卵巢癌相关肿瘤抗原新基因的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:探讨卵巢癌相关肿瘤抗原新基因在卵巢癌诊断和免疫治疗中的应用价值。研究肿瘤抗原新基因与卵巢癌发生的关系及临床意义。
     材料和方法:利用网上生物信息学分析软件对筛选到的180个卵巢癌肿瘤抗原基因克隆中的55个克隆的核苷酸序列进行分析,并检测其中8个新基因在卵巢癌患者和正常女性血清中的抗体。采用RT-PCR和原位杂交的方法研究卵巢癌相关肿瘤抗原新基因在卵巢癌组织和正常卵巢组织中的表达,分析其与卵巢癌临床指标的关系。
     结果:55个克隆的核苷酸序列代表45个卵巢癌抗原基因,其中8个是国内外首次发现的在GeneBank中尚未登记的新基因,这些新基因都是具有免疫原性的功能基因。其中OCY-142新基因定位于2号染色体短臂13区(2P13),是抑癌基因BARD1的可剪切变异体,OCY-142相应的蛋白质结构域比BRAD1少了NH_2-端的RING结构域和COOH-端BRCT结构域,可以被CD4~+和CD8~+T细胞识别。
     8个卵巢癌肿瘤抗原新基因在卵巢癌患者和正常人血清中相应抗体的检测发现,其中7个在卵巢癌患者血清中的阳性率显著高于正常人,选择这7个卵巢癌肿瘤抗原新基因对卵巢癌患者和正常女性进行联合检测,其敏感性和特异性达到96.9%和95.2%。CA125异常的卵巢癌41例患者中,OCY-142单独检测的阳性率为95.12%,而CA125正常的卵巢癌57例患者中,OCY-142检
Objective: To evaluate the roles of novel antigen genes in diagnosis and immunothreapy of ovarian cancer and to analysis the relationship between novel antigen genes and the genesis of ovarian cancer.
    Methods: The genes selected by SEREX and SSH in our previously research works were identified after analysis by bioinformatics. 8 novel antigen phage clones were screened using allogenic sera from 98 patients with ovarian serous papillary cystadenoma. We detected the expression of OCY-66, OCY-189 and OCY-142 in 28 ovarian cancers and 30 normal ovarian tissues by RT-PCR, and studied the expression of OCY-142 in these ovarian cancers and normal ovarian tissues by nonradioactive hybridization in situ.
    Results: 55 positive clones were chosen randomly and sequenced. The sequencing results indicated that 55 positive clones represent 45 tumor antigen genes. 8 of them are novel genes, and they all have immunogenicity. OCY-142 is the novel-splicing variant of BARD1 (BRCA1 associated ring domain 1). It is located in chromosome 2 (2P13) and has one more intron sequences of BARD1 gene. It lost sequences coding for its RING domain and BRCT domain which are demonstrated responsible for interacting with the tumor suppressor gene BRCA1 and keeping its function. The immunogenicity of OCY-142 was also found derived from exposing of hide immuno-epitope by RING domain lost. OCY-142 may also be recognized by CD8~+T cell after MHC-I binding peptide prediction.
    The expression positive ratio of 8 novel antigen phage clones presented from 53.1%~91.8%, but with very low positive ratio in sera of 98 health donors. Using a combination of novel antigen genes, the sensitivity and specificity for detecting ovarian cancer is 96.9% and 95.2%, respectively. 36.9% of ovarian cancers with normal CA125 level can be detected out by OCY-142.
引文
1.连丽娟主编.林巧稚妇科肿瘤学.人民卫生出版社.2000.第三版:410.
    2.张天泽 徐光炜主编.现代肿瘤学.天津科学技术出版社,1996:541.
    3. Bast RC. Reactivity of a monoclonal antibody with human ovarian carcinoma. J Clin Invest, 1981, 68:1331.
    4. Bast RC. Elevation of multiple serum markers in patients with stage Ⅰ ovarian cancer. N Engl J Med, 1983, 79:883-887.
    5. Bast RC, Xu FJ, Yu YH, et al. CA125: the past and the future. Int J Biol Markers, 1998, 13(4): 179-187.
    6.周克平,谭新洛.卵巢癌抗原CA125.国外医学妇产科学分册,1989,16(5):260-263.
    7.连丽娟.卵巢癌单克隆抗体在诊断上的应用.中华妇产科杂志,1985,20:257.
    8.曹泽毅主编.中华妇产科学.人民卫生出版社,1999,1546.
    9. Cuesta R, Maestro ML, Solana J, et al. Tissue quantification of CA 125 in epithelial ovarian cancer. Int J Biol Markers, 1999,14(2): 106-114.
    10. Menon U, Talaat A, Jeyarajah AR, et al. Ultrasound assessment of ovarian cancer risk in postmenopausal women with CA125 elevation. Br J Cancer 1999,80(10): 1644-1647.
    11. Jones MB, Krutzseh H, Shu H, et al. Proteomic analysis and identification of new biomarkers and therapeutic targets for invasive ovarian cancer. Proteornics, 2002, 2(1): 76-84.
    12. Woolas RP, Conaway MR, Xu F, et al. Combinations of multiple serum markers are superior to individual assays for discriminating malignant from benign pelvic masses. Gynecologic Oneology, 1995,59:111-116.
    13. van Haa_eten-Day C, Shen Y, Xu F, et al. OVX1, maerophage-colony stimulating factor, and CA-125-Ⅱ as tumor markers for epithelial ovarian carcinoma: a critical appraisal. Cancer, 2001, 92(11): 2837-2844.
    14. Crurnp C, McIntosh MW, Urban N, et al. Ovarian cancer tumor marker behavior in asymptomatic healthy women: implications for screening. Cancer Epidemiol Biomarkers Prey, 2000, 9(10): 1107-1011.
    15. Jacobs IJ, Skates SJ, MacDonald N, et al. Screening for ovarian cancer: a pilot randomised controlled trial. Lancet, 1999,353(9160): 1207-1210.16. Jacobs Ⅰ, Gram D, Fairbanks J, et al. A risk of malignancy index incorporating CA125, ultrasound and menopausal status for the accurate preoperative diagnosis of ovarian cancer. Br J Obstet Gynecol, 1990, 97:922-929.
    17. Maggino T, Gadducci A. Serum markers as prognostic factors in epithelial ovarian cancer: an overview. Eur J Gynaecol Oncol, 2000, 21: 64-69.
    18. Gadducci A, Baichhi U, Marrai R, et al. Preoperative evaluation of D-dimer and CA125 levels in differentiating benign from malignant ovarian msses. Gynecol Oncol, 1996, 60:197-202.
    19. Vertot IB. Advanced ovarian cancer brief intensive. Am J Obstet Gynecol, 1987, 157: 88-92.
    20. Rustin GJ, Nelstrop AE, Tuxen MK, et al. Defining progression of ovarian carcinoma during follow-up according to CA125: a North Thames Ovary Group Study. Ann Oncol, 1996, 7: 361-363.
    21. Noloff JM. The CA-125 assay as a predictor of clinical recurrence in epithelial ovarian cancer. Am J Obstet Gynecol, 1986, 155: 56-60.
    22.连利娟.卵巢肿瘤标志物及其对病情监测的意义.实用肿瘤杂志,1993,8:195-197.
    23.刘丽影.血清CA125水平与卵巢癌二次剖腹探查.中华肿瘤杂志,1992,14:287-289.
    24. Tuxen MK, Solctormos G, Dombemowsky P. Tumour markers in the management of patients with ovarian cancer. Cancer Treat Rcv, 1995, 21: 215-245.
    25. Sevelda P, Schemper M, Spona J. CA125 as an independent prognostic factor for survival in patients with epithelial ovarian cancer. Am J Obstet Gynccol, 1989, 161: 1213-1216.
    26. van der Burg Mel, Lammcs RB, Verweij J, et al. Ovarian cancer: the prognostic value of the serum half-life of CA125 during induction chemotherapy. Gynecol Oncol, 1988, 30:307-312.
    27. Nagele F, Petru E, Medl M, et al. Preoperative CA125: an independent prognstic factor in patients with Stage Ⅰ epithelial ovarian cancer. Obstct Gynecol, 1995, 86: 259-264.
    28. Fayers PM, Rustin G, Wood R, et al. The prognostic value of serum??CA125 in patients with advanced ovarian carcinoma: an analysis of 573 patients by thhe Medical Research Council Working Party of Gynaecological Cancer. Int J Gynecol Cancer, 1993, 3: 285-292.
    29. Ma J, Samue J, Kwon GS, et al. Expression of the macrophage colony-stimulating factor and its receptors in gynecologic malignancies. Cancer Immunol Immunother, 1998, 47:13-20.
    30. Schultes BC, Baum RP, Niesen A, et al. Immunological aspects of yolk sac tumor. Cancer Immunol Immunother, 1998, 46: 201-212.
    31. Hanna M, Totowa S, Tersey N, et al. Carcinoembryonic antigen in "Serological Cancer markers". Humana, 1992, 47-98.
    32. Fioretti P. The concomitant determination of different serum tumor markers in epithelial ovarian cancer: Relevancer for monitoring the response to chemotherapy and follow up of patients. Gynecol Oncol, 1992, 44: 155-158.
    33. Panza NP. Cancer antigen CA125, tissue polypeptide antigen, carcinoembryonic antigen and b-chain human chorionic gonadotropin as serum markers of epithelial ovarian cancer. Cancer, 1988, 61:76.
    34.吴令英,孙建衡,王希霞等.组织多肽抗原在卵巢癌诊断及监测中的应用.中华妇产科杂志,1998,33:92-93.
    35. Russell PA, Pharoah PD, Foy KD, et al. Frequent loss ofBRCA1 mRNA and protein expression in sporadic ovarian cancers. Int J Cancer, 2000, 87(3):317-321.
    36. Moslehi R, Chu W, Karlan B, et al. BRCA1 and BRCA2 mutation Analysis of 208 Ashkenazi Jewish women with ovarian cancer. Am J Hum Oenet, 2000, 66(4):1259-1272.
    37. Wemess BA, Parvatiyar P, Ramus SJ, et al. Ovarian carcinoma in situ with germline BRCA1 mutation and loss ofheterozygosity at BRCA1 and TP53. J Nail Cancer Inst, 2000, 92(13):1088-1091.
    38. Burke W, Daly M, Garber J, et al. Recommendations for follow-up care of individuals with an inherited predisposition to cancer Ⅱ. BRCA1 and BRCA2. JAM.A, 1997, 277:997-1003.
    39. Piver MS, Jish MS, Tsukada Y, et al. Primary peritoneal carcinoma after prophylactic oophorectomy in women with a family history of ovarian??cancer: A report of Gilda Radner Familial Ovarian Cancer Registry. Cancer, 1993, 71:2751-2755.
    40. Brarakat RR, Fededci MG, Saigo PE, et al. Absence of premalignant histologic, molecular, or cell biologic alterations in prophylactic oophorectomy specimens from BRCA1 heterozygotes. Cancer, 2000, 89(2): 383-390.
    41. Casey MJ, Bewtra C, Hoehne LL, et al. Histology of Prophylactically removed ovaries from BRCA1 and BRCA2 mutation carders compared with noncarriers in hereditary breast ovarian cancer syndrome kindreds. Gynecol Oncol, 2000,78:278-87.
    42. Otis CN, Kress PA, Quezado MM, et al. Loss of heterozygosity in p53, BRCA1 and estrogen receptor genes and correlation to expression of p53 protein in ovarian epithelial tumors of different cell types and biological behavior. Hum Pathol, 2000, 31(2): 233-238.
    43. Peyrat JP, Vennin P, Homez L, et al. Gerraline BRCA1 mutation in patients from 84 families with breast and/or ovarian cancer in northern France. Eur J Cancer Prev, 1998, 7 [suppll]: 7-12.
    44. Slamon DJ, Godolphin N, Janes LA, et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science, 1989, 244: 707-710.
    45. Berchuck A, Kamel A, Whitaker R, et al. Overexpression of HER-2/neu is associated with poor survival in advanced epithelial ovarian cancer. Cancer Res, 1990, 50: 4087-4089.
    46. Ginath S, Menczer J, Friedmann Y, et al. Expression of heparanase, Mdm2, and erbB2 in ovarian cancer. Int J Oncol 2001,18(6): 1133-1144.
    47.孙慧,林小萍,战忠利.癌基因c-erbB-2、抗癌基因p53表达与卵巢肿瘤生物学行为的关系.中国肿瘤临床,1998,25:105-107.
    48. Meden H, Marx D, Roegglen T, et al. Overexpression of the oncogene C-erbB2 (HER-2/neu) and response to chemotherapy Ⅰ patients with ovarian cancer. Int J Gynecol Pathol, 1998, 17: 61-67.
    49. Xu FJ, Leadon Sa, Yu YH, et al. Synergistic cytotoxicity is produced with ionizing radiation and anti-p185-c-erbB-2 immunotoxins in cells that overexpress p185-c-erbB-2. Proc Amer Assoc Cancer Res, 1996, 37: 371.
    50. Wang SC, Zhang L, Hortobagyi GN, et al. Targeting HER2: recent developments and future directions for breast cancer patients. Semin Oncol, 2001,(6 Suppl 18):21-29.
    
    51. Yuce K, Baykal C, Genc C, et al. Diagnostic and prognostic value of serum and peritoneal fluid lactate dehydrogenase in epithelial ovarian cancer. Eur J Gynaecol Oncol, 2001,22(3): 228-232.
    
    52. Steeg PS, Bevilagun G, Kopper L, et al. Evidence for a novel gene associated with metastatic potential. J Natl Cancer Inst, 1988, 80: 200-204.
    
    53. Qian M, Fen M, Xu L, et al. Expression of antimetastatic gene m23-Hl in epithelial ovarian cancer. Chin Med J Engl, 1997,110: 142-145.
    
    54. Khalifa MA, Abdoh AA, Mannel RS, et al. P-glycoprotein as a prognostic indicator in prechemotherapy and poschemotherapy ovarian adenocarcinoma. Int J Gynecol Pathol, 1997,16: 69-75.
    
    55. Margolius HS. Tissue kallikreins: structure, regulation, and participation in mammalian physiology and disease. Clin Rev Allergy Immunol, 1998, 16: 337-349.
    
    56. Yousef GM, Magklara A, Chang A, et al. Cloning of a new member of the human kallikrein gene family, KLK14, which is down-regulated in different malignancies. Cancer Res, 2001,61(8): 3425-3431.
    
    57. Stenman UH. New ultrasensitive assay facilotate studies on the role of human glandular kallikrein (hK2) as a marker or prostatic disease. Clin Chem, 1999,45: 753-754.
    
    58. Diamandis EP, Yousef GM, Soosaipillai AR, et al. Human kallikrein 6 (zyme/protease M/neurosin): a new serum biomarker of ovarian carcinoma. Clin Biochem, 2000,33(7): 579-583.
    
    59. Dong Y, Kaushal A, Bui L, et al. Human kallikrein 4 (KLK4) is highly expressed in serous ovarian carcinomas. Clin Cancer Res, 2001,7(8): 2363-2371.
    
    60. Yousef GM, Kyriakopoulou LG, Scorilas A, et al. Quantitative expression of the human kallikrein gene 9 (KLK9) in ovarian cancer: a new independent and favorable prognostic marker. Cancer Res, 2001,61(21): 7811-7818.
    
    61. Diamandis EP, Okui A, Mitsui S, et al. Human kallikrein 11: a new
    biomarker of prostate and ovarian carcinoma. Cancer Res, 2002, 62(1): 295-300.
    
    62. Kim H, Scorilas A, Katsaros D, et al. Human kallikrein gene 5 (KLK5) expression is an indicator of poor prognosis in ovarian cancer. Br J Cancer. 2001, 84(5): 643-650.
    
    63. Wu X, Li H, Kang L, et al. Activated matrix metalloproteinase-2-a potential marker of prognosis for epithelial ovarian cancer. Gynecol Oncol, 2002, 84(1): 126-134.
    
    64. Herrera CA, Xu L, Bucana CD, et al. Expression of metastasis-related genes in human epithelial ovarian tumors. Int J Oncol, 2002, 20(1):5-13.
    
    65. Umemoto M, Yokoyama Y, Sato S, et al. Carbonyl reductase as a significant predictor of survival and lymph node metastasis in epithelial ovarian cancer. Br J Cancer, 2001,85(7): 1032-1036.
    
    66. Christine H, Holschneider M, Berek J, et al. Ovarian cancer: epidemiology, biology, and prognostic factors. Seminars in Surgical Oncology, 2000,19:3-10.
    
    67. Yoshikawa K, Ogawa T, Baer R, et al. Abnormal expression of BRCA1 and BRCA1-interactive DNA-repair proteins in breast carcinomas. Int J Cancer, 2000, 88: 28-36.
    
    68. Russo A, Zannz I, Tubiolo C, et al. Hereditary common cancers: molecular and clinical genetics. Anticancer Res, 2000: 4841-4852.
    
    69. Zheng L, Li S, Boyer TG, et al. Lessons learned from BRCA1 and BRCA2. Oncogene, 2000,19: 6159-6175.
    
    70. Joukov V, Chen J, Fox EA, et al. Functional communication between endogenous BRCA1 and its partner, BARD1, during Xenopus laevis development. Proc Natl Acad Sci USA, 2001, 98(21): 12078-12083.
    
    71. Cox LS. Who binds wins: competition for PCNA rings out cell cycle changes. Trends Cell Biol, 1997, 7: 493-498.
    
    72. Jin Y, Xu XL, Yang MCW, et al. Cell cycle-dependent colocalization of BARD1 and BRCA1 proteins in discrete nuclear domains. Proc Natl Acad Sci USA, 1997,64: 12075-12080.
    
    73. Ayi TC, Tsan JT, Hwang LY, et al. Conservation of function and primary structure in the BRCA1-associated RING domain (BARD1) protein.Oneogene, 1998, 17(16): 2143-2148.
    74. Kleiman FE, Manley JL. The BARD1-CSTF-60 interaction links mRNA 3' end formation to DNA damage and tumor suppression. Cell, 2001, 104: 743-753.
    75. Thai TH, Du F, Tsan JT, et al. Mutations in the BRCAl-associated RING domain (BARD1) gene in primary breast, ovarian and uterine cancers. Hum Mol Genet, 1998, 7(2): 195-202.
    76. Brzovie PS, Rajagopal P, Hoyt DW, et al. Structure of a BRCA1-BARD1 heterodimeric RING-RING complex. Nat Street Biol, 2001, 8(10): 833-837.
    77. Hashizume R, Fukuda M, Maeda I, et al. The RING heterodimer BRCA1-BARD1 is an ubiquitin ligase inactivated by a breast cancer-derived mutation. J Biol Chem, 2001, 276(18): 14537-14540.
    78. Wu LC, Wang ZW, Tsan JT, et al. Identification of a RING protein that can interact in vivo with the BRCA1 gone product. Nature Genetics, 1996, 14: 430-440.
    79. Jager E, Jager D, Knuth A, et al. CTL-defmcd cancer vaccines: Perspectives for active immunotherapeurtic intervenions in minimal residual disease. Cancer and Metastasis Review, 1999, 18: 143-150.
    80.刘新文,童坦君,张宗玉.人类基因组中反转录转座子.生物化学与生物物理进展,2000,27:1-3.
    81.李万明主编.PCR技术操作和应用指南.人民军医出版社,1995.
    82. Wang Jun, Luo Feng, Lu Jean J, et al. VEGF expression and enhanced production by gonadotropins in ovarian epithelial tumors, Int J Cancer, 2002,97(2): 163-167.
    83. Lee SH, Zhang W, Choi JJ, et al. Overcxpression of the thymosin beta-10 gene in human ovarian cancer cells disrupts F-aetin stress fiber and leads to apoptosis. Oneogene, 2001,20(46): 6700-6706.
    84. Hermsen MA, Meijer GA, Belier U, ct al. Comparative genomic hybridization of microdissected familial ovarian carcinoma: two deleted regions on chromosome 15q not previously identified in sporadic ovarian carcinoma. Lab Invest, 2001,81(10): 1363-1370.
    85. Parrott JA, Nilsson E, Mosher R, et al. Stromal-epithelial interactions inthe progression of ovarian cancer: influence and source of tumor stromal cells. Mol Cell Endocrinol, 2001,175(1-2): 29-39.
    
    86. Bingham C, Roberts D, Hamilton TC, et al. The role of molecular biology in understanding ovarian cancer initiation and progression. Int J Gynecol Cancer, 2001,11 (Suppl 1): 7-11.
    
    87. Giovananni P, William G, Michael F, et al. Detection and Quantitation of HER-2/neu gene amplification in human breast cancer archival material using fluorescence in situ hybidization. Oncogene, 1996,13:63-72.
    
    88. Ahluwalia A, Yan P, Hurteau JA, et al. DNA methylation and ovarian cancer. I. Analysis of CpG island hypermethylation in human ovarian cancer using differential methylation hybridization. Gynecol Oncol, 2001, 82(2): 261-268.
    
    89. Fukushi Y, Sato S, Yokoyama Y, et al. Detection of numerical aberration in chromosome 17 and c-erbB2 gene amplification in epithelial ovarian cancer using recently established dual color FISH. Eur J Gynaecol Oncol, 2001,22(1): 23-25.
    
    90. Shridhar V, Lee J, Pandita A, et al. Genetic analysis of early- versus late-stage ovarian tumors. Cancer Res, 2001,61(15): 5895-904.
    
    91. Ginath S, Menczer J, Friedmann Y, et al. Expression of heparanase, Mdm2, and erbB2 in ovarian cancer. Int J Oncol, 2001,18(6): 1133-1144.
    
    92. Shridhar V, Bible KC, Staub J, et al. Loss of expression of a new member of the DNAJ protein family confers resistance to chemotherapeutic agents used in the treatment of ovarian cancer. Cancer Res, 2001,61(10): 4258-4265.
    
    93. Borgfeldt C, Hansson SR, Gustavsson B, et al. Dedifferentiation of serous ovarian cancer from cystic to solid tumors is associated with increased expression of mRNA for urokinase plasminogen activator (uPA), its receptor (uPAR) and its inhibitor (PAI-1). Int J Cancer, 2001, 92(4): 497-502.
    
    94. Watanabe T, Imoto L Kosugi YA, et al. Novel amplification at 17q21-23 in ovarian cancer cell lines detected by comparative genomic hybridization. Gynecol Oncol, 2001, 81(2): 172-177.