水翁花中活性成分DMC的降血糖功效及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文运用体外模型对一种从水翁(Cleistocalyx operculatus (Roxb.) Merr. et Perry)的干燥花蕾中提取纯化的化合物,2',4'-二羟基-6’-甲氧基-3',5'-二甲基查耳酮(DMC),进行了一系列降血糖的功效及机制研究。研究主要从以下几个方面着手:DMC对小肠内碳水化合物消化酶活性的影响;DMC对小肠上皮细胞吸收葡萄糖的影响;DMC对葡萄糖毒性损伤的胰岛p细胞分泌胰岛素的影响及机制;DMC对胰岛素敏感器官利用葡萄糖的影响,包括对骨骼肌细胞L6和脂肪细胞3T3-L1摄取葡萄糖的影响,对肝脏HepG2细胞合成肝糖原的影响;以及对3T3-L1脂肪细胞分化和产生脂滴的影响和机制。
     胰腺α-淀粉酶和小肠α-葡萄糖苷酶是小肠内主要的碳水化合物消化酶,研究结果表明,DMC具有强烈的抑制胰腺α-淀粉酶(0.033Units/mL)的作用,其方式为非竞争性抑制,IC50为43μM;但是其对小肠a-葡萄糖苷酶(0.004Units/mg蛋白)并没有显著的抑制作用(<20%)。葡萄糖在小肠内的吸收是高血糖产生过程中至关重要的一步,研究表明,DMC在Caco-2单层细胞模型上显著抑制葡萄糖的转运(P<0.05)。在模拟的空腹状态下,其抑制效果具有剂量依赖性,2.5、10、和40μMDMC分别抑制了葡萄糖转运64%、40%、和18%(vs.对照组);而在模拟的饱腹状态下则没有明显的剂量关系,DMC浓度为2.5、10、和40μM时对葡萄糖转运的抑制率分别为42%、48%、和52%(vs.对照组)。
     胰岛素是体内唯一降血糖的激素,胰岛受损会导致其产生的胰岛素大幅下降。胰岛长期处于高葡萄糖状态(葡萄糖毒性状态)会导致损伤。在33mM葡萄糖浓度下孵育48h,小鼠胰岛p细胞RIN-5F的细胞活力显著降低,胰岛素分泌功能受损;DMC干预葡萄糖毒性状态的RIN-5F细胞,葡萄糖刺激的胰岛素分泌会随剂量的增加而增多,其在2μM和20μM时分别提高胰岛素分泌量1.94和4.38ng/mL(提高了63%和143%,P<0.05,vs.对照组),而各种浓度DMC处理组与其相对应的对照相比较,细胞的活力并没有受到影响,因此推断,DMC是通过提高单个胰岛β细胞的胰岛素分泌能力来提高胰岛素生成的,但DMC对基础胰岛素的分泌则没有影响;结果显示,DMC提高葡萄糖毒性损伤的RIN-5F细胞分泌胰岛素,可能是通过模拟GLP-1的作用以及提高GLP-1R的表达,从而提高胰岛素合成通路上的各个基因靶点(PDX-1、PRE-INS、GLUT2、和GCK)的表达。另一种可能是DMC通过抑制葡萄糖毒性状态引起的iNOS和MCP-1的表达,从而抑制一氧化氮(NO)的生成和其对胰岛细胞功能的损伤。
     改善胰岛素抵抗状态,对治疗高血糖也是大有裨益。研究表明,10μM DMC能促进3T3-L1细胞对葡萄糖的摄取,与对照组相比,提高了78%(P<0.05),而20μM DMC则没有表现出对葡萄糖摄取的差异性。20μM DMC对骨骼肌L6细胞摄取葡萄糖和对肝脏HepG2细胞合成肝糖原都没有显著影响。高浓度DMC (10μM和μM)显著降低3T3-L1细胞的脂肪合成,分别降低了55%和20%(P<0.01vs.分化对照组);低浓度DMC(2.5μM)则增加3T3-L1细胞的脂滴产生,增加了39%(P<0.01vs.分化对照组);而5μM DMC则对脂肪合成没有显著影响。通过运用定量RT-PCR监测基因水平表达和Western blot对蛋白水平表达的验证,我们推测DMC对3T3-L1细胞脂肪合成的影响是通过调控PPAR-γ和C/EBP-α的来表达实现的。这些结果显示了DMC用于治疗高血糖的潜在可能性。
2',4'-Dihydroxy-6'-methoxy-3',5'-dimethylchalcone (DMC), a compound isolated and purified from the dried flower buds of Cleistocalyx operculatus (Roxb.) Merr. et Perry (Myrtaceae), was investigated for its glucose control benefits and corresponding mechanism of action using in-vitro methods. The study was carried on from the perspective of intestinal digestive enzymes, glucose transport, insulinotropic against glucotoxicity, glucose uptake/glycogen synthesis in insulin sensitive tissue cells, and3T3-L1pre-adipocyte differentiation.
     For the effect on intestinal digestive enzymes, DMC showed strong non-competitive (IC50of43μM) inhibition of pancreatic α-amylase; it was, however, ineffective against intestinal a-glucosidase. As to glucose absorption, DMC exhibited remarkable glucose transport inhibition effects in both simulated fasting and fed states in Caco-2cell monolayers (P<0.05), while the inhibition of DMC was dose dependent in simulated fasting status, and no dose effect in simulated fed status.
     When exposed to high glucose at the cytotoxicity level for48h, RIN-5F β-cells experienced a significant viability loss and impaired insulin secretion function. Whereas, co-treating with DMC can protect β-cells against glucotoxicity-induced decrease in glucose-stimulated insulin secretion in a dose-dependent manner without affecting basal insulin secretion. It was demonstrated that DMC increased insulin secretion against glucotoxicity by simulating the effect of GLP-1and enhancing the expression of GLP-1R, followed by activating the signal pathway of PDX-1, PRE-INS, and GLUT2-GCK. Another mechanism was that DMC avoided the pancreatic islets dysfunction of cellular damage by suppressing the production of nitric oxide (NO) by iNOS, and the expression of MCP-1. The results indicated the potential application of DMC in the intervention against glucotoxicity-induced hyperglycaemia.
     DMC (10μM) treatment remarkably promoted glucose uptake in differentiated3T3-L1adipocytes(P<0.05vs.control group), and at concentration of20μM, DMC did not show-any effect in adipocytes; while, the glucose uptake in L6myoblasts and glycogen synthesis in HepG2hepatocytes were not affected by the treatment. DMC had paradoxical effect on lipid accumulation in3T3-L1cells compared with differentiation control. High concentration DMC (10and20μM) markedly diminished lipid accumulation; however, low concentration of DMC (2.5μM) enhanced lipid storage in3T3-L1cells (P<0.01vs. differentiation control group), and5μM DMC did not impose significant effect. It was demonstrated that the effect of DMC in lipid accumulation was controlled by the expression of PPAR-y. Such effects highlight therapeutic potential of DMC in the management of hyperglycemia.
引文
[1]WHO| Diabetes programme.
    [2]Yang W, Lu J, Weng J, et al. Prevalence of diabetes among men and women in China. N Engl J Med.2010,362:1090-1101.
    [3]Cheng A, Y Y, Fantus IG. Oral antihyperglycemic therapy for type 2 diabetes mellitus. CMAJ.2005,172:213-226.
    [4]Jackson S, Bagstaff SM, Lynn S, et al. Decreased insulin responsiveness of glucose uptake in cultured human skeletal muscle cells from insulin-resistant nondiabetic relatives of type 2 diabetic families. Diabetes.2000,49:1169-1177.
    [5]Kakkar R, Mantha SV, Radhi J, et al. Increased oxidative stress in rat liver and pancreas during progression of streptozotocin-induced diabetes. Clin Sci (Lond).1998, 94:623-632.
    [6]MacAulay K, Doble BW, Patel S, et al. Glycogen synthase kinase 3alpha-specific regulation of murine hepatic glycogen metabolism. Cell Metab.2007,6:329-337.
    [7]Nakata M, Shioda S, Oka Y, et al. Insulinotropin PACAP potentiates insulin-stimulated glucose uptake in 3T3 L1 cells. Peptides.1999,20:943-948.
    [8]Shi Y, Burn P. Lipid metabolic enzymes:emerging drug targets for the treatment of obesity. Nat Rev Drug Discov.2004,3:695-710.
    [9]Sun CM, Lin LG, Yu HJ, et al. Synthesis and cytotoxic activities of 4,5-diarylisoxazoles. Bioorg Med Chem Lett.2007,17,1078-1081.
    [10]Talior I, Yarkoni M, Bashan N, et al. Increased glucose uptake promotes oxidative stress and PKC-delta activation in adipocytes of obese, insulin-resistant mice. Am J Physiol Endocrinol Metab.2003,285:E295-302.
    [11]Virkamaki A, Ueki K, Kahn CR. Protein-protein interaction in insulin signaling and the molecular mechanisms of insulin resistance. J Clin Invest.1999,103:931-943.
    [12]Fonseca VA. Management of diabetes mellitus and insulin resistance in patients with cardiovascular disease. Am J Cardiol.2003,92:50-60.
    [13]Firth R, Bell P, Rizza R. Insulin action in non-insulin-dependent diabetes mellitus:the relationship between hepatic and extrahepatic insulin resistance and obesity. Metabolism.1987,36:1091-1095.
    [14]Weisberg SP, McCann D, Desai M, et al. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest.2003,112:1796-1808.
    [15]Buchanan TA. Pancreatic beta-cell loss and preservation in type 2 diabetes. Clin. Therap.2003,25:B32-B46.
    [16]Kashyap S, Belfort R, Gastaldelli A, et al. A Sustained Increase in Plasma Free Fatty Acids Impairs Insulin Secretion in Nondiabetic Subjects Genetically Predisposed to Develop Type 2 Diabetes. Diabetes.2003,52:2461-2474.
    [17]Dung NT, Kim JM, Kang SC. Chemical composition, antimicrobial and antioxidant activities of the essential oil and the ethanol extract of Cleistocalyx operculatus (Roxb.) Merr and Perry buds. Food Chem. Toxicol.2008,46:3632-3639.
    [18]Ye CL, Lu YH, Wei DZ. Flavonoids from Cleistocalyx operculatus. Phytochemistry 2004,65:445-447.
    [19]Mai TT, Yamaguchi K, Yamanaka M, et al. V. Protective and anticataract effects of the aqueous extract of Cleistocalyx operculatus flower buds on beta-cells of streptozotocin-diabetic rats. J. Agric. Food Chem.2010,58:4162-4168.
    [20]Ko H, Kim YJ, Amor EC, et al. Induction of autophagy by dimethyl cardamonin is associated with proliferative arrest in human colorectal carcinoma HCT116 and LOVO cells. J. Cell Biochem.2011,112:2471-2479.
    [21]Li DD, Wu XQ, Tang J, et al. ON-III inhibits erbB-2 tyrosine kinase receptor signal pathway and triggers apoptosis through induction of Bim in breast cancer cells. Cancer Biol. Ther.2009,8:739-743.
    [22]Wei H, Zhang X, Wu G, et al. Chalcone derivatives from the fern Cyclosorus parasiticus and their anti-proliferative activity. Food Chem Toxicol.2013,60:147-152.
    [23]Astapova O, Leff T. Adiponectin and PPARy:cooperative and interdependent actions of two key regulators of metabolism. Vitam Horm.2012,90:143-162.
    [24]Ye CL, Liu JW, Wei DZ, et al. In vitro anti-tumor activity of 2',4'-dihydroxy-6'-methoxy-3',5'-dimethylchalcone against six established human cancer cell lines. Pharmacol. Res.2004,50:505-510.
    [25]Ye CL, Liu JW, Wei DZ, et al. In vivo antitumor activity by 2',4'-dihydroxy-6'-methoxy-3',5'-dimethylchalcone in a solid human carcinoma xenograft model. Cancer Chemother. Pharmacol.2005,55:447-452.
    [26]Ye CL, Liu Y, Wei DZ. Antioxidant and anticancer activity of 3'-formyl-4', 6'-dihydroxy-2'-methoxy-5'-methylchalcone and (2S)-8-formyl-5-hydroxy-7-methoxy-6-methylflavanone. J. Pharm. Pharmacol.2007,59:553-559.
    [27]Ye CL, Qian F, Wei DZ, et al. Induction of apoptosis in K562 human leukemia cells by 2',4'-dihydroxy-6'-methoxy-3',5'-dimethylchalcone. Leuk. Res.2005,29:887-892.
    [28]Zhu X, Xie B, Zhou J, et al. Blockade of Vascular Endothelial Growth Factor Receptor Signal Pathway and Antitumor Activity of ON-Ⅲ (2',4'-dihydroxy-6'-methoxy-3',5'-dimethylchalcone), a component from Chinese Herbal Medicine. Mol. Pharmacol.2005, 67:1444-1450.
    [29]Huang H, Niu J, Lu Y. Multidrug resistance reversal effect of DMC derived from buds of Cleistocalyx operculatus in human hepatocellular tumor xenograft model. J. Sci. Food Agric.2012,92:135-140.
    [30]Qian F, Ye CL, Wei DZ, et al. In vitro and in vivo reversal of cancer cell multidrug resistance by 2',4'-dihydroxy-6'-methoxy-3',5'-dimethylchalcone. J. Chemother.2005, 17:309-314.
    [31]Mai TT, Chuyen NV. Anti-Hyperglycemic Activity of an Aqueous Extract from Flower Buds of Cleistocalyx operculatus (Roxb.) Merr and Perry. Biosci., Biotechnol., Biochem.2007,71:69-76.
    [32]Mai TT, Fumie N, Van Chuyen. Antioxidant Activities and Hypolipidemic Effects of an Aqueous Extract From Flower Buds of Cleistocalyx Operculatus [Roxb.] Merr. and Perry. J. Food Biochem.2009,33:790-807.
    [33]Kim YJ, Ko H, Park JS, et al. Dimethyl cardamonin inhibits lipopolysaccharide-induced inflammatory factors through blocking NF-kappaB p65 activation. Int. Imrnunopharmacol.2010,10:1127-1134.
    [34]Dung NT, Bajpai VK, Yoon JI, et al. Anti-inflammatory effects of essential oil isolated from the buds of Cleistocalyx operculatus (Roxb.) Merr and Perry. Food Chem. Toxicol. 2009,47:449-53.
    [35]Woo AYH, Waye MMY, Kwan HS, et al. Inhibition of ATPases by Cleistocalyx operculatus A possible mechanism for the cardiotonic actions of the herb. Vasc. Pharmacol.2002,38:163-168.
    [36]卢艳花,杜长斌,吴子斌等.水翁花对微粒体和神经细胞氧化损伤的保护作用.中国中药杂志.2003,28,964-966.
    [37]Min BS, Cuong TD, Lee JS, et al. Cholinesterase inhibitors from Cleistocalyx operculatus buds. Arch. Pharm. Res.2010,33:1665-1670.
    [38]Amor EC, Villasenor IM, Ghayur MN, et al. Spasmolytic flavonoids from Syzygium samarangense (Blume) Merr. & L.M. Perry. Z. Naturforsch. C.2005,60:67-71.
    [39]Yu WG, Qian J, Lu YH. Hepatoprotective effects of 2',4'-dihydroxy-6'-methoxy-3',5'-dimethylchalcone on CC14-induced acute liver injury in mice. J. Agric. Food Chem. 2011,59:12821-12829.
    [40]Ghayur MN, Gilani H, Khan A, et al. Presence of calcium antagonist activity explains the use of Syzygium samarangense in diarrhoea. Phytother. Res.2006,20:49-52.
    [41]Salem MM, Werbovetz KA. Antiprotozoal compounds from Psorothamnus polydenius. J. Nat. Prod.2005,68:108-111.
    [42]Dao TT, Tung BT, Nguyen PH, et al. C-Methylated flavonoids from Cleistocalyx operculatus and their inhibitory effects on novel influenza A (H1N1) neuraminidase. J. Nat. Prod.2010,3423:1636-1642.
    [43]Huang H, Niu J, Zhao L, et al. Reversal effect of 2',4'-dihydroxy-6'-methoxy-3',5'-dimethylchalcone on multi-drug resistance in resistant human hepatocellular carcinoma cell line BEL-7402/5-FU. Phytomedicine 2011,18:1086-1092.
    [44]Mai TT, Thu NN, Tien PG, et al. Alpha-glucosidase inhibitory and antioxidant activities of Vietnamese edible plants and their relationships with polyphenol contents. J. Nutr. Sci.Vitaminol.2007,53:267-276.
    [45]金晓辉,魏孝义,黄志伟等.水翁花提取物的PPAR-y配体活性鉴定.安徽农业科学.2008,36:9106-9109.
    [46]Resurreccion-Magno MHC, Villasenor IM, Harada N, et al. Antihyperglycaemic flavonoids from Syzygium samarangense (Blume) Merr. and Perry. Phytother. Res. 2005,19:246-251.
    [47]Min BS, Thu CV, Dat NT, et al. Antioxidative flavonoids from Cleistocalyx operculatus buds. Chem. Pharm. Bull.2008,56:1725-1728.
    [48]Su MY, Huang HY, Li L, et al. Protective effects of 2',4'-dihydroxy-6'-methoxy-3',5'-dimethylchalcone to PC 12 cells against cytotoxicity induced by hydrogen peroxide. J. Agric. Food Chem.2011,59:521-527.
    [49]Martinez A, Conde E, Moure A. Protective effect against oxygen reactive species and skin fibroblast stimulation of Couroupita guianensis leaf extracts. Nat. Prod. Res.2012, 26:37-41.
    [50]Amor EC, Villasenor IM, Yasin A, et al. Prolyl endopeptidase inhibitors from Syzygium samarangense (Blume) Merr. & L. M. Perry. Z. Naturforsch., C 2004,59: 86-92.
    [51]Gafner S, Wolfender JL, Mavi S, et al. Antifungal and antibacterial chalcones from Myrica serrata. Planta Med.1996,62:67-69.
    [52]Nappo F, Esposito K, Cioffi M, et al. Postprandial endothelial activation in healthy subjects and in type 2 diabetic patients:role of fat and carbohydrate meals.J Am Coll Cardiol.2002,39:1145-1150.
    [53]Dubois M, Gilles K, Hamilton, JK, et al. A colorimetric method for the determination of sugars. Nature.1951,168:167.
    [54]Hakamata W, Kurihara M, Okuda H, et al. Design and screening strategies for alpha-glucosidase inhibitors based on enzymological information. Curr Top Med Chem. 2009,9:3-12.
    [55]Lankisch M, Layer P, Rizza RA, et al. Acute postprandial gastrointestinal and metabolic effects of wheat amylase inhibitor in normal, obese, and diabetic humans. Pancreas.1998,17:176-181.
    [56]Caspary WF. Physiology and pathophysiology of intestinal absorption. Am J Clin Nutr. 1992,55:299S-308S.
    [57]Zhang J, Chung T, Oldenburg K. A Simple Statistical Parameter for Use in Evaluation and Validation of High Throughput Screening Assays. J Biomol Screen.1999,4: 67-73.
    [58]Zhu HJ, Wang JS, Markowitz JS, et al. Characterization of P-glycoprotein inhibition by major cannabinoids from marijuana. J Pharmacol Exp Ther.2006,317:850-857.
    [59]Perloff ES, Duan SX, Skolnik PR, et al. Atazanavir:effects on P-glycoprotein transport and CYP3A metabolism in vitro. Drug Metab Dispos.2005,33:764-770.
    [60]Yumoto R, Murakami T, Nakamoto Y, et al. Transport of rhodamine 123, a P-glycoprotein substrate, across rat intestine and Caco-2 cell monolayers in the presence of cytochrome P-450 3A-related compounds. J Pharmacol Exp Ther.1999, 289:149-155.
    [61]Anderberg EK, Nystrom C, Artursson P. Epithelial transport of drugs in cell culture. VII:Effects of pharmaceutical surfactant excipients and bile acids on transepithelial permeability in monolayers of human intestinal epithelial (Caco-2) cells. J Pharm Sci. 1992,81:879-887.
    [62]Yee S. In vitro permeability across Caco-2 cells can predict in vivo (small intestinal) absorption in man--fact or myth. Pharm Res.1997,14:763-766.
    [63]Hilgers AR, Conradi RA, Burton PS. Caco-2 cell monolayers as a model for drug transport across the intestinal mucosa. Pharm Res.1990,7:902-910.
    [64]Hidalgo IJ, Raub TJ, Borchardt RT. Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology.1989,96:736-749.
    [65]Miret S, Abrahamse L, Groene EM. Comparison of in vitro models for the prediction of compound absorption across the human intestinal mucosa. J Biomol Screen.2004,9: 598-606.
    [66]Tsukura Y, Mori M, Hirotani Y, et al. Effects of capsaicin on cellular damage and monolayer permeability in human intestinal Caco-2 cells. Biol Pharm Bull.2007,30: 1982-1986.
    [67]Helliwell PA, Richardson M, Affleck J, et al. Stimulation of fructose transport across the intestinal brush-border membrane by PMA is mediated by GLUT2 and dynamically regulated by protein kinase C. Biochem J.2000,350:149-154.
    [68]Kellett GL, Helliwell PA. The diffusive component of intestinal glucose absorption is mediated by the glucose-induced recruitment of GLUT2 to the brush-border membrane. Biochem J.2000,350:155-162.
    [69]Fordtran JS, Rector FC, Carter NW. The mechanisms of sodium absorption in the human small intestine. J Clin Invest.1968,47:884-900.
    [70]Ebbeling CB, Leidig MM, Sinclair KB, et al. A reduced-glycemic load diet in the treatment of adolescent obesity. Arch Pediatr Adolesc Med.2003,157:773-779.
    [71]Kaiser N, Leibowitz G, Nesher R. Glucotoxicity and beta-cell failure in type 2 diabetes mellitus. J Pediatr Endocrinol Metab.2003,16:5-22.
    [72]Solomon TPJ, Knudsen SH, Karstoft K, et al. Examining the effects of hyperglycemia on pancreatic endocrine function in humans:evidence for in vivo glucotoxicity. J Clin Endocrinol Metab.2012,97:4682-4691.
    [73]Brownlee M. A radical explanation for glucose-induced beta cell dysfunction. J Clin Invest.2003,112:1788-1790.
    [74]Marchetti P, Del Prato S, Lupi R, et al. The pancreatic beta-cell in human Type 2 diabetes. Nutr Metab Cardiovasc Dis.2006,16 Suppl 1:S3-6.
    [75]Robertson R. Zhou H, Zhang T, et al. Chronic oxidative stress as a mechanism for glucose toxicity of the beta cell in type 2 diabetes. Cell Biochem Biophys.2007,48: 139-146.
    [76]Bonora E. Protection of pancreatic beta-cells:is it feasible? Nutr Metab Cardiovasc Dis. 2008,18:74-83.
    [77]Chang-Chen KJ, Mullur R, Bernal-Mizrachi E. Beta-cell failure as a complication of diabetes. Rev Endocr Metab Disord.2008,9:329-343.
    [78]Lee SH, Park MH, Park SJ, et al. Bioactive compounds extracted from Ecklonia cava by using enzymatic hydrolysis protects high glucose-induced damage in INS-1 pancreatic β-cells. Appl Biochem Biotechnol.2012,167:1973-1985.
    [79]Chakraborty D, Samadder A, Dutta S, et al. Antihyperglycemic potentials of a threatened plant, Helonias dioica:antioxidative stress responses and the signaling cascade. Exp Biol Med (Maywood).2012,237:64-76.
    [80]Palsamy P, Subramanian S. Ameliorative potential of resveratrol on proinflammatory cytokines, hyperglycemia mediated oxidative stress, and pancreatic beta-cell dysfunction in streptozotocin-nicotinamide-induced diabetic rats. J Cell Physiol.2010, 224:423-432.
    [81]Ekelund M, Qader SS, Jimenez-Feltstrom J, et al. Selective induction of inducible nitric oxide synthase in pancreatic islet of rat after an intravenous glucose or intralipid challenge. Nutrition.2006,22:652-660.
    [82]Yuan HD, Chung SH. Fermented ginseng protects streptozotocin-induced damage in rat pancreas by inhibiting nuclear factor-kappaB. Phytother Res.2010,24 Suppl 2: S190-195.
    [83]Sakuraba H, Mizukami H, Yagihashi N, et al. Reduced beta-cell mass and expression of oxidative stress-related DNA damage in the islet of Japanese Type II diabetic patients. Diabetologia.2002,45:85-96.
    [84]Robertson RP. Chronic oxidative stress as a central mechanism for glucose toxicity in pancreatic islet beta cells in diabetes. J Biol Chem.2004,279:42351-42354.
    [85]Robertson RP, Harmon JS. Diabetes, glucose toxicity, and oxidative stress:A case of double jeopardy for the pancreatic islet beta cell. Free Radic Biol Med.2006,41: 177-184.
    [86]Marchetti P, Del Prato S, Lupi R, et al. The pancreatic beta-cell in human Type 2 diabetes. Nutr Metab Cardiovasc Dis.2006,16 Suppl 1:S3-6.
    [87]Zhou J, Zhou S, Tang J, et al. Protective effect of berberine on beta cells in streptozotocin-and high-carbohydrate/high-fat diet-induced diabetic rats. Eur J Pharmacol.2009,606:262-268.
    [88]Cemek M, Kaga S, Simsek N, et al. Antihyperglycemic and antioxidative potential of Matricaria chamomilla L. in streptozotocin-induced diabetic rats. J Nat Med.2008,62: 284-293.
    [89]Meghana K, Sanjeev G, Ramesh B. Curcumin prevents streptozotocin-induced islet damage by scavenging free radicals:a prophylactic and protective role. Eur J Pharmacol.2007,577:183-191.
    [90]Hu YC, Luo YD, Li L, et al. In vitro investigation of 2',4'-dihydroxy-6'-methoxy-3',5'-dimethylchalcone for glycemic control. J. Agric. Food Chem.2012,60:10683-10688.
    [91]Luo YD, Lu YH.2',4'-dihydroxy-6'-methoxy-31,5'-dimethylchalcone inhibits apoptosis of MIN6 cells via improving mitochondrial function. Pharmazie 2012,67:798-803.
    [92]Cai EP, Lin JK. Epigallocatechin gallate (EGCG) and rutin suppress the glucotoxicity through activating IRS2 and AMPK signaling in rat pancreatic beta cells. J. Agric. Food Chem.2009,57:9817-9827.
    [93]Dalle S, Burcelin R, Gourdy P. Specific actions of GLP-1 receptor agonists and DPP4 inhibitors for the treatment of pancreatic β-cell impairments in type 2 diabetes. Cell Signal.2013,25:570-579.
    [94]Jonas JC, Bensellam M, Duprez J, et al. Glucose regulation of islet stress responses and beta-cell failure in type 2 diabetes. Diabetes Obes Metab.2009,11 Suppl 4:65-81.
    [95]Ding SY, Nkobena A, Kraft C, et al. Glucagon-like peptide 1 stimulates post-translational activation of glucokinase in pancreatic beta cells. J Biol Chem.2011, 286:16768-16774.
    [96]Kaneto H, Miyatsuka T, Kawamori D, et al. Pleiotropic Roles of PDX-1 in the Pancreas. Rev Diabet Stud.2007,4:209-225.
    [97]Tontonoz P, Spiegelman BM. Fat and beyond:the diverse biology of PPARgamma. Annu Rev Biochem.2008,77:289-312.
    [98]Yang MH, Avula B, Smillie T, et al. Screening of medicinal plants for PPARa and PPARy activation and evaluation of their effects on glucose uptake and 3T3-L1 adipogenesis. Planta Med.2013,79:1084-1095.
    [99]Goto T, Kim YI, Takahashi N, et al. Natural compounds regulate energy metabolism by the modulating the activity of lipid-sensing nuclear receptors. Mol Nutr Food Res.2013, 57:20-33.
    [100]Kuroda M, Mimaki Y, Sashida Y, et al. Phenolics with PPAR-gamma ligand-binding activity obtained from licorice (Glycyrrhiza uralensis roots) and ameliorative effects of glycyrin on genetically diabetic KK-A(y) mice. Bioorg Med Chem Lett.2003,13: 4267-4272.
    [101]Salam NK, Huang THW, Kota BP, et al. Novel PPAR-gamma agonists identified from a natural product library:a virtual screening, induced-fit docking and biological assay study. Chem Biol Drug Des.2008,71:57-70.
    [102]Katsukawa M, Nakata R, Takizawa Y, et al. Citral, a component of lemongrass oil, activates PPARa and y and suppresses COX-2 expression. Biochim Biophys Acta.2010, 1801:1214-1220.
    [103]Stumvoll M, Goldstein BJ, van Haeften TW. Type 2 diabetes:principles of pathogenesis and therapy. Lancet 2005,365:1333-1346.
    [104]Zebisch K, Voigt V, Wabitsch M, et al. Protocol for effective differentiation of 3T3-L1 cells to adipocytes. Anal Biochem.2012,425:88-90.
    [105]Fajas L, Fruchart JC, Auwerx J. Transcriptional control of adipogenesis. Curr Opin Cell Biol.1998,10:165-173.