Cardiac Troponin I ARG146TRP(cTnIR146W)致肥厚型心肌病相关分子机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:肥厚型心肌病(Hypertrophic Cardiomyopathy, HCM)是一类具有不同表型的异质性疾病,可由多种基因突变引起,其发病率为1:500,中国至少有200万HCM病人被确诊,HCM是引起青年运动员猝死的主要因素之一。HCM的病理学特点为左心室肥厚、心肌细胞肥大,排列紊乱伴明显间质增殖。典型的心肌肥厚和纤维化造成心肌重构,但介导其心肌重构的关键机制仍然不清,引起HCM病人发生心电重构从而诱发猝死的机制一直没有阐明,HCM的心肌重构与心电重构间的关系也不是十分明确。
     约60%HCM病人有遗传和家族背景,HCM是心脏疾病中第一个被确认为与基因遗传相关的疾病。自首次报告肌球蛋白重链基因变异引起HCM以来,至少有20个基因,400个以上的DNA变异被报道与HCM发病相关,其中13个属心肌收缩肌小节蛋白。心脏肌钙蛋白I(cardiac troponin I,cTnI)由210个氨基酸组成,是调节心肌细胞收缩和舒张功能的重要抑制因子。cTnI磷酸化是心肌最重要的转录后蛋白修饰方式之一。cTnI磷酸化后,其对钙离子敏感性降低,降低心肌收缩。已有研究表明cTnI丝氨酸(serine)位点磷酸化与HCM发病相关;cTnI基因位点突变引发HCM,表现为典型心室重构。但cTnI突变导致心肌重构、心电重构的机制仍然有待进一步研究。
     本课题组在开展苏皖地区HCM人群基因分型研究后,发现了一汉族人HCM家系先症者的心肌肌钙蛋白I(cTnI)第145位变异-cTnI R145W(小鼠为cTnI R146W),它可能是HCM致病基因之一。将cTnI R145W克隆构建和组装入腺病毒载体,干预离体分离培养的大鼠心肌细胞能使大鼠心肌细胞L型钙通道电流峰值明显降低,而胞浆内钙及咖啡因诱导肌浆网钙释放并未明显改变。细胞内钙又是心肌细胞重构的信号通路的重要介导因素,同时还关系着心肌细胞的心电稳定性。因此,研究cTnI R145W突变能否造成心脏重构,探讨其潜在机制将为阐述cTnI R145W和HCM发生、发展的关系,研究其发病的临床特点,阐明其发病关键机制提供一定的依据。
     目的:
     1)通过显微注射法建立cTnIR146W杂合转基因小鼠(cTnIR146W+/-小鼠)模型,并从基因水平、蛋白水平、组织功能学水平验证该转基因模型。
     2)探讨cTnIR146W突变对小鼠心脏形态、结构和功能的影响,研究其可能的分子机制,为下一步治疗靶点的发现提供研究基础。
     3)研究运动负荷对cTnIR146W+/-小鼠心脏形态和功能的影响,观察cTnIR146W+/-小鼠的运动耐受性并初步探讨其机制。
     内容与方法:
     1.将cTnIR146W基因插入α-MHC启动子下游,构建转基因表达载体,通过显微注射法建立cTnIR146W +/-小鼠模型,得到第一代携带突变基因小鼠后,采用与C57BL/6J回交法对转基因小鼠进行传代,并采用PCR方法筛选基因阳性小鼠。
     2.建立并优化超声心动图评定小鼠心脏结构和功能的方法和检测参数,利用超声心动图对不同年龄组的cTnIR146W +/-小鼠进行心脏结构和功能的无创性检测,探讨超声心动图作为转基因动物模型初步筛选的无创检查手段的可行性。
     3.提取cTnIR146W +/-小鼠心肌蛋白和RNA, RT-PCR、基因测序法验证突变基因mRNA水平表达,Western blot法检测cTnIR146W +/-小鼠总cTnI、cTnI磷酸化水平及cTnIR146W突变蛋白表达水平。
     4.应用光学显微镜、电子显微镜观察cTnIR146W +/-小鼠心脏的病理改变,验证心肌肥厚和纤维化重构程度。Western blot和RT-PCR法验证心肌肥厚相关下游蛋白心房利钠肽(atrial natriuretic peptide ,ANF)、脑钠素(brain natriuretic peptide ,BNP)、β-肌球蛋白重链(β-myosin heavy chain,β-MHC)的表达。
     5. Western blot和RT-PCR法观察心肌肥厚相关信号通路蛋白钙调神经磷酸酶(calcineurin)、calsarcin-1、糖原合成酶激酶-3β(glycogen synthasekinase-3β,GSK-3β)、AKT、心肌肌浆网Ca2+-ATP酶(SERCA2)、磷酸受钙蛋白(Phospholamban , PLB)等蛋白表达的改变,测定cTnIR146W +/-小鼠心肌组织calcineurin的活性,并采用ELISA法测定细胞核激活T细胞核因子(NFAT c1)含量,探讨诱导cTnIR146W +/-小鼠发生心脏肥厚的主要介导通路及其相关机制。
     6. Western blot、RT-PCR、免疫组织化学法观察心肌骨膜素(Periostin)、转化生长因子-β(transforming growth factor,TGF-β)表达,验证其与心脏的纤维化的关系
     7.对2月龄、8月龄cTnIR146W +/-小鼠进行游泳负荷干预,观察其运动耐受性。
     8.采用超声心动图法比较运动组、静息组及运动前后cTnIR146W +/-小鼠心脏结构和功能,探讨运动对cTnIR146W +/-小鼠心脏结构、功能的影响。
     9.光学显微镜、电子显微镜观察运动组、静息组及运动前后cTnIR146W +/-小鼠心脏的病理改变,探讨运动对cTnIR146W +/-小鼠心肌重构的影响。
     10. Western blot和RT-PCR法检测运动组、静息组及运动前后cTnIR146W +/-小鼠心肌组织中Periostin表达,探讨cTnIR146W转基因小鼠运动耐受性降低的可能机制。
     11.统计学方法:数据均测量以平均数加减标准差( x±s)表示。组间差异采用独立样本t检验、单因素方差分析和χ2检验(SPSS 13.0)分析,P<0.05有统计学意义。
     1.显微注射法建立cTnIR146W +/-小鼠模型,得到第一代携带突变基因小鼠后,采用与C57BL/6J回交法对cTnIR146W +/-小鼠进行传代,并采用PCR方法筛选基因阳性小鼠,现已传至第八代,基因型阳性占出生鼠50%,最大年龄鼠已达2周岁。
     2.建立并优化超声心动图评定小鼠心脏结构和功能的方法和检测参数,发现超声心动图可作为cTnIR146W +/-动物模型初步筛选的无创性检查手段。与cTnIR146W-/-小鼠相比,各年龄组cTnIR146W+/-小鼠左房内径( left atrial dimension,LAD,P<0.05)均显著增大;8月龄及以上组cTnIR146W +/-小鼠室间隔厚度增加(interventricular septum dimension,IVSd,P < 0.05),室间隔厚度与左室后壁比值增大(IVSd/ left ventricular posterior wall dimension,LVSd/LVPWP<0.05);12月龄及以上组左心室收缩末期内径增大(left ventricular end-systolic dimension,LVDs,P<0.01),左室收缩末期容积增大(end-systolic volume,ESV,P<0.05),射血分数、短轴缩短率下降(Ejection fraction,EF,Fractional shortening ,FS,P< 0.01),组织多普勒显示二尖瓣前叶、后叶瓣环收缩期峰值速度(Systolic maximal velocity ,S峰)速度减低(P<0.05),二尖瓣瓣口的舒张早期血流速度E峰峰值流速显著降低,而舒张晚期血流速度A峰峰值流速基本维持不变,从而导致cTnIR146W +/-小鼠E/A显著降低(P<0.05)。
     3.提取cTnIR146W +/-小鼠RNA,RT-PCR扩增cTnI的cDNA,经TAKARA公司测序证实cTnIR146W基因被成功构建入cTnIR146W+/-小鼠;Western blot法检测发现cTnIR146W +/-小鼠表达cTnIR146W突变蛋白,其总cTnI表达水平显著增高(P<0.05)、但磷酸化cTnI表达水平显著性降低,磷酸化cTnI和总cTnI比值明显降低(P<0.05)。
     4.在病理组织学上,肥厚型心肌病特点为左心室肥厚、心肌细胞肥大,排列紊乱伴明显间质增殖。采用光学显微镜、电子显微镜观察cTnIR146W +/-小鼠心脏的病理改变,发现cTnIR146W +/-小鼠首先发生心肌细胞核增生,随着月龄的增大继而出现心肌细胞数量减少、排列紊乱、心肌细胞间出现纤维增生并日益加重。采用RT-PCR法发现cTnIR146W +/-小鼠心肌肥厚相关下游蛋白ANF、BNP、β-MHC的mRNA表达水平明显增高(P<0.05),β-MHC/α-MHC比值显著增高(P<0.05)。
     5. Western blot和RT-PCR法观察心肌肥厚相关信号通路蛋白,发现cTnIR146W +/-小鼠calsarcin-1表达明显降低(P<0.05),calcineurin活性增高(P<0.05),GSK-3β及Akt磷酸化水平无明显改变,测定cTnIR146W +/-小鼠心肌核NFATc1量,发现cTnIR146W +/-小鼠核NFATc1明显增高(P<0.05)。
     6. 8月龄及以上组的cTnIR146W +/-小鼠心肌Periostin、TGF-β表达明显增高(P<0.05),Periostin为间质表达。
     7.运动负荷中,8月龄cTnIR146W +/-小鼠的死亡率为50%,8月龄cTnIR146W -/-小鼠的死亡率为17.4%(4/24);χ2结果显示8月龄cTnIR146W +/-小鼠的死亡率明显增高(P<0.01)。2月龄cTnIR146W +/-小鼠的死亡率为39.3%,2月龄cTnIR146W -/-小鼠的死亡率为25%;χ2结果显示2月龄cTnIR146W +/-小鼠的死亡率与cTnIR146W -/-小鼠比较无显著差异,但呈增加趋势。
     8. 1)对于2月龄cTnI R146W -/-小鼠,运动后小鼠心脏舒张功能较静息组轻度增高。2)对于2月龄cTnI R146W +/-小鼠,运动负荷导致cTnI R146W +/-小鼠心腔明显增大,心脏收缩、舒张功能减退。3)运动前,2月龄cTnI R146W +/-小鼠和cTnI R146W -/-小鼠间心脏结构和功能并无显著性差异;运动后,和cTnI R146W -/-小鼠相比,cTnI R146W +/-小鼠心腔明显扩大,心脏收缩功能、舒张功能减退。4)运动前,与8月龄cTnI R146W -/-小鼠相比,8月龄cTnI R146W +/-小鼠心腔明显扩大,IVS/LVPW比值显著增高,并且伴有明显的收缩功能、舒张功能减退;运动后,与8月龄cTnI R146W -/-小鼠相比,cTnI R146W +/-小鼠心腔扩大,心脏收缩功能、舒张功能减退没有明显的好转。5)运动导致8月龄cTnI R146W -/-小鼠心脏舒张功能轻度增高(Aa增大); 6)对于8月龄cTnIR146W +/-小鼠,运动负荷后cTnI R146W +/-小鼠心腔仍然明显增大,心脏收缩、舒张功能减退,但和静息组8月龄cTnI R146W +/-小鼠相比,并无显著性差异。
     9.运动负荷后,cTnI R146W +/-小鼠游泳组心肌间质增生加重,部分心肌可疑断裂,出现线粒体肿胀,肌丝溶解现象。
     10.运动负荷后,cTnI R146W +/-小鼠心肌肥厚相关下游蛋白ANF、BNP、β-MHC的mRNA表达水平明显增高。
     11.超声心动图显示,8月龄猝死组cTnI R146W +/-小鼠运动前ESV、LVDs明显低于存活cTnI R146W +/-小鼠,EF、Ea、Ea/Aa明显高于存活cTnI R146W +/-小鼠。2月龄运动前超声心动图显示,猝死组cTnI R146W +/-小鼠和存活组cTnI R146W +/-小鼠间无显著性差异。但猝死组小鼠心脏纤维化及periostin表达明显高于存活组。
     结论与讨论:
     1.通过基因水平、蛋白水平验证,本课题组已成功建立cTnI R146W +/-小鼠,并已传代至第八代。
     2.超声心动图可以做为无创筛查cTnI R146W +/-小鼠的手段。但其对验证该转基因小鼠的心肌肥厚程度并不敏感,低龄组转基因小鼠并不存在明显的心肌肥厚。cTnI R146W +/-小鼠心肌重构的程度和年龄相关,出现典型的病理性心肌肥厚、间质纤维化并伴有明显的心功能改变。
     3. cTnI R146W +/-小鼠的心肌肥厚可能由Calcineurin-NFAT通路介导。cTnI R146W +/-小鼠心脏TGF-β表达水平增高伴有periostin表达水平增高,提示TGF-β可能刺激了periostin的表达,介导了心脏纤维化重构。
     4. cTnI R146W +/-小鼠运动猝死率明显增高,运动负荷有益于改善cTnI R146W -/-小鼠心脏功能,但却不能逆转甚至加重了cTnI R146W +/-小鼠的心功能紊乱。
     5.猝死组cTnI R146W +/-小鼠心脏纤维化程度显著高于存活组cTnI R146W +/-小鼠,伴随periostin表达上调,但是运动前超声心动图显示猝死组心功能明显好于存活组,提示cTnI R146W +/-小鼠运动猝死可能与其心电紊乱更加相关。
Backgroud:
     Hypertrophic cardiomyopathy ( HCM ) is caused by a variety of gene mutation with different phenotypic heterogeneity, the incidence rate of HCM is 1:500. HCM is the most common reason of sudden death. Left ventricular hypertrophy, interstitial fibrosis are the typical changes in histopathology of HCM. But the key mechanism of cardiac remodeling is still unclear. The relationship between cardiac remodeling and electrical remodeling has not been clarified till now. HCM is the first identified hereditary cardiovascular diseases. Since the initial report revealed that myosin heavy chain gene mutation was associated with HCM, at least 20 genes, more than 400 mutatons were found to be related with HCM. Cardiac Troponin I(cTnI) is an important component of troponin complex, which was proved to be a regulative unit of cardiomyocyte. Phosphorylation is the most important post-transcriptional modification of cTnI. Phosphorylated cTnI can reduce the susceptibility of calcium, decreased cardiac contractility. Other studies confirmed that cTnI mutation in different position would involve in develop HCM in mice and patients. However the mechanism of myocardial and cardiac electrical remodeling, of cTnI mutation-induced HCM remain to be further studied.
     Through genetic screening of patients with HCM in the boad area of Jiangsu and Anhwei Province, we discoverd a cTnI mutation- cTnI R145W (R146W in mice ). To evaluate the effect of this mutation on cardiomyocyte, we transfected the cTnIR145W into cardiomyocyte isolated from rat heart in vitro. L-type calcium channel current peak decreased. However, the cytosolic calcium and caffeine-induced sarcoplasmic reticulum calcium release did not change significantly in rat myocardial cells isolated from rat transtected with cTnI R145W. The data in vitro research suggested that cTnI R145W mutation did reduce the current peak of L-type calcium channel. Intracellular calcium is a vital mediator of cardiac remodeling and cardiomyocyte stability. Therefore, it is necessary to clarify the effect of cTnI R145W mutation on heart remodeling in vivo.?
     The emergence of transgenic animal promotes the progress of studies in HCM. The transgenic models of HCM were designed to get further understanding of the pathogenesis of HCM.
     Objective:
     1. Construct a transgenic model of HCM overexpressing cTnI R146W, observe the pathological change of this animal, and clarify whether this missence mutation is associated with HCM. Using echocardiography to measure the cardiac structure and function, to find a useful method to evaluate the diastolic function of transgenic mice.
     2. Elucidate the signaling pathway involving in heart remodeling of cTnI R146W +/- mice.
     3. Observe the exercise tolerance of cTnI R146W +/- mice, evaluate the cardiac structure, function, myocardial remodeling of cTnI R146W +/- mice, and investigate the potential mechanism. Materials and methods
     1. CTnI R146W mutant cDNA was inserted into downstream ofα-MHC promoter to construct a expression vector of cTnI R146W. By the method of micro-injection, we established cTnI R146W transgenic mice. The first generation of transgenic mice carrying mutant gene were detected by PCR. Then we bred transgenic mice with C57BL/6J, and screened cTnI R146W +/- mice by PCR.
     2. To establish and optimize the parameters of echocardiography in assessing the cardiac structure and function in transgenice mice. Using echocardiography to evaluate the cardiac structure and function in different age. Discuss the feasibility of echocardiography as a non-invasive method to screen the transgenic animal with typical phenotype.
     3. To optimize protein extraction and purification methods. Verify the mRNA expression level of cTnI R146W by RT-PCR and gene sequencing. Western Blot was used to detect the expression of cTnI R146W in heart. We also measured the phosphorylation of cTnI in cTnI R146W +/- mice to evaluate the modification level of this transgenic mice.
     4. Using optical microscope to observe pathological changes of cTnI R146W +/- mice.Western and RT-PCR were used to verify the mRNA expression level of markers of cardiac hypertrophy, such as ANF, BNP,β-MHC.
     5. Cardiac hypertrophy-related signaling pathway protein, such as calcineurin, calsarcin-1, GSK-3β, AKT, SERCA2, PLB were detected by Western blot and RT-PCR. We also assessed the activity of calcineurin in cTnI R146W +/- mice, in order to elucidate potential mechanisms involving in the cardiac remodeling in cTnI R146W +/- mice.
     6. To find the potential mechanisms of fibrosis in this model, we used Western blot, RT-PCR, immunohistochemistry to detect the expression of periostin and TGF-βin heart.
     7. Exercise load was used in this investigation to observe the exercise tolerance of cTnI R146W +/- mice of different age.
     8. Echocardiography was used to compare the cardiac structure and function of cTnI R146W +/- mice and cTnI R146W -/- mice before and after exercise.
     9. Optical microscope, electron microscope were applied to measure the pathological changes of cTnI R146W +/- mice and cTnI R146W -/- mice before and after exercise.
     10. Western blot and RT-PCR were used to verify the mRNA expression level of markers of cardiac hypertrophy in cTnI R146W +/- mice and cTnI R146W -/- mice before and after exercise,such as ANF, BNP,β-MHC.
     11. Western blot was used to detect the expression of periostin in cTnI R146W +/- mice and cTnI R146W -/- mice before and after exercise. The possible reasons for sudden death of cTnI R146W +/- mice were investigated by comparing the cardiac structure and function and the expression of periostin dying during exercise with survival ones.
     12. Statistics: All data are presented as mean±SD. Quantity One 4.5.2 Quantitation software (Bio-Rad, USA) were used to perform semi-quantification. The independent samples T test or One– way ANOVA were used to analyze differences and statistical tests were performed with the use of SPSS 13.0 statistical software. Statistical significance was accepted at P<0.05. Results:
     1. CTnI R146W mutant cDNA was successfully inserted into downstream ofα-MHC promoter. Through micro-injection. we established cTnI R146W transgenic mice, the first generation of transgenic mice carrying mutant gene were detected by PCR. The genotype positive mice accounted for 50%, the eldest mice was 2 years old.
     2. Echocardiography can be used as a non-invasive method to screen the transgenic animal with typical phenotype. Echocardiography can help us to measure the cardiac structure and function, evaluate the systolic and diastolic function of mice. The results showed that compared with cTnI R146W -/- mice, LAD increased significantly in cTnI R146W +/- mice (P<0.05 ); IVSd increased from 8 month(P<0.05); LVDs, IVS, IVS/LVPW increased obviosly (P<0.05) while EF、FS decreased significantly in 12-14 month mice(P <0.01). TDI (Tissue Doppler imaging) showed that transmitral late filling velocity (A peak) was significant higher in 12-14 month old cTnI R146W +/- mice(P<0.05), while transmitral early filling velocity (E peak) was similar with 12-14 month old cTnI R146W -/- mice. Meanwhile, the peak speed of mitral anterior leaflet, posterior lobe ring(S) reduced in 12-14 month old cTnI R146W +/- mice(P<0.05).
     3. The mRNA expression of cTnI R146W were determined by Northern blot、RT-PCR and gene sequencing. The protein expression of cTnI R146W were proved by Western blot. The total expression of cTnI in cTnI R146W +/- mice was significant higher than cTnI R146W -/- mice(P<0.05), while the phosphorylation of cTnI decreased significantly ( P<0.05), resulting in a obvious decrease of the ratio of phos-cTnI to cTnI( P<0.05).
     4. Pathological changes such as myocardial cell proliferation, cardiac hypertrophy, and interstitial fibrosis were observed by optical microscope in cTnI R146W +/- mice. Markers of cardiac hypertrophy, such as ANF, BNP,β-MHC increased significantly in cTnI R146W +/- mice(P<0.05).
     5. The expression of calsarcin-1 in cTnI R146W +/- mice was significant higher than that of cTnI R146W -/- mice(P<0.01), while other cardiac hypertrophy-related signaling pathway protein, such as calcineurin, GSK-3β, AKT, SERCA2 did not changed. The mRNA expression of PLB reduced obviously by RT-PCR(P<0.05). Meanwhile, the calcineurin activity of cTnI R146W +/- mice increased significantly(P<0.01).
     6. The mRNA expression of TGF-βelvated obviously by RT-PCR compared with cTnI R146W -/- mice. However, The expression of periostin in cTnI R146W +/- mice was significant higher than cTnI R146W -/- mice(P<0.05) from 8 month.
     7. During swimming, the mortality of 8 month old cTnI R146W +/- mice and cTnI R146W -/- mice was 50% and 17.4%, respectively. While the mortality of 2 month old cTnI R146W +/- mice and cTnI R146W -/- mice was 39.3% and 25%, respectively. The results showed that the exercise tolerance of 8 month old cTnI R146W +/- mice reduced significantly. The exercise tolerance of 2 month old cTnI R146W +/- mice did not have any significant difference.
     8. By the using of echocardiography, we found LAD, LVDs, ESV, A increased significantly while FS, EF, S, E/A, Ea decreased in 2 month old cTnI R146W +/- mice after swim compared with sedentary ones (P<0.05). However, only LAD elevated in 8 month old cTnI R146W +/- mice after swim compared with sedentary ones(P<0.05). Only LAD elevated in 2 month old sedentary cTnI R146W +/- mice compared with sedentary cTnI R146W -/- mice (P<0.05). However, LVDd, A, Aa increased significantly while FS, EF, E/A, Ea, Ea/Aa decreased in 8 month old sedentary cTnI R146W +/- mice compared with sedentary cTnI R146W -/- mice (P<0.05). LVDd, ESV, ESV, A increased significantly while E/A, Ea decreased in 2 month old cTnI R146W +/- mice after swim compared with 2 month old cTnI R146W -/- mice (P<0.05). However, LVDd, A increased significantly while E/A, Ea, EF, FS, Ea/Aa decreased in 8 month old cTnI R146W +/- mice after swim compared with 8 month old cTnI R146W -/- mice (P<0.05).
     9. After swimming, pathological changes such as myocardial cell proliferation, cardiac hypertrophy, and interstitial fibrosis aggravated in cTnI R146W +/- mice compared with cTnI R146W -/- mice.
     10. The mRNA expression of cardiac hypertrophy markers, such as ANF, BNP,β-MHC elevated significantly in cTnI R146W +/- mice compared with cTnI R146W -/- mice.
     11. By Comparing the cardiac structure and function between cTnI R146W +/- mice dying during exercise and the survival ones, we found a significant increase of systolic and diastolic function in dead ones. The extent of fibrosis of cTnI R146W +/- mice dying during exercise was higher than the survival ones accompany with increasing expression of periostin. Conclusions:
     1. Through micro-injection, we had successfully established cTnI R146W transgenic mice.
     2. Echocardiography can be used as a non-invasive method to screen the transgenic animal with typical phenotype. cTnI R146W +/- mice had typical pathological cardiac remodeling and heart dysfunction, especially in the elder ones.
     3. The activity of calcineurin-NFAT signaling pathway may be the most important mechanism involving in pathological cardiac hypertrophy. While the higer expression of TGF-βmight stimulate the expression of periostin, and influence the fibrosis of heart.
     4. The mortality of cTnI R146W +/- mice during swim increased significantly, indicate a reduced exercise tolerance in cTnI R146W +/- mice. Exercise can enhance the heart function of cTnI R146W -/- mice. By contrast, exercise aggravate the heart function and cardiac remodeling in cTnI R146W +/- mice.
     5. The extent of fibrosis in cTnI R146W +/- mice dying during exercise was higher than the survival ones accompanied with increasing expression of periostin and better heart function before swim, indicating that the high incidence of sudden death in cTnI R146W +/- mice during exercise may result from electrical instability rather than heart dysfunction.
引文
[1] Maron BJ, McKenna WJ, Danielson GK, et al. American College of Cardiology/European Society of Cardiology clinical expert consensus document on hypertrophic cardiomyopathy. A report of the American College of Cardiology Foundation Task Force on Clinical Expert Consensus Documents and the European Society of Cardiology Committee for Practice Guidelines. J Am Coll Cardiol, 2003; 42: 1687-713.
    [2] Maron BJ. Hypertrophic cardiomyopathy in childhood. Pediatr Clin N Am. 2004;51:1305-1346
    [3] Elliott P and McKenna WJ. Hypertrophic cardiomyopathy. Lancet, 2004; 363: 1881-91.
    [4] Maron BJ, Chaitman BR, Ackerman MJ, et al. Recommendations for Physical Activity and Recreational Sports Participation for Young Patients With Genetic Cardiovascular Diseases. Circulation, 2004; 109: 2807 - 2816
    [5] Yetman AT and McCrindle BW. Management of pediatric hypertrophic cardiomyopathy. Curr Opin Cardiol, 2005; 20: 80-83.
    [6] Hughes SE and McKenna WJ. New insights into the pathology of inherited cardiomyopathy Heart, 2005; 91: 257 - 264.
    [7]万文辉吴恒芳杨笛等,一种新发现的肥厚型心肌病心肌肌钙蛋白Ⅰ基因突变。中华医学杂志。2003,83,1093-1094。
    [8] Braunwald E. Cardiology: the past, the present, and the future. J Am Coll Cardiol, 2003; 42: 2031-41.
    [9] Report of the 1995 World Health Organization/International Society and Federation of Cardiology Task Force on the Definition and Classification of Cardiomyopathies. Circulation, 1996; 93: 841 - 842.
    [10] Spinney L. Heart-stopping action. Nature, 2004; 430: 606-7.
    [11] Hipp AA, Heitkamp HC, Rocker K, and HH Dickhuth. Hypertrophic cardiomyopathy-sports-related aspects of diagnosis, therapy, and sports eligibility. Int J Sports Med, 2004; 25: 20-6.
    [12] Corrado D, Pelliccia A, Bj?rnstad HH, et al. Cardiovascular pre-participation screening of young competitive athletes for prevention of sudden death: proposal for a common European protocol: Consensus Statement of the Study Group of Sport Cardiology of the Working Group of Cardiac Rehabilitation and Exercise Physiology and the Working Group of Myocardial and Pericardial Diseases of the European Society of Cardiology. Eur. Heart J, 2005; 26: 516 - 524.
    [13] Frenneaux MP. Assessing the risk of sudden cardiac death in a patient with hypertrophic cardiomyopathy. Heart, 2004; 90: 570 - 575.
    [14] Murphy RT, Mogensen J, Shaw A, et al. Novel mutation in cardiac troponin I in recessive idiopathic dilated cardiomyopathy. Lancet, Jan 2004; 363: 371-2.
    [15] GOMES AG and JPOTTER JD. Molecular and Cellular Aspects of Troponin Cardiomyopathies. Ann. N.Y. Acad. Sci. 2004; 1015: 214 - 224.
    [16] Doolan A, Tebo M, Ingles J, et al. Cardiac troponin I mutations in Australian families with hypertrophic cardiomyopathy: clinical, genetic and functional consequences. J Mol Cell Cardiol, 2005; 38: 387-93.
    [17] Ji-Nan Zhang, Qian Geng, Wu-Wang Fang et al. Investigation of ventricular remodeling in DCM rats and regulation of endothelin receptor. Calcium Handling protein. Drug Development Research. 2002;55:239-240
    [18] Gomes AV and Potter JD. Cellular and molecular aspects of familial hypertrophic cardiomyopathy caused by mutations in the cardiac troponin I gene. Mol Cell Biochem, 2004; 263: 99-114.
    [19]邹玉宝王继征等。Β-肌球蛋白重链基因Ala26Val突变——中国人肥厚型心肌病热点突变。中华心血管病杂志。2002,30,473-476。
    [20] Wu HF, Wan WH , Yang D and Zhang JN. Cardiac Troponin I Mutations in 71 Chinese Patients with Hypertrophic Cardiomyopathy. Clin Cardiol. 2004; 27(suppl):81
    [21] Winslow RL, Cortassa S, and Greenstein JL. Using models of the myocyte for functional interpretation of cardiac proteomic data. J Physio. 2005; 563:73
    [22] Sakthivel S, Finley NL, Rosevear PR, et al.In Vivo and in Vitro Analysis of Cardiac Troponin I Phosphorylation. J. Biol. Chem., Jan 2005; 280: 703 - 714.
    [23] Ferguso JL n, Beckett GJ, Stoddart M, et al. Myocardial infarction redefined: the new ACC/ESC definition, based on cardiac troponin, increases the apparent incidence of infarction. Heart, 2002; 88: 343 - 347.
    [24] Ariana Del Negro. New ACC Myocardial Infarction Guidelines: Expanding the Standard Definition of MI– The Impact of Troponin Value. http://www.thailheart. org/aha2001/new.
    [25] Foster DB, Noguchi T, VanBuren P, et al. C-Terminal Truncation of Cardiac Troponin I Causes Divergent Effects on ATPase and Force: Implications for the Pathophysiology of Myocardial Stunning. Circ. Res, 2003; 93: 917 - 924.
    [26] Deng Y, Schmidtmann A, Kruse S, et al. Phosphorylation of human cardiac troponin I G203S and K206Q linked to familial hypertrophic cardiomyopathy affects actomyosin interaction in different ways. J Mol Cell Cardiol, 2003; 35(11): 1365-74.
    [27] Takimoto E, Soergel DG., Paul ML. et al. Frequency- and Afterload-Dependent Cardiac Modulation In Vivo by Troponin I With Constitutively Active Protein Kinase A Phosphorylation Sites. Circ. Res., 2004; 94: 496 - 504.
    [28] Vikstrom, KL, Factor SM, and Leinwand LA. Mice expressing mutant myosin heavy chains are a model for familial hypertrophic cardiomyopathy. Mol Med 2: 556-567, 1996
    [29] Alexander H. Maass, MD; Kaori Ikeda; Silke Oberdorf-Maass;Sebastian K.G. Maier, MD; Leslie A. Leinwand, PhD. Hypertrophy, Fibrosis, and Sudden Cardiac Death in Response to Pathological Stimuli in Mice With Mutations in Cardiac Troponin T. Circulation. 2004;110:2102-2109.
    [30] Healey, MJ, Fatkin D, Arroyo LH, Lee RT, Maguire CT, Bevilacqua LM, Berul CI, Seidman JG, and Seidman CE. Exercise and beta-blocker therapy in alpha-myosin heavy chain mutant mice with hypertrophic cardiomyopathy. Circulation 98: 70, 1998.
    [31] Freeman K, Colon-Rivera C, Olsson MC, Moore RL, Weinberger HD, Grupp IL, Vikstrom KL, Iaccarino G, Koch WJ, Leinwand LA. Progression from hypertrophic to dilated cardiomyopathy in mice that express a mutant myosin transgene. Am J Physiol Heart Circ Physiol. 2001 Jan;280: 151-9.
    [32] Konhilas JP, Watson PA, Maass A, Boucek DM, Horn T, Stauffer BL, Luckey SW, Rosenberg P, Exercise can prevent and reverse the severity of hypertrophic cardiomyopathy.Circ Res. 2006;98:540-8.
    [33] Vakili BA, Okin PM, Devereux RB. Prognostic implications of left ventricular hypertrophy. Am Heart J 2001;141:334– 41.
    [34] Hill, J.A. et al. Targeted inhibition of calcineurin in pressure-overload cardiac hypertrophy. Preservation of systolic function. J. Biol. Chem, 2002; 277:10251–10255.
    [35] Rapacciuolo, A. et al. Important role of endogenous norepinephrine and epinephrine in the development of in vivo pressure-overload cardiac hypertrophy. J. Am. Coll. Cardiol, 2001;38: 876–88
    [36] Sabri, A., and Steinberg, S.F. 2003. Protein kinase C isoform-selective signals that lead to cardiac hypertrophy and the progression of heart failure. Mol. Cell. Biochem. 251:97–101
    [37] Benjamin J. Wilkins, Yan-Shan Dai, Orlando F. Bueno, Stephanie A. Parsons, Jian Xu,
    [38] David M. Plank, Fred Jones, Thomas R. Kimball, Jeffery D. Molkentin. Calcineurin/NFAT Coupling Participates in Pathological, but not Physiological, Cardiac Hypertrophy. Circ Res. 2004;94:110-118.
    [39] Gerald W. Dorn II, and Thomas Force Protein kinase cascades in the regulation of cardiac hypertrophy. article: J. Clin. Invest. 2005;115:527–537.
    [40] McMullen JR, Amirahmadi F, Woodcock EA, Schinke-Braun M, Bouwman RD, Hewitt KA, Mollica JP, Zhang L, Zhang Y, Shioi T, Buerger A, Izumo S, Jay PY, Jennings GL. Protective effects of exercise and phosphoinositide 3-kinase (p110alpha) signaling in dilated and hypertrophic cardiomyopathy. Proc Natl Acad Sci U S A. 2007 Jan 9;104:612-7.
    [41] Konhilas JP, Watson PA, Maass A, Boucek DM, Horn T, Stauffer BL, Luckey SW, Rosenberg P, Exercise can prevent and reverse the severity of hypertrophic cardiomyopathy.Circ Res. 2006;98:540-8.
    [42] Haq, S., et al. 2000. Glycogen synthase kinase-3beta is a negative regulator of cardiomyocyte hypertrophy. J. Cell Biol. 151:117–130.
    [43] Wei YL, Yu CA, Yang P, Li AL, Wen JY, Zhao SM, Liu HX, Ke YN, Campbell W, Zhang YG, Li XH, Liao WQ. Novel mitochondrial DNA mutations associated with Chinese familial hypertrophic cardiomyopathy. Clin Exp Pharmacol Physiol. 2009 Mar 26. [Epub ahead of print]
    [44] Pinto JR, Parvatiyar MS, Jones MA, Liang J, Ackerman MJ, Potter JD.A functional and structural study of troponin C mutations related to hypertrophic cardiomyopathy. J Biol Chem. 2009 May 12. [Epub ahead of print]
    [1] Lind JM, Chiu C, Semsarian C. Genetic basis of hypertrophic cardiomyopathy. Expert Rev Cardiovasc Ther. 2006;4:927-34.
    [2] Capek P, Brdicka R. Hypertrophic cardiomyopathy.Cas Lek Cesk. 2006;145:93-6; 96-7.
    [3] Marian AJ, Robert R. The molecular genetic basis for hypertrophic cardiomyopathy. J Mol Cell Cardiol,2001,33: 655 - 670.
    [4] Solomon SD, Geisterfer - Lowerance AA, et al. A locus for familial hypertrophic cardiomyopathy is closely linked to the cardiac myosin heavy chain genes, CR I - L436, and CR I - L329 on chromosome 14 at q11 - q12. Am J Hum Genet, 1990, 47: 389 - 394.
    [5] Hughes SE, Mckenna W I. New insights into the pathology of in herited cardiomyopathy. Heart,2005,91: 257 - 264.
    [6]廖玉华。从心肌病病因学研究走向临床诊断与治疗实践。中华心血管病杂志, 2007,35: 1– 3。
    [7] Z Kardiol. A murine model for hypertrophic cardiomyopathy.1995;84 Suppl 4:49-54.
    [8] Vikstrom KL, Factor SM, Leinwand LA.Mice expressing mutant myosin heavychains are a model for familial hypertrophic cardiomyopathy.Mol Med. 1996;2:556-67.
    [9]万文辉吴恒芳杨笛张寄南马文珠.一种新发现的肥厚型心肌病心肌肌钙蛋白Ⅰ基因突变。中华医学杂志,2003,83:1093。
    [10] Farah CS, Miyamoto CA, Ramos CH, da Silva AC, Quaggio RB, Fujimori K, et al. Structural and regulatory functions of the NH2- and COOH-terminal regions of skeletal muscle troponin I. J Biol Chem. 1994;269:5230-40.
    [11] Morjana1 N, Clark D, Tal R. Biochemical and immunological properties of human cardiac troponin I fragments. Biotechnol. Appl. Biochem. 2001; 33:107– 115
    [12] Layland J, Solaro RJ, Shah AM. Regulation of cardiac contractile function by troponin I phosphorylation. Circ Res. 2005; 66:12-21.
    [13] Wu HF, Chen XJ, Yang D.Reduced Ca2+ current in rat cardiomyocytes transfected with troponin I R145W mutation gene.Zhonghua Xin Xue Guan Bing Za Zhi. 2007;35:1000-4.
    [14]崔淑芳,试验动物学第3版。上海:第二军医大学出版社。
    [15] Gulick J, Subramaniam A, Neumann J, Robbins J. Isolation and characterization of the mouse cardiac myosin heavy chain genes. J Biol Chem. 1991;266:9180-5.
    [16] Sanbe A, Gulick J, Hanks MC, Liang Q, Osinska H, Robbins J. Reengineering inducible cardiac-specific transgenesis with an attenuated myosin heavy chain promoter. Circ Res. 2003;92:609-16.
    [17] Solaro RJ. Modulation of cardiac myofilament activity by protein hosphorylation. In: Page E, Fozzard H, Solaro RJ, editors. Handbook of physiology. New York7 xford University Press; 2001. 264– 300.
    [18] Metzger JM, Westfall MV. Covalent and noncovalent modification of thinfilament action. The essential role of troponin in cardiac muscle regulation. Circ Res. 2004; 94:146– 58.
    [19] Bisho P J O,Smith P. Mechatllsm of chromosomal integration of microinjected DNA .Mol biol med ,1989 ;6:283-298.
    [20] Murphy RT , Mogensen J , Shaw A , et al . Novel mutation in cardiac troponin I in recessive idiopathic dilated cardiomyopathy. Lancet ,2004 ,363 :371– 3721
    [21] Gomes AV, Harada K, Potter JD. A mutation in the N-terminus of Troponin I that is associated with hypertrophic cardiomyopathy affects the Ca2+-sensitivity, phosphorylation kinetics and proteolytic susceptibility of troponin. J Mol Cell Cardial. 2005; 39: 754-65.
    [22] Siri FM ,J elicks LA ,Leinwand LA ,et al . Gated magnetic responance imaging of normal and hypert rophied murine heart s. Am J Physiol ,1997 ,272: 23942- 2402.
    [23] Landmesser U , Engberding N , Bahlmann FH , et al . Statin indueed improvement of endot helial progenitor cell mobilization , myocardial neovascularization , left vent ricular function ,and survival after experimental myocardial infarction requires endot helia nit ric oxide synt hase . Cireulation , 2004 , 110 :1933-1939.
    [24] Wat son L E Shet h M ,Denyer RF , et al . Baseline echocardiographic values for adult male rat s. J Am Soc Echocardiogr ,2004 ,17:161-167.
    [25] Yang XP , liu YH , Rhaleb NE , et al . Echocardiographic assessment of cardiac function in conscious and anesthetized mice. Am J Physiol ,1999 ,277:1967- 1974.
    [26] Kawahara Y, Tanonaka K,Daicho T ,et al . Preferable anesthetic conditions for echocardiographic determination of murine cardiac function . J PharmacolSci ,2005 ,99:95-104.
    [27]李滨滨,曹怡,徐晋妉,吴红宁,张寄南,杨笛。麻醉剂对Balb/ c小鼠心功能检测的影响。江苏医药, 2008 , 34:1029-1031。
    [28] LindhoutDA, Li MX, Schieve D, Sykes BD: Effects of T142 phosphorylation and mutation R145G on the interaction of the inhibitory region of human cardiac troponin I with the C-domain of human cardiac troponin C. Biochemistry, 2002,41: 7267–7274.
    [29] Manning WJ, Wei JY, Katz SE, et al. In vivo assessment of LV mass in mice using high-frequency cardiac ultrasound: necropsy validation. Am J Physiol Heart Circ Physiol 1994; 266: 1672–1675.
    [30] Kanno S, Lerner DL, Schuessler RB, et al. Echocardiographic evaluation of ventricular remodeling in a mouse model of myocardial infarction. J Am Soc Echocardiogr, 2002, 15: 601- 609.
    [31] Tatsuhiko Moria,b, Yiu-Fai Chena, Ji An Fenga, Tetsuya Hayashib,Suzanne Oparila, Gilbert J. Perrya,c,. Volume overload results in exaggerated cardiac hypertrophy in the atrial natriuretic peptide knockout mouse Cardiovascular Research 2004, 61 ,771– 779.
    [32] Y. Tsujita1, S. Witt2, B. Glascock2, T. R. Kimball2, M. A. Sussman. Enhanced Evaluation of Dilated Cardiomyopathy in Mice by High-Resolution Echocardiography. Electromedica, 2003, 71,74-79.
    [33] Lisa Roten, Shintaro Nemoto, Janet Simsic, Mytsi L. Coker, Vijay Rao,Simona Baicu, Gilberto Defreyte, Paul J. Soloway, Michael R. Zile and Francis G. Spinale. Effects of Gene Deletion of the Tissue Inhibitor of the Matrix Metalloproteinasetype 1 (TIMP-1) on Left Ventricular Geometry and Function in Mice. J Mol Cell Cardiol 2000,32, 109–120.
    [34] Tsang TS,BarnesME, Gersh BJ, et al. Predication of risk for first age-relatedcardiovascular events in an elderly population: the in cremental value of echocardiography. J Am Coll Cardiol, 2003,42 : 1199-1205.
    [35] Moller JE, Hillis GS, Oh JK, et al. Left atrial volume: a powerful predictor of survival after acute myocardial infarction. Circulation, 2003, 107: 2207-2212.
    [36] Michalak E, Michalak JM, Chojnowska L, Ruzy??o W, Hoffman P. Klinika Wad Wrodzonych Serca, Instytut Kardiologii, Warszawa. Echocardiographic assessment of left atrial volume and emptying in hypertrophic cardiomyopathy. Przegl Lek. 2004;61:729-32.
    [37] Sachdev V, Shizukuda Y, Brenneman CL, Birdsall CW, Waclawiw MA, Arai AE, Mohiddin SA, Tripodi D, Fananapazir L, Plehn JF. Left atrial volumetric remodeling is predictive of functional capacity in nonobstructive hypertrophic cardiomyopathy. Am Heart J. 2005 ;149:730-6.
    [38] Wagner RA, Tabibiazar R, Powers J, Bernstein D, Quertermous T. Genome-wide expression profiling of a cardiac pressure overload model identifies major metabolic and signaling pathway responses. 1: J Mol Cell Cardiol. 2004; 37: 1159-70.
    [39]孙静平,詹姆斯·托马斯。组织多普勒超声心动图[M]人民卫生出版社, 2005。
    [40] Tabata T ,Oki T , Yamada H ,et al . Subendocardial motion in ypertrophic cardiomyopathy : assessment from long and short taxis views by pul sed tissue Doppler imaging. J Am Sco Echocardiogr, 2000 ,13:108-115.
    [1] Chung G, Sinusas AJ. Imaging of matrix metalloproteinase activation and left ventricular remodeling. Curr Cardiol Rep, 2007;9:136-42.
    [2] Taylor DA, Zenovich AG. Cell therapy for left ventricular remodeling. Curr Heart Fail Rep ,2007;4:3-10.
    [3] Hauptman PJ, Sabbah HN. Reversal of ventricular remodeling: important to establish and difficult to define. Eur J Heart Fail ,2007;9:325-8.
    [4] Kerkela R, Force T. Recent insights into cardiac hypertrophy and left ventricular remodeling. Curr Heart Fail Rep, 2006;3:14-8.
    [5] Lee DS, Wang TJ, Vasan RS. Screening for ventricular remodeling. Curr Heart Fail Rep ,2006;3:5-13.
    [6] Molkentin JD. Calcineurin and beyond: cardiac hypertrophic signaling. Circ Res ,2000;87:731-8.
    [7] Selvetella G, Hirsch E, Notte A, Tarone G, Lembo G. Adaptive and maladaptive hypertrophic pathways: points of convergence and divergence. CardiovascRes ,2004;63:373-80.
    [8] Heineke J, Molkentin JD. Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat Rev Mol Cell Biol ,2006;7:589-600.
    [9] Dorn GW, 2nd, Force T. Protein kinase cascades in the regulation of cardiac hypertrophy. J Clin Invest ,2005;115:527-37.
    [10] Chakraborti S, Das S, Kar P, et al. Calcium signaling phenomena in heart diseases: a perspective. Mol Cell Biochem ,2007;298:1-40.
    [11] Hallhuber M, Burkard N, Wu R, et al. Inhibition of nuclear import of calcineurin prevents myocardial hypertrophy. Circ Res ,2006;99:626-35.
    [12] Nakayama H, Wilkin BJ, Bodi I, Molkentin JD. Calcineurin-dependent cardiomyopathy is activated by TRPC in the adult mouse heart. Faseb J ,2006;20:1660-70.
    [13] Di BarlettaMR, et al. Clinical phenotype and functional characterization of CASQ2 mutations associated with catecholaminergic polymorphic ventricular tachycardia. Circulation, 2006, 114: 1012- 9.
    [14] Knollmann BC, Chop ra N, et al. Casq2 deletion causes sarcop lasmicreticulum volume increase, p remature Ca2 + release , and catecholaminergic polymorphic ventricular tachycardia. J Clin Invest,2006, 116 : 2510 - 20.
    [15] Luckey SW, Mansoori J, Fair K, Antos CL, Olson EN, Leinwand LA. Blocking cardiac growth in hypertrophic cardiomyopathy induces cardiac dysfunction and decreased survival only in males. Am J Physiol Heart Circ Physiol. 2007 Feb;292:H838-45.
    [16] Luckey SW, Walker LA, Smyth T, Mansoori J, Messmer-Kratzsch A, Rosenzweig A, Olson EN, Leinwand LA. The role of Akt/GSK-3beta signaling in familial hypertrophic cardiomyopathy. J Mol Cell Cardiol. 2009 Feb 21. [Epub ahead of print]
    [17] Solaro RJ. Modulation of cardiac myofilament activity by protein hosphorylation. In: Page E, Fozzard H, Solaro RJ, editors. Handbook of physiology. New York7 xford University Press; 2001. 264–300.
    [18] Solaro RJ, Rarick HM. Troponin and tropomyosin. Proteins that switch on and tune in the activity of cardiac myofilaments. Circ Res. 1998;83:471–80.
    [19] Z Kardiol. A murine model for hypertrophic cardiomyopathy.1995;84 Suppl 4:49-54.
    [20] Vikstrom KL, Factor SM, Leinwand LA.Mice expressing mutant myosin heavy chains are a model for familial hypertrophic cardiomyopathy.Mol Med. 1996;2:556-67.
    [21] Palmer BM, Wang Y, Teekakirikul P, Hinson JT, Fatkin D, Strouse S, Vanburen P, Seidman CE, Seidman JG, Maughan DW.Myofilament mechanical performance is enhanced by R403Q myosin in mouse myocardium independent of sex.Am J Physiol Heart Circ Physiol. 2008;294: 1939-47.
    [22] Nagueh SF, Chen S, Patel R, Tsybouleva N, Lutucuta S, Kopelen HA, Zoghbi WA, Qui?ones MA, Roberts R, Marian AJ. Evolution of expression of cardiac phenotypes over a 4-year period in the beta-myosin heavy chain-Q403 transgenic rabbit model of human hypertrophic cardiomyopathy.J Mol Cell Cardiol. 2004;36:663-73.
    [23] Marian AJ, Wu Y, Lim DS, McCluggage M, Youker K, Yu QT, Brugada R, DeMayo F, Quinones M, Roberts R. A transgenic rabbit model for human hypertrophic cardiomyopathy. J Clin Invest. 1999;104:1683-92.
    [24] Wakatsuki T, Schlessinger J, and Elson EL. The biochemical response of the heart to hypertension and exercise. Trends Biochem Sci, 2004; 29: 609-17.
    [25] Levy D, Garrison J., Savage, DD, et al. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham HeartStudy. N. Engl. J. Med, 1990; 322: 1561–1566.
    [26] Vakili BA, Okin PM, Devereux RB. Prognostic implications of left ventricular hypertrophy. Am Heart J, 2001;141:334– 41.
    [27] Buitrago M, Lorenz K, Maass A H, et al. The transcriptional repressor Nab1 is a specific regulator of pathological cardiac hypertrophy. Nature Med, 2005; 11: 837-844.
    [28] Esposito, G. et al. Genetic alterations that inhibit in vivo pressure-overload hypertrophy prevent cardiac dysfunction despite increased wall stress. Circulation,2004; 105: 85–92.
    [29] Hill, J.A. et al. Targeted inhibition of calcineurin in pressure-overload cardiac hypertrophy. Preservation of systolic function. J. Biol. Chem, 2002; 277:10251–10255.
    [30] Rapacciuolo, A. et al. Important role of endogenous norepinephrine and epinephrine in the development of in vivo pressure-overload cardiac hypertrophy. J. Am. Coll. Cardiol, 2001;38: 876–88.
    [31] Patel R, Nagueh SF, Tsybouleva N, Abdellatif M, Lutucuta S, Kopelen HA, Quinones MA, Zoghbi WA, Entman ML, Roberts R, Marian AJ. Simvastatin induces regression of cardiac hypertrophy and fibrosis and improves cardiac function in a transgenic rabbit model of human hypertrophic cardiomyopathy. Circulation. 2001;104:317-24.
    [32] Senthil V, Chen SN, Tsybouleva N, Halder T, Nagueh SF, Willerson JT, Roberts R, Marian AJ. Prevention of cardiac hypertrophy by atorvastatin in a transgenic rabbit model of human hypertrophic cardiomyopathy. Circ Res. 2005 ,5;97: 285-92.
    [33] Fiedler B, Wollert KC. Interference of antihypertrophic molecules and signaling pathways with the Ca2+-calcineurin-NFAT cascade in cardiac myocytes. CardiovascRes, 2004, 63:450-7.
    [34] Sanna B, Brandt EB, Kaiser RA, et al. Modulatory calcineurin-interacting proteins 1 and 2 function as calcineurin facilitators in vivo. PNAS, 2006, 103: 7327 - 7332.
    [35] Chan B, Greenan G, Mckeon F, Ellenberger T. Identification of a peptide fragment of DSCR1 that competitively inhibits calcineurin activity in vitro and in vivo. Proc Natl Acad Sci U S A, 2005, 102:13075-80.
    [36] Saito T, Fukuzawa J, Osaki J, et al. Roles of calcineurin and calcium/calmodulin- dependent protein kinase II in pressure overload-induced cardiac hypertrophy. J Mol Cell Cardiol, 2003, 35:1153-60.
    [37] Frey N, Richardson JA, Olson EN. Calsarcins, a novel family of sarcomeric calcineurin-binding proteins. PNAS, 2000, 97:14632-14637.
    [38] Gontier Y, Taivainen A, Fontao L, et al. The Z-disc proteins myotilin and FATZ-1 interact with each other and are connected to the sarcolemma via muscle-specific filamins. J Cell Sci 2005;118:3739-49.
    [39] Frey N, Barrientos T, Shelton JM, Frank D, Rutten H, et al. Mice lacking calsarcin-1 are sensitized to calcineurin signaling and show accelerated cardiomyopathy in response to pathological biomechanical stress. Nat Med, 2004, 10: 1336-1343.
    [40] Molkentin JD. Calcineurin and beyond: cardiac hypertrophic signaling. Circ Res ,2000;87:731-8.
    [41] Wilkins BJ, Molkentin JD. Calcineurin and cardiac hypertrophy: where have we been? Where are we going? J Physiol ,2002;541:1-8.
    [42] Schulz RA, Yutzey KE. Calcineurin signaling and NFAT activation in cardiovascular and skeletal muscle development. Dev Biol ,2004;266:1-16.
    [43] Heineke J, Molkentin JD. Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat Rev Mol Cell Biol, 2006;7:589-600.
    [44] Wang H, Yang S, Yang E, et al. NF-kappaB mediates the transcription of mouse calsarcin-1 gene, but not calsarcin-2, in C2C12 cells. BMC Mol Biol ,2007;8:19.
    [45] Wang H, Zhu Z, Wang H, Yang S, Mo D, Li K. Characterization of different expression patterns of calsarcin-1 and calsarcin-2 in porcine muscle. Gene, 2006;374:104-11.
    [46] Branton MH, Kopp JB.TGF-beta and fibrosis.Microbes Infect. 1999;1:1349-65.
    [47] Yu L, Border WA, Huang Y, Noble NA.TGF-beta isoforms in renal fibrogenesis.Kidney Int. 2003;64:844-56.
    [48] Strutz F, Zeisberg M, Renziehausen A, Raschke B, Becker V, van Kooten C, Müller G.TGF-beta 1 induces proliferation in human renal fibroblasts via induction of basic fibroblast growth factor ( FGF-2 ) .Kidney Int. 2001;59:579-92.
    [49] Sakata Y, Chancey AL, Divakaran VG, Sekiguchi K, Sivasubramanian N, Mann DL.Transforming growth factor-beta receptor antagonism attenuates myocardial fibrosis in mice with cardiac-restricted overexpression of tumor necrosis factor.Basic Res Cardiol. 2008;103:60-8.
    [50] Xiao H, Zhang YY.Understanding the role of transforming growth factor-beta signalling in the heart: overview of studies using genetic mouse models.Clin Exp Pharmacol Physiol. 2008;35:335-41.
    [51] Sovari AA, Morita N, Weiss JN, Karagueuzian HS.Serum transforming growth factor-beta1 as a risk stratifier of sudden cardiac death.Med Hypotheses. 2008;71:262-5.
    [52] Horiuchi, K., Amizuka, N., Takeshita, S. et al. 1999. Identication and characterization of a novel protein, Periostin, with restricted expression to periosteum and periodontal ligament and increased expression by transforming growth factor beta. J. Bone Miner. Res. 1999,14, 1239-49.
    [53] Ji, X., Chen, D., Xu, C., Harris, S.E., Mundy, G.R., Yoneda, T., 2000. Patterns of gene expression associated with BMP-2-induced osteoblast and adipocyte differentiation of mesenchymal progenitor cell 3T3-F442A. J. Bone Miner. Metab. 2000,18, 132-9.
    [54] Jahanyar J,Joyce DL,Southard RE,et al.Decorin mediated transforming growth factor beta inhibition ameliorates adverse cardiac remodeling. J Heart Lung Transplant,2007;26:34-40.
    [55]李广生。心肌间质病理研究进展与心肌纤维化的诊断。中国实验诊断学,2003,7:8-11。
    [56] Fairweather D,Frisancho Kiss S,Yusung SA,et al.Interferon gamma protects against chronic viral myocarditis by reducing mast cell degranulation, fibrosis,and the profibrotic cytokines transforming growth factor beta 1, interleukin 1 beta,and interleukin 4 in the heart.Am J Pathol, 2004,165:1883- 1894.
    [57]韩福生,孙辉,刘立志,等。TIMP 1 mRNA表达在病毒性心肌炎小鼠心肌胶原重构中的作用及其与TGF β1的关系。中国地方病学杂志,2005,24:604-606。
    [58] Litvin, J., Zhu, S., Norris, R. & Markwald, R. Periostin family of proteins: therapeutic targets for heart disease. Anat. Rec. A Discov. Mol. Cell. Evol. Biol. 2005,287, 1205–12 .
    [59] Butcher, J.T., Norris, R.A., Hoffman, S., Mjaatvedt, C.H. & Markwald, R.R. Periostin promotes atrioventricular mesenchyme matrix invasion and remodeling mediated by integrin signaling through Rho/PI 3-kinase. Dev. Biol. 2007,302, 256–66 .
    [60] Stanton, L.W. et al. Altered patterns of gene expression in response to myocardial infarction. Circ. Res.2000, 86, 939–45 .
    [61] Wang, D. et al. Effects of pressure overload on extracellular matrix expression inthe heart of the atrial natriuretic peptide-null mouse. Hypertension.2003,42, 88–95 .
    [62] Kühn B, del Monte F, Hajjar RJ, Chang YS, Lebeche D, Arab S, Keating MT. Periostin induces proliferation of differentiated cardiomyocytes and promotes cardiac repair.Nat Med. 2007; 13:962-9.
    [1] Maron BJ. Hypertrophic Cardiomyopathy: An Important Global Disease. Am J Med. 2004;116:63– 66.
    [2] Marian AJ. Clinical and Molecular Genetic Aspects of Hypertrophic Cardiomyopathy. Current Cardiology Reviews. 2005; 1:53-63.
    [3] Corrado D, Pelliccia A, Bjornstad HH, et al. Cardiovascular pre-participation screening of young competitive athletes for prevention of sudden death: proposal for a common European protocol: Consensus Statement of the Study Group of Sport Cardiology of the Working Group of Cardiac Rehabilitation and Exercise Physiology and the Working Group of Myocardial and Pericardial Diseases of the European Society of Cardiology. Eur Heart J. 2005;26:516–524.
    [4] Maron BJ, Isner JM, McKenna WJ. 26th Bethesda conference: recommendations for determining eligibility for competition in athletes with cardiovascular abnormalities. Task Force 3: hypertrophic cardiomyopathy, myocarditis and other myopericardial diseases and mitral valve prolapse. J Am Coll Cardiol. 1994;24:880–885.
    [5] McConnell BK, Fatkin D, Semsarian C, Jones KA, Georgakopoulos D, Maguire CT, Healey MJ, Mudd JO, Moskowitz IP, Conner DA, Giewat M, Wakimoto H,Berul CI, Schoen FJ, Kass DA, Seidman CE, Seidman JG. Comparison of two murine models of familial hypertrophic cardiomyopathy. Circ Res. 2001;88:383-9.
    [6] Marian AJ, Senthil V, Chen SN, Lombardi R. Antifibrotic effects of antioxidant N-acetylcysteine in a mouse model of human hypertrophic cardiomyopathy mutation. J Am Coll Cardiol. 2006;47:827-34.
    [7] Tardiff JC. Sarcomeric proteins and familial hypertrophic cardiomyopathy: linking mutations in structural proteins to complex cardiovascular phenotypes. Heart Fail Rev. 2005;10:237-48.
    [8] Geisterfer-Lowrance AA, Christe M, Conner DA, et al. A mouse model of familial hypertrophic cardiomyopathy. Science. 1996;272:731–734.
    [9] Healey, MJ, Fatkin D, Arroyo LH, Lee RT, Maguire CT, Bevilacqua LM, Berul CI, Seidman JG, and Seidman CE. Exercise and beta-blocker therapy in alpha-myosin heavy chain mutant mice with hypertrophic cardiomyopathy. Circulation 98: S70, 1998.
    [10] Freeman K, Colon-Rivera C, Olsson MC, Moore RL, Weinberger HD, Grupp IL, Vikstrom KL, Iaccarino G, Koch WJ, Leinwand LA. Progression from hypertrophic to dilated cardiomyopathy in mice that express a mutant myosin transgene. Am J Physiol Heart Circ Physiol. 2001;280: 151-9.
    [11] Konhilas JP, Watson PA, Maass A, Boucek DM, Horn T, Stauffer BL, Luckey SW, Rosenberg P, Exercise can prevent and reverse the severity of hypertrophic cardiomyopathy.Circ Res. 2006;98:540-8.
    [12] McMullen JR, Amirahmadi F, Woodcock EA, Schinke-Braun M, Bouwman RD, Hewitt KA, Mollica JP, Zhang L, Zhang Y, Shioi T, Buerger A, Izumo S, Jay PY, Jennings GL. Protective effects of exercise and phosphoinositide 3-kinase(p110alpha) signaling in dilated and hypertrophic cardiomyopathy. Proc NatlAcad Sci U S A. 2007;104:612-7.
    [13] Sharma S, Firoozi S, McKenna WJ. Value of exercise testing in assessing clinical state and prognosis in hypertrophic cardiomyopathy. Cardiol Rev. 2001; 9: 70–76.
    [14] Guyatt GH, Devereaux PJ. A review of heart failure treatment. Mt Sinai J Med. 2004; 71: 47–54.
    [15] Evangelista FS, Brum PC, Krieger JE. Duration-controlled swimming exercise training induces cardiac hypertrophy in mice. Braz J Med Biol Res. 2003;36:1751-9.
    [16] Evangelista FS, Krieger JE. Small gene effect and exercise training-induced cardiac hypertrophy in mice: an Ace gene dosage study. Physiol Genomics. 2006;27:231-6.
    [17] McNally EM. Hypertrophic cardiomyopathy: exercise and eat right. Circ Res. 2006;98:443-445.
    [18] [Kemi OJ, Loennechen JP, Wisl?ff U, Ellingsen ?.Intensity-controlled treadmill running in mice: cardiac and skeletal muscle hypertrophy.J Appl Physiol. 2002;93:1301-9.
    [19] Nguyen L, Chung J, Lam L, Tsoutsman T, Semsarian C. Abnormal cardiac response to exercise in a murine model of familial hypertrophic cardiomyopathy. Int J Cardiol. 2007 ,10;119:245-8.
    [20] Medeiros A, Rolim NP, Oliveira RS, Rosa KT, Mattos KC, Casarini DE, Irigoyen MC, Krieger EM, Krieger JE, Negr?o CE, Brum PC. Exercise training delays cardiac dysfunction and prevents calcium handling abnormalities in sympathetic hyperactivity-induced heart failure mice. J Appl Physiol. 2008;104:103-9.
    [21] Medeiro A, Vanzelli AS, Rosa KT, Irigoyen MC, Brum PC .Effect of exercisetraining and carvedilol treatment on cardiac function and structure in mice with sympathetic hyperactivity-induced heart failure. Braz J Med Biol Res. 2008;41:812-7.
    [22] Kamiński KA, Oledzka E, Bia?obrzewska K, Kozuch M, Musia? WJ, Winnicka MM. The effects of moderate physical exercise on cardiac hypertrophy in interleukin 6 deficient mice. Adv Med Sci. 2007;52:164-8.
    [23] Vakili BA, Okin PM, Devereux RB. Prognostic implications of left ventricular hypertrophy. Am Heart J 2001;141:334– 41.
    [24] Capek P, Brdicka R. Hypertrophic cardiomyopathy.Cas Lek Cesk. 2006;145:93-6; 96-7.
    [25] Medeiros Pde T, Martinelli Filho M, Arteaga E, Costa R, Siqueira S, Mady C, Piegas LS, Ramires JA. Hypertrophic cardiomyopathy: the importance of arrhythmic events in patients at risk for sudden cardiac death. Arq Bras Cardiol. 2006;87:649-57.
    [26] James J, Zhang Y, Osinska H, Sanbe A, Klevitsky R, Hewett TE, et al.Transgenic modeling of a cardiac troponin I mutation linked to familial hypertrophic cardiomyopathy. Circ Res 2000;87:805–11.
    [27] Sanbe A, James J, Tuzcu V, Nas S, Martin L, Gulick J, et al. Transgenic rabbit model for human troponin I-based hypertrophic cardiomyopathy. Circulation 2005;111:2330–8.
    [28] Tsoutsman T, Chung J, Doolan A, Nguyen L, Williams IA, Tu E, Lam L, Bailey CG, Rasko JE, Allen DG, Semsarian C. Molecular insights from a novel cardiac troponin I mouse model of familial hypertrophic cardiomyopathy. J Mol Cell Cardiol. 2006;41:623-32.
    [29] Yoshida N, Ikeda H, Wada T, et al. Exercise-induced abnormal blood pressure responses are related to subendocardial ischemia in hypertrophiccardiomyopathy. J Am Coll Cardiol. 1998;32:1938–1942.
    [30] Sadoul N, Prasad K, Elliott PM, et al. Prospective prognostic assessment of blood pressure response during exercise in patients with hypertrophic cardiomyopathy. Circulation. 1997;96:2987–2991.
    [31] Frenneaux MP, Counihan PJ, Caforio AL, et al. Abnormal blood pressure response during exercise in hypertrophic cardiomyopathy.Circulation. 1990;82:1995–2002.
    [32] La Vecchia L, Ometto R, Bedogni F, et al. Ventricular late potentials, interstitial fibrosis, and right ventricular function in patients with ventricular tachycardia and normal left ventricular function. Am J Cardiol. 1998;81:790–792.
    [1]. Lind JM, Chiu C, Semsarian C. Genetic basis of hypertrophic cardiomyopathy. Expert Rev Cardiovasc Ther. 2006;4:927-34.
    [2].Capek P, Brdicka R. Hypertrophic cardiomyopathy.Cas Lek Cesk. 2006;145:93-6; discussion 96-7.
    [3] Marian AJ, Robert R. The molecular genetic basis for hypertrophic cardiomyo pathy. J Mol Cell Cardiol, 2001, 33: 655 - 670.
    [4] Solomon SD, Geisterfer - Lowerance AA, et al. A locus for familial hypertrophic cardiomyopathy is closely linked to the cardiac myosin heavy chain genes, CR I - L436, and CR I - L329 on chromosome 14 at q11 - q12. Am J Hum Genet, 1990, 47: 389 - 394.
    [5]Hughes SE, Mckenna W I. New insights into the pathology of in herited cardiomyopathy. Heart, 2005, 91: 257 - 264.
    [6]廖玉华。从心肌病病因学研究走向临床诊断与治疗实践。中华心血管病杂志, 2007, 35: 1– 3。
    [7] Jaenisch R, MintzBS. Virus 40 DNA sequences in DNA of healthy adult mice derived from p reimp lantation blastocysts injected with viral DNA. ProcNatlAcad SciUSA, 1974, 71: 1250 - 1254.
    [8] Vikstrom KL AND Leinwand LA. Contractile protein mutations and heart disease. Curr Opin Cell Biol 1996;8: 97-105.
    [9] Z Kardiol. A murine model for hypertrophic cardiomyopathy.1995;84 Suppl 4:49-54.
    [10] Vikstrom KL, Factor SM, Leinwand LA.Mice expressing mutant myosin heavy chains are a model for familial hypertrophic cardiomyopathy.Mol Med. 1996;2:556-67.
    [11] Palmer BM, Wang Y, Teekakirikul P, Hinson JT, Fatkin D, Strouse S, Vanburen P, Seidman CE, Seidman JG, Maughan DW.Myofilament mechanical performance is enhanced by R403Q myosin in mouse myocardium independent of sex.Am J Physiol Heart Circ Physiol. 2008;294: 1939-47.
    [12] Nagueh SF, Chen S, Patel R, Tsybouleva N, Lutucuta S, Kopelen HA, Zoghbi WA, Qui?ones MA, Roberts R, Marian AJ. Evolution of expression of cardiac phenotypes over a 4-year period in the beta-myosin heavy chain-Q403 transgenic rabbit model of human hypertrophic cardiomyopathy.J Mol Cell Cardiol. 2004; 36:663-73.
    [13] Marian AJ, Wu Y, Lim DS, McCluggage M, Youker K, Yu QT, Brugada R, DeMayo F, Quinones M, Roberts R. A transgenic rabbit model for human hypertrophic cardiomyopathy. J Clin Invest. 1999;104:1683-92.
    [14] Marian AJ. Genetic predisposition to cardiac Cardiovascular Pharmacogenetics. Springer, 2003,178-199.
    [15] Tardiff JC, Factor SM, Tompkins BD, et al. A truncated cardiac troponin T molecule in transgenic mice suggests multip le cellular mechanisms for familial hypertrophic cardiomyopathy. J Clin Invest, 1998, 101: 2800 - 2811.
    [16]董伟,冯娟,全雄志,陈炜,祝梅香,刘亚莉,张连峰。cTnT R92Q转基因小鼠肥厚型心肌病模型的建立。中国比较医学杂志,2008,18(5):5-8。
    [17] Tardiff JC, Hewett TE, Palmer BM, Olsson C, Factor SM, Moore RL, Robbins J, Leinwand LA.Cardiac troponin T mutations result in allele-specific phenotypes in a mouse model for hypertrophic cardiomyopathy. J Clin Invest. 1999;104:469-81.
    [18]Luedde M, Fl?gel U, Knorr M, Grundt C, Hippe HJ, Brors B, Frank D, Haselmann U, Antony C, Voelkers M, Schrader J, Most P, Lemmer B, Katus HA, Frey N.Decreased contractility due to energy deprivation in a transgenic rat model of hypertrophic cardiomyopathy. J Mol Med. 2009 Feb 3.
    [19]Metzger JM, Westfall MV. Covalent and noncovalent modification of thin filament action. The essential role of troponin in cardiac muscle regulation. Circ Res. 2004; 94:146– 58.
    [20]Marian AJ. Clinical and Molecular Genetic Aspects of Hypernophic Cardiomyopathy. Current Cardiology Reviews, 2005, 1, 53-63.
    [21] Marian AJ. Genetic predisposition to cardiac hypertrophy. Cardiovascular Pharmacogenetics. 2003:178-199.
    [22] Richard P, Charron P, Carrier L, et al.Hypertrophic cardiomyopathy: distribution of disease genes, spectrum of mutations, and implications for a molecular diagnosis strategy. Circulation.2003;107:2227-2232.
    [23] James J, Zhang Y, Osinska H, Sanbe A, Klevitsky R, Hewett TE, Robbins J.Transgenic modeling of a cardiac troponin I mutation linked to familial hypertrophic cardiomyopathy.Circ Res. 2000;87:805-11.
    [24] Noland TA, Guo X, Raynor RL, Jideama NM, Averyhart-Fullard V, Solaro RJ, et al. Cardiac troponin I mutants: Phosphorylation by protein kinase C and A and regulation of Ca2+-stimulated MgATPase of reconstituted actomyosin S-1. J Biol Chem 1995;270:25445–54.
    [25] Burkart EM, Sumandea MP, Kobayashi T, Nili M, Martin AF, Homsher E, et al.Phosphorylation or glutamic acid substitution at protein kinase C sites on cardiac troponin I differentially depress myofilament tension and shortening velocity. J Biol Chem 2003;278:11265– 72.
    [26] Pyle WG, Sumandea MP, Solaro RJ, de Tombe PP. Troponin I serines 43/45 and regulation of cardiac myofilament function. Am J Physiol 2002;283:H1215–24.
    [27] MacGowan GA, Du C, Cowan DB, Stamm C, McGowan FX, Solaro RJ, Koretsky AP, Del Nido PJ.Ischemic dysfunction in transgenic mice expressing troponin I lacking protein kinase C phosphorylation sites.Am J Physiol Heart Circ Physiol. 2001;280: 835-43.
    [28] Tsoutsman T, Kelly M, Ng DC, Tan JE, Tu E, Lam L, Bogoyevitch MA, Seidman CE, Seidman JG, Semsarian C.Severe heart failure and early mortality in a double-mutation mouse model of familial hypertrophic cardiomyopathy. Circulation. 2008;117:1820-31.
    [29] Du J, Liu J, Feng HZ, Hossain MM, Gobara N, Zhang C, Li Y, Jean-Charles PY, Jin JP, Huang XP.Impaired relaxation is the main manifestation in transgenic mice expressing a restrictive cardiomyopathy mutation, R193H, in cardiac TnI.Am J Physiol Heart Circ Physiol. 2008;294:H2604-13.
    [30]万文辉吴恒芳杨笛张寄南马文珠。一种新发现的肥厚型心肌病心肌肌钙蛋白Ⅰ基因突变。中华医学杂志,2003,83:1093。
    [31] Wu HF, Chen XJ, Yang D.Reduced Ca2+ current in rat cardiomyocytes transfected with troponin I R145W mutation gene.Zhonghua Xin Xue Guan Bing Za Zhi. 2007;35:1000-4.
    [32] Hoffmann B, Schmidt-traub H, Perrot A, et al. First mutation in cardiac troponin C, L29Q, in a patient with hypertrophic cardiomyopathy. Hum Mutat 2001;17: 524
    [33] Niimura H, Bachinski LL, Sangwatanaroj S, et al. Mutations in the gene forcardiac myosin-binding protein C and late-onset familial hypertrophic cardiomyopathy. N Engl J Med 1998; 338: 1248-1257.
    [34] van Dijk SJ, Dooijes D, dos Remedios C, Michels M, Lamers JM, Winegrad S, Schlossarek S, Carrier L, ten Cate FJ, Stienen GJ, van der Velden J. Cardiac myosin-binding protein C mutations and hypertrophic cardiomyopathy: haploinsufficiency, deranged phosphorylation, and cardiomyocyte dysfunction. Circulation. 2009;119:1473-83.
    [35] Erdmann J, Raible J, Maki-Abadi J, et al. Spectrum of clinical phenotypes and gene variants in cardiac myosin-binding protein C mutation carriers with hypertrophic cardiomyopathy. J Am Coll Cardiol 2001; 38: 322-330.
    [36] Marian A3 and Roberts. The molecular genetic basis for hypernophic cardiomyopathy.J mol cell cardiol. 2001;33:655-670.
    [37] Yang Q, Sanbe A, Osinska H, et al. A mouse model of myosin binding p rotein C human familial hypertrophic cardiomyopathy.J Clin Invest, 1998, 102: 1292 - 1300.
    [38] Yang Q, Sanbe A, Osinska H, Hewett TE, Klevitsky R, Robbins J.In vivo modeling of myosin binding protein C familial hypertrophic cardiomyopathy.Circ Res. 1999;85:841-7.
    [39] Yang Q, Hewett TE, Klevitsky R, Sanbe A, Wang X, Robbins J.PKA-dependent phosphorylation of cardiac myosin binding protein C in transgenic mice. Cardiovasc Res. 2001;51:80-8.
    [40] Yang Q, Osinska H, Klevitsky R, Robbins J.Phenotypic deficits in mice expressing a myosin binding protein C lacking the titin and myosin binding domains.J Mol Cell Cardiol. 2001;33:1649-58.
    [41] Harris SP, Bartley CR, Hacker TA, McDonald KS, Douglas PS, Greaser ML, Powers PA, Moss RL.Hypertrophic cardiomyopathy in cardiac myosin bindingprotein-C knockout mice.Circ Res. 2002;90:594-601.
    [42] Witt CC, Gerull B, Davies MJ, Centner T, Linke WA, Thierfelder L. Hypercontractile properties of cardiac muscle fibers in a knock-in mouse model of cardiac myosin-binding protein-C. J Biol Chem. 2001;276:5353-9.
    [43] Lankford EB, Epstein ND, Fananapazir L, Sweeney HL. Abnormal contractile properties of muscle fibers expressing beta-myosin heavy chain gene mutations in patients with hypertrophic cardiomyopathy .J Clin Invest. 1995;95:1409-14
    [44] Kirschner SE, Becker E, Antognozzi M, Kubis HP, Francino A, Navarro-López F, Bit-Avragim N, Perrot A, Mirrakhimov MM, Osterziel KJ, McKenna WJ, Brenner B, Kraft T. Hypertrophic cardiomyopathy-related beta-myosin mutations cause highly variable calcium sensitivity with functional imbalances among individual muscle cells. Am J Physiol Heart Circ Physiol. 2005;288: 1242-51.
    [45] Lin D, Bobkova A, Homsher E, Tobacman LS. Altered cardiac troponin T in vitro function in the presence of a mutation implicated in familial hypertrophic cardiomyopathy. J Clin Invest. 1996;97:2842-8.
    [46] Morimoto S, Yanaga F, Minakami R, Ohtsuki I. Ca2+-sensitizing effects of the mutations at Ile-79 and Arg-92 of troponin T in hypertrophic cardiomyopathy. Am J Physiol. 1998;275: 200-7.
    [47] Sweeney HL, Feng HS, Yang Z, Watkins H. Functional analyses of troponin T mutations that cause hypertrophic cardiomyopathy: insights into disease pathogenesis and troponin function. Proc Natl Acad Sci U S A. 1998;95: 14406- 10.
    [48] Takahashi-Yanaga F, Ohtsuki I, Morimoto S. Effects of troponin T mutations in familial hypertrophic cardiomyopathy on regulatory functions of other troponin subunits. J Biochem. 2001;130:127-31
    [49] Watkins H, Seidman CE, Seidman JG, Feng HS, Sweeney HL. Expression andfunctional assessment of a truncated cardiac troponin T that causes hypertrophic cardiomyopathy. Evidence for a dominant negative action. J Clin Invest. 1996;98:2456-61.
    [50] Rust EM, Albayya FP, Metzger JM. Identification of a contractile deficit in adult cardiac myocytes expressing hypertrophic cardiomyopathy-associated mutant troponin T proteins. J Clin Invest. 1999;103:1459-67.
    [51] Nakaura H, Morimoto S, Yanaga F, Nakata M, Nishi H, Imaizumi T, Ohtsuki I. Functional changes in troponin T by a splice donor site mutation that causes hypertrophic cardiomyopathy. Am J Physiol. 1999;277: 225-32.
    [52] Morimoto S, Lu QW, Harada K, Takahashi-Yanaga F, Minakami R, Ohta M, Sasaguri T, Ohtsuki I. Ca(2+)-desensitizing effect of a deletion mutation Delta K210 in cardiac troponin T that causes familial dilated cardiomyopathy. Proc Natl Acad Sci U S A. 2002 ;99:913-8.
    [53] Frey N, Brixius K, Schwinger RH, Benis T, Karpowski A, Lorenzen HP, Luedde M, Katus HA, Franz WM. Alterations of tension-dependent ATP utilization in a transgenic rat model of hypertrophic cardiomyopathy. J Biol Chem. 2006;281: 29575-82.
    [54] Maass AH, Ikeda K, Oberdorf-Maass S, Maier SK, Leinwand LA. Hypertrophy, fibrosis, and sudden cardiac death in response to pathological stimuli in mice with mutations in cardiac troponin T. Circulation. 2004;110:2102-9.
    [55] Frey N, Franz WM, Gloeckner K, Degenhardt M, Müller M, Müller O, Merz H, Katus HA. Transgenic rat hearts expressing a human cardiac troponin T deletion reveal diastolic dysfunction and ventricular arrhythmias. Cardiovasc Res. 2000;47:210-1.
    [56] K?hler J, Chen Y, Brenner B, Gordon AM, Kraft T, Martyn DA, Regnier M, Rivera AJ, Wang CK, Chase PB. Familial hypertrophic cardiomyopathy mutationsin troponin I (K183D, G203S, K206Q) enhance filament sliding. Physiol Genomics. 2003;14:117-28.
    [57] Kruger M, Zittrich S, Redwood C, Blaudeck N, James J, Robbins J, Pfitzer G, Stehle R. Effects of the mutation R145G in human cardiac troponin I on the kinetics of the contraction-relaxation cycle in isolated cardiac myofibrils. J Physiol. 2005;564:347-57
    [58] Lang R, Gomes AV, Zhao J, Housmans PR, Miller T, Potter JD. Functional analysis of a troponin I (R145G) mutation associated with familial hypertrophic cardiomyopathy. J Biol Chem. 2002;277:11670-8.
    [59] Wen Y, Pinto JR, Gomes AV, Xu Y, Wang Y, Wang Y, Potter JD, Kerrick WG. Functional consequences of the human cardiac troponin I hypertrophic cardiomyopathy mutation R145G in transgenic mice. J Biol Chem. 2008;283: 20484-94.
    [60] Schmidtmann A, Lindow C, Villard S, Heuser A, Mügge A, Gessner R, Granier C, Jaquet K. Cardiac troponin C-L29Q, related to hypertrophic cardiomyopathy, hinders the transduction of the protein kinase A dependent phosphorylation signal from cardiac troponin I to C. FEBS J. 2005;272:6087-97.
    [61] Patel R, Nagueh SF, Tsybouleva N, Abdellatif M, Lutucuta S, Kopelen HA, Quinones MA, Zoghbi WA, Entman ML, Roberts R, Marian AJ. Simvastatin induces regression of cardiac hypertrophy and fibrosis and improves cardiac function in a transgenic rabbit model of human hypertrophic cardiomyopathy. Circulation. 2001;104:317-24.
    [62] Senthil V, Chen SN, Tsybouleva N, Halder T, Nagueh SF, Willerson JT, Roberts R, Marian AJ. Prevention of cardiac hypertrophy by atorvastatin in a transgenic rabbit model of human hypertrophic cardiomyopathy. Circ Res. 2005;97:285-92.
    [63] Luckey SW, Mansoori J, Fair K, Antos CL, Olson EN, Leinwand LA. Blockingcardiac growth in hypertrophic cardiomyopathy induces cardiac dysfunction and decreased survival only in males. Am J Physiol Heart Circ Physiol. 2007;292: 838-45.
    [64] Luckey SW, Walker LA, Smyth T, Mansoori J, Messmer-Kratzsch A, Rosenzweig A, Olson EN, Leinwand LA. The role of Akt/GSK-3beta signaling in familial hypertrophic cardiomyopathy. J Mol Cell Cardiol. 2009 Feb 21. [Epub ahead of print]
    [65] Lim DS, Lutucuta S, Bachireddy P, et al. Angiotensin II blockade reversesmyocardial fibrosis in a transgenic mouse model of human hypertrophic cardiomyopathy. Circulation, 2001, 103: 789 -791.
    [66] Solaro RJ. Modulation of cardiac myofilament activity by protein phosphorylation. In: Page E, Fozzard H, Solaro RJ, editors. Handbook of physiology. New York7 xford University Press; 2001. 264–300.
    [67] Solaro RJ, Rarick HM. Troponin and tropomyosin. Proteins that switch on and tune in the activity of cardiac myofilaments. Circ Res. 1998;83:471–80.
    [68] Diane fatkin AND Robert M.Molecular Mechanisms of Cardiomyopathies. Physiol Rev ,2002 ,82: 945-980.
    [69] Geisterfer2Lowrance AAT, Christe ME, Conner DA, et al. A mouse model of familial hypertrophic cardiomyopathy. Science, 1996, 272: 731 - 734.
    [70] Jagatheesan G, Rajan S, Petrashevskaya N, et al. Rescue of tropomyosin-induced familial hypertrophic cardiomyopathy mice by transgenesis. Am J Physiol Heart Circ Physiol, 2007, 293: 907 - 908.