 2001, 23(6), 569-574
    [56] Aceves-Lopez A., Melendez-Calderon A. Human-inspired walking-style fora low-cost biped prototype. In, Melendez-Calderon, IEEE 3rd Latin American Robotics Symposium, 2006, 141-148
    [57] Dasgupta A., Nakamura Y. Making feasible walking motion of humanoid robots from human motion capture data. In, Proceedings of the IEEE International Conference on Robotics and Automation, Detroit, 1999, 1044-1049
    [58] Azevedo C., Poignet P. Artificial locomotion control: from human to robots. Robotics and Autonomous Systems, 2004, 47(4), 203-223
    [59] Fujimoto Y., Kawamura A. Three Dimensional Simulation of Legged Robots. Journal of Robotics and Mechanics, 1996, 18(3), 266-271
    [60] Park J. H., Rhee Y. K. ZMP Trajectory Generation for Reduced Trunk Motion of Biped Robot. In, Proceedings of IEEE/RST International Conference on Intelligent Robots and Systems Victoria B.C. Canada, 1998, 90-95
    [61]伍科布拉托维奇M.步行机器人动力学假肢.北京,科学出版社, 1983.
    [62] Sardain P., Bessonnet G. Zero Moment Point-mesurements from a human walker wearing robot feet as shoes. IEEE Transactions on Systems, Man and Cybernetics, 2004, 34(5), 638-649
    [63] Takanishi A., Ishida M., Yamazaki Y., Kato I. The realization of dynamic walking by the biped robot WL-10RD. In, Proceedings of the International Conference on Advanced Robotics, Tokyo, Japan, 1985, 459-466
    [64] Takanishi A., Egusa Y., Tochizawa M., Takeya M., et al. Realization of Dynamic Biped Walking Stabilization with Trunk Motion. In, Proceedings of ROMANSY' 88, 1988,
    [65] Nagasaka K., Inoue H., Inaba M. Dynamic walking pattern generation for a humanoid robot based on optimal gradient method. In, Proceedings of IEEE International Conference on Systems, Man, and Cybernetics, Tokyo, Japan, 1999, 908-913
    [66] Nishiwaki K., Nagasaka K. Generation of reactive stepping motion for a humanoid by dynamically stable mixture of pre-designed motions. In, Proceedings of IEEE International Conference on Systems, Man, and Cybernetics, Tokyo, Japan, 1999, 902-907
    [67] Tang Z., Zhou C., Sun Z. Trajectory planning for smooth transition of a biped robot. In, Proceedings of IEEE International Conference onRobotics and Automation, Taipei, Taiwan, 2003, 2455-2460
    [68] Vukobratovic M., Juricic D. Contributions to the synthesis of biped gait. IEEE Transactions on Biomedical Engineering, 1966, 16, 1-6
    [69] Yamaguchi J., Takanishi A., Kato I. Development of dynamic walking system for humans living floor. In, Proceedings of the IEEE International Conference on Robotics & Automation, Minneapolis, 1996, 232-239
    [70] Fujita M., Kageyama K. An Open Architecture for Robot Entertainment. Autonomous Agents, 1997, 435-442
    [71] Kanehiro F., Inaba M., Inoue H. StateNet:State Transition Graph Description of Action Space that Includes Error Recovery Function. Journal of RoboticsSociety of Japan, 2002, 20(8), 835-843
    [72] Kanehiro F., Inaba M., Inoue H., Hirai S. Developmental Realization of Whole-Body Humanoid Behaviors Based on StateNet Architecture Containing Error Recovery Functions. In, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 1995, 297-302
    [73] Ogura T., Okada K., Inaba M., et al. Behavior network acquisition in multi-sensor space for whole-body humanoid. In, Proceedings of IEEE International Conference on Multi-sensor Fusion and Integration for Intelligent Systems, Taipei, Taiwan, 2003, 317-322
    [74] Yamamoto T., Kuniyoshi. Stability and controllability in a rising motion: a global dynamics approach. In, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, EPFL, Switzerland, 2002, 2467-2472
    [75] Terada K., Ohmura Y., Kuniyoshi Y. Analysis and control of whole body dynamic humanoid motion-Towards experiments on a roll-and-rise motion. In, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Las Vegas, Nevada, 2003, 1382-1387
    [76] Kobayashi K., Nakatani A., Takahashi H., Ushio T. Motion planning for humanoid robots using timed Petri net and modular state net. In, Proceedings of IEEE International Conference on Man and Cybernetics Systems, 2002
    [77] Capi G., Kaneko S., Mitobe K., Barolli L., et al. Optimal trajectory generation for a prismatic joint biped robot using genetic algorithms. Robotics and Autonomous Systems, 2002, 38(2), 119-128
    [78] Rostimi M., Bessonet G. Impactless sagital gait of a biped robot during the single support phase. In, Proceedings of the IEEE International Conference on Robotics and Automation, Leuven, Belgium, 1998, 1385-1391
    [79] Hasegawa Y., Arakawa T., Fukuda T. Trajectory generation for biped locomotion robot Mechatronics, 2000, 10, 67-89
    [80] McMahon T. A. Mechanics of locomotion. International Journal of Robotics Research, 2004, 3(2), 4-28
    [81] Juang J.-G. Fuzzy neural network approaches for robotic gait synthesis. Systems, Man, and Cybernetics, Part B, IEEE Transactions on, 2000, 30(4), 594-601
    [82] Cao M., Kawamura A. Generation of humanoid biped walking pattern using neural oscillatory network. In, Kawamura, Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 1997, 81
    [83] Nakaoka S., Nakazawa A., Kanehiro F., Kaneko K. A. K. K., et al. Task model of lower body motion for a biped humanoid robot to imitate human dances. In, Nakazawa, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, 2005, 3157-3162
    [84] Kanzaki S., Okada K., Inaba M. Bracing Behavior in Humanoid Through Preview Control of Impact Disturbance. In, Proceedings of IEEE-RAS International Conference on Humanoid Robots, 2005,
    [85] Sabourin C., Bruneau O. Robustness of the Dynamic Walk of a Biped RobotSubjected to Disturbing External Forces By Using Cmac Neural Networks. In, Proceedings of IEEE-RAS International Conference on Humanoid Robots, 2005, 81-99
    [86] Komura T., Leung H., Shunsuke K., Kuffner J. A. K. J. A Feedback Controller for Biped Humanoids that Can Counteract Large Perturbations During Gait. In, Leung, Proceedings of IEEE International Conference on Robotics and Automation, 2005, 1989-1995
    [87] Hodgins J. K., Raibert M. N. Adjusting Step Length for Rough Terrain Locomotion. IEEE Transactions on Robotics and Automation, 1991, 7(3), 289-298
    [88] Grizzle J. W., Abba G., Plestan F. Asymptotically Stable Walking for Biped Robots: Analysis Via Systems With Impulse Effects. IEEE Transactions on Automatic Control, 2001, 46(1), 51-64
    [89] Morisawa M., Ohnishi K. A dynamic hybrid control of biped robot in supporting area. In, Ohnishi, Proceedings of IEEE International Workshop on Advanced Motion Control, 2004, 381-386
    [90] Chew C.-M., Pratt J., Pratt G. Blind walking of a planar bipedal robot on sloped terrain. In, Pratt, Proceedings of IEEE International Conference on Robotics and Automation, 1999, 381-386
    [91]帅梅,付成龙,杨向东,陈恳.不平整地面仿人机器人行走控制策略.机械工程学报2006, 42(8), 1-6
    [92] McGeer T. Passive dynamic walking. International Journal of Robotics Research, 1990, 9(2), 62-82
    [93] Zheng Y. F., Shen J. Gait synthesis for the SD-2 biped robot to climb sloping surface. IEEE Transactions on Robotics and Automation, 1990, 6(1), 86-96
    [94] Yamaguchi J., Kinoshita N., Takanishi A., Kato I. A. K. I. Development of a dynamic biped walking system for humanoid development of a biped walking robot adapting to the humans' living floor. In, Kinoshita, Proceedings of IEEE International Conference on Robotics and Automation, 1996, 232-239
    [95] Shih C.-L., Chiou C.-J. The motion control of a statically stable biped robot on an uneven floor. IEEE Transactions on Systems, Man, and Cybernetics, 1998, 28(2), 244-249
    [96] Park J. H., Kwon O. Reflex control of biped robot locomotion on a slippery surface. In, Ohung, Proceedings of IEEE International Conference on Robotics and Automation, 2001, 4134-4139
    [97] Yamamoto H., Ohnishi K. An approach to stable walking on unknown slippery floor for biped robot. In, Ohnishi, The 27th Annual Conference of the IEEE Industrial Electronics Society, 2001, 1728-1733
    [98] Kajita S., Kaneko K., Harada K., Kanehiro F. A. K. F., et al. Biped walking on a low friction floor. In, Kaneko, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, 2004, 3546-3552
    [99]付成龙,陈垦.双足机器人稳定性和控制策略进展.高技术通讯, 2005,16(3), 319-324
    [100] Goswami A. Foot rotation indicator (FRI) point: a new gait planning tool to evaluate postural stability of biped robots. In, Proceedings of IEEE International Conference on Robotics and Automation, 1999, 47-52
    [101] Elftman H. The measurement of the external force in walking. Science, 1938, 88, 152-153
    [102] Vukobratovic M., Juricic D. Contribution to the synthesis of biped gait. IEEE Transactions on Biomedical Engineering, 1969, 16, 1-6
    [103] Vukobratovic M., Stepanenko Y. U. Mathematical models of general anthropomorphic systems. Mathematical Biosciences, 1973, 17, 191-242
    [104] Yamaguchi J. I., Takanishi A., Kato I. Development of a biped walking robot compensating for three-axis moment by trunk motion. In, Takanishi, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 1993, 561-566
    [105] Vukobratovic M., Borovac B. Zero moment point–thirty-five years of its life. International Journal of Humanoid Robotics, 2004, 1(1), 157-173
    [106] Kajita S., Nagasaki T., Yokoi K., Kaneko K. A. K. K., et al. Running pattern generation for a humanoid robot. In, Nagasaki, Proceedings of IEEE International Conference on Robotics and Automation, 2002, 2755-2761
    [107] Zhaohui L., Qiang H., Kejie L., Xingguang Duan A. X. D. Stability criterion and pattern planning for humanoid running. In, Qiang, Proceeddings of IEEE International Conference on Robotics and Automation, 2004, 1059-1064
    [108] http://www.plyojump.com/qrio.html,
    [109] http://world.honda.com/ASIMO/,
    [110] Goswami A. Postural Stability of Biped Robots and the Foot-Rotation Indicator (FRI) Point. The International Journal of Robotics Research, 1999, 18(6), 523-533
    [111] Goswami A., Kallem V. Rate of change of angular momentum and balance maintenance of biped robots. In, Kallem, Proceedings of IEEE International Conference onRobotics and Automation, 2004, 3785-3790
    [112] Popovic M., Englehart A. Angular momentum primitives for human walking: biomechanics and control. In, Englehart, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, 2004, 1685-1691
    [113] Popovic M., Gu W., Herr H. Conservation of angular momentum in human movement. MIT AI Laboratory Research Abstracts, 2002, 264-265
    [114] Popovic M., Hofmann A., Herr H. Angular momentum regulation during human walking: biomechanics and control. In, Hofmann, Proceedings of IEEE International Conference on Robotics and Automation, 2004, 2405-2411
    [115] Popovic M. B. Ground Reference Points in Legged Locomotion: Definitions, Biological Trajectories and Control Implications. The International Journal of Robotics Research, 2005, 24(2), 1013-1032
    [116] Vukobratovic M., Borovic B., Surla D. Biped locomotion, Dynamics,Stability, Control and Application. Berlin, Springer 1990.
    [117] Takanishi A., Takeya T., Karaki H., Kato I. A. K. I. A control method for dynamic biped walking under unknown external force. In, Takeya, Proceedings of IEEE International Workshop on Intelligent Robots and Systems, 1990, 795-801
    [118] Sugihara T., Nakamura Y. Whole-body cooperative balancing of humanoid robot using COG Jacobian. In, Nakamura, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and System, 2002, 2575-2580
    [119] Sugihara T., Nakamura Y., Inoue H. Real-time humanoid motion generation through ZMP manipulation based on inverted pendulum control. In, Nakamura, Proceedings of IEEE International Conference on Robotics and Automation, 2002, 1404-1409
    [120] Kagami S., Nishiwaki K., Kitagawa T., Sugihara T., et al. A Fast Generation Method of a Dynamically Stable Humanoid Robot Trajectory with Enhanced ZMP Constraint. In, Proceedings of the IEEE International Conference on Humanoid Robotics, 2000,
    [121] Fujimoto Y., Kawamura A. Proposal of biped walking control based on robust hybrid position/force control. In, Kawamura, Proceedings of IEEE International Conference on Robotics and Automation, 1996, 2724-2730
    [122] Fujimoto Y., Kawamura A. Attitude Control Experiments of Biped Walking Robot Based on Environmental Force Interaction. In, International Workshop no Advanced Motion Control, 1998, 70-75
    [123] Fujimoto Y., Obata S., Kawamura A. Robust biped walking with active interaction control between foot and ground. In, Obata, Proceedings of IEEE International Conference onRobotics and Automation, 1998, 2030-2035
    [124] In-Gyu P., Jin-Geol K. Robust control for dynamic walking of a biped robot with ground contacting condition. In, Jin-Geol, Proceedings of IEEE International Symposium on Industrial Electronics, Pusan 2001, 2067-2072
    [125] Soltine J. J. E., Li W. Applied nonlinear Control. Prentice Hall, 1991.
    [126] Hassan K. Nonlinear Systems. Prentics Hall, 1996.
    [127] Zohdy M. A., Zaher A. A. Robust Control of Biped Robots. In, Proceedings of the American Control Conference Chicaao, Illinois 2000,
    [128] Sheridan T. B. Three Models of Preview Control. IEEE Transactions on Human Factors in Electronics, 1966, HFE-7(2), 91-102
    [129] Kajita S., Kanehiro F., Kaneko K., Fujiwara K. A. F. K., et al. Biped walking pattern generation by using preview control of zero-moment point. In, Kanehiro, Proceedings of IEEE International Conference onRobotics and Automation, 2003, 1620-1626
    [130] Caux S., Mateo E., Zapata R. Balance of biped robots: special double-inverted pendulum. In, Zapata, Proceedingsof IEEE International Conference on Systems, Man, and Cybernetics San Diego, USA, 1998, 3691-3696
    [131] Caux S., Zapata R. Modeling and control of biped robot dynamics. Robotica, 1999, 17, 413-426
    [132] Kane T.建立动力学方程的新方法.力学进展, 1983, 13(2), 257-258
    [133] Kane T., Levinson D. Dynamics OnLine: Theory and Implementation with Autolev. Kane Dynamics, Inc, 2000.
    [134] Ye-Hwa C. Second-order constraints for equations of motion of constrained systems. IEEE/ASME Transactions on Mechatronics, 1998, 3(3), 240-248
    [135] Kun A. L., Miller W. T., III. Control of variable speed gaits for a biped robot. IEEE Transactions on Robotics & Automation Magazine, 1999, 6(3), 19-29
    [136]许庆余,吴慧中.分析力学.北京,高等教育出版社, 1992.
    [137] Fukuda T., Komata Y., Arakawa T. Stabilization control of biped locomotion robot based learning with GAs having self-adaptive mutation and recurrent neural networks. In, Komata, Proceedings of IEEE International Conference on Robotics and Automation, 1997, 217-222
    [138]陈文良,洪嘉振,周鉴如.分析动力学.上海,上海交通大学出版社, 1990.
    [139]薛克宗. Kane方程与离散系统动力学方程探讨.力学学报, 1986, 18(3), 281-288
    [140] Inaba M., Kanehiro F., Kagami S., Inoue H. Two-armed bipedal robot that can walk, roll-over and stand up. In, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 1995, 297-302
    [141] Witkin A., Papovic Z. Motion Warping. In, Proceedings of SIG GRAPH'95, Los Angeles, USA, 1995, 105-108
    [142] Yamane K., Nakamura Y. Dynamics Filter - concept and implementation of online motion Generator for human figures. IEEE Transactions on Robotics and Automation 2003, 19(3), 421-432
    [143] Yamane K., Nakamura Y. Natural motion animation through constraining and deconstraining at will. IEEE Transactions on Visualization and Computer Graphics, 2003, 9(3), 352-360
    [144] Hauser K., Bretl T., Latombe J. C. Non-gaited humanoid locomotion planning. In, Bretl, Proceedings of IEEE-RAS International Conference on Humanoid Robots, 2005, 7-12
    [145] O'Rourke J. Computational geometry in C. Beijing China Machine Press, 2005.
    [146] Graham R. An Efficient Algorithm for Determining the Convex Hull of a Finite Point Set. Info Proc Lett, 1972, 1(1),
    [147] Parker J. K., Khoogar A. R., Goldberg D. E. Inverse kinematics of redundant robots using genetic algorithms. In, Khoogar, Proceedings of IEEE International Conference on Robotics and Automation, 1989, 271-276
    [148] Goyal S., Pinson E. N., Sinden F. W. Simulation of dynamics of interacting rigid bodies including friction I: General problem and contact model. Engineering with Computers, 1994, 10(3), 162-174
    [149] Goyal S., Pinson E. N., Sinden F. W. Simulation of dynamics of interacting rigid bodies including friction II: Software system design and implementation. Engineering with Computers, 1994, 10(3), 175-195
    [150] Furusho J., Sano A. Sensor-Based Control of a Nine-Link Biped. TheInternational Journal of Robotics Research, 1990, 9(2), 83-98
    [151] Miura H., Shimoyama I. Dynamic walk of a biped. International Journal of Robotics Research, 1984, 3(2), 60-74
    [152] Mita T., Yamaguchi T., Kashiwase T., Kawase T. Realization of a high speed biped using modern control theory. International Journal of Control, 1984, 40(1), 107-119
    [153] Salatian A. W., Yi K. Y., Zheng Y. F. Reinforcement learning for a biped robot to climb sloping surfaces. Journal of Robotic Systems, 1997, 14(4), 283-296
    [154] Kun A. L., Miller W. T., III. Control of variable speed gaits for a biped robot. Robotics & Automation Magazine, IEEE, 1999, 6(3), 19-29
    [155] Kajita S., Kanehiro F., Kaneko K., Fujiwara K. A. F. K., et al. Resolved momentum control: humanoid motion planning based on the linear and angular momentum. In, Kanehiro, Proceedings of IEEE/RSJ International Conference onIntelligent Robots and Systems, 2003, 1644-1650
    [156] Kondak K., Hommel G. Control and online computation of stable movement for biped robots. In, Hommel, Proceedings of IEEE/RSJ International Conference onIntelligent Robots and Systems, 2003, 874-879
    [157] Kondak K., Hommel G. Control algorithm for stable walking of biped robots. In, Proceedings of the Sixth Int. Conf. on Climbing and Walking Robots (CLAWAR), 2003, 119-126
    [158] Spong M. W., Vidyasagar M. Robot Dynamics and Control. JohnWiley & Sons, 1989.
    [159] Richard M.,李泽湘, Shankar S.机器人操作的数学导论.北京,机械工业出版, 1997.
    [160] Lum H. K., Zribi M., Soh Y. Planning and control of a biped robot. International Journal of Engineering Science, 1999, 37(10), 1319-1349
    [161] Vukobratovic M., Frank A., Juricic D. On the stability of biped locomotion. IEEE Transactions on Biomedical Engineering, 1970, 17(1), 25-36
    [162] Kudoh S., Komura T., Ikeuchi K. The dynamic postural adjustment with the quadratic programming method. In, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and System Lausanne, Switzerland, 2002, 2563-2568