髓样细胞分化蛋白88抑制乙型肝炎病毒复制的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乙型肝炎病毒(Hepatitis B virus, HBV)属于嗜肝DNA病毒科(Hepadnaviradae),具有独特的基因组结构及生物学特性。由HBV感染引起的乙型肝炎是严重危害人类健康的疾病。目前,临床上针对HBV感染的抗病毒药物主要为核苷类似物和干扰素-α(Interferon-α, IFN-α)。IFN-α的抗HBV的机制以及相关的干扰素刺激基因(IFN-stimulated genes, IS Gs)的生物学功能尚未完全阐明。我们和其他实验室以前的研究结果显示,髓样细胞分化蛋白88(Myeloid differentiation primary response protein 88, MyD88)的表达能被干扰素诱导,并且在肝肿瘤细胞中能通过激活NF-κB抑制HBV的复制。与此同时,HBV编码的聚合酶蛋白通过抑制stat1的入核下调MyD88启动子活性从而抑制干扰素诱导的MyD88的表达。这些结果提示,MyD88可能在干扰素抑制HBV复制中发挥关键作用。但是MyD88的抗病毒机制仍不甚明了,有必要进一步研究其详细的作用机制。
     为了进一步验证MyD88的抗病毒作用,首先用MyD88重组腺病毒(Ad-MyD88)感染有稳定HBV复制的HepG2.2.15细胞,然后用Northern-blot和Southern-blot检测病毒RNA和病毒核心颗粒相关DNA水平。结果显示,与对照相比,Ad-MyD88感染同等程度地降低了病毒RNA和核心颗粒相关DNA的水平,提示MyD88抗病毒作用的一级靶位点可能是病毒RNA,这一点随后用只能进行病毒RNA的转录而不能进行病毒基因组复制的pCIdA-HBV所证实。此外在通过小鼠尾静脉高压注射HBV复制质粒建立的急性感染模型中,MyD88也具有与在体外相似的抗病毒作用。
     为了探讨是否MyD88在生理条件下也能发挥抗病毒作用,将MyD88 siRNA转入Huh7细胞,然后测定IFN-α的抗病毒活性。结果显示,在MyD88 knock-down细胞中,HBV对IFN-α的抗病毒作用有了一定的抵抗能力,提示MyD88在IFN-α抑制HBV复制中发挥一定作用。
     MyD88能直接下调病毒RNA水平,这可能发生在转录水平,也可能发生在转录后水平。结果显示,MyD88对由HBV启动子和增强子调控的荧光素酶的活性没有显著影响,但是能抑制受CMV启动子启动的pregenomic RNA的水平。这些结果提示,MyD88下调病毒RNA水平是一转录后水平事件。
     为了进一步研究MyD88转录后下调pregenomic RNA的机制,利用Tet-off系统研究MyD88对pregenomic RNA稳定性的影响。结果显示MyD88可以降低pregenomic RNA的稳定性。进一步通过核浆分离显示,MyD88降低了pregenomicRNA在胞浆中的稳定性,但是对胞核中pregenomic RNA的稳定性没有影响。RNA干扰实验表明,MyD88对pregenomic RNA在胞浆中的降解是通过细胞中的两条mRNA降解通路即5'-3'mRNA降解通路和3'-5'mRNA降解通路进行。
     细胞蛋白La可与HBV pregenomic RNA特异结合促进pregenomic RNA的稳定性。但是本研究显示,MyD88诱导pregenomic RNA的降解不依赖于La蛋白与pregenomic RNA的相互作用。进一步通过mapping分析发现HBV(1804-2454)和HBV(1151-1684)是MyD88的应答序列。随后以pregenomic RNA为背景,构建HBV(1804-2454)和HBV(1151-1684)的缺失突变体,然后测定它们对MyD88的敏感性。结果显示,HBV(1151-1684)的缺失突变体仍然保留着对MyD88的应答能力,而HBV(1804-2454)的缺失突变体丧失了对MyD88的敏感性,表明位于HBV pregenomic RNA 5'末端的HBV(1804-2454)序列为MyD88诱导pegenomic RNA降解的一个关键的顺式作用序列。
     RNA序列HBV(1151-1684)位于HBV pregenomic RNA和preS/S RNAs的重叠区域,因此它可能选择性赋予了preS/S RNAs对MyD88的敏感性。结果显示,RNA序列HBV(1151-1684)选择性介导了HBV preS/S RNA的降解,并且这种降解主要发生在核内。
     有趣的是RNA序列HBV(1151-1684)与HBV转录后调控元件(posttranscriptional regulatory element, PRE)完全重叠。HBVPRE选择性介导preS2/S RNAs出核,不能出核的RNA最后以一种未知的机制在核中降解。因此MyD88导致preS/S RNAs在核中降解可能是由于MyD88干扰了PRE介导的preS/S RNAs出核所导致。通过CAT活性分析显示,MyD88可以降低PRE介导的CAT活性,并且不是由于MyD88直接导致其在核中降解所造成,因为在PRE出核抑制蛋白NES(-)RanBP1共表达的条件下,MyD88不能进一步抑制CAT的活性,而PRE的核输出因子多嘧啶茎结合蛋白(polypyrimidne tract-binding protein, PTB)的表达几乎完全恢复了PRE促进出核的功能。随后通过核浆分离用Northern-blot证实了CAT活性分析的结果。因此,从以上结果可以得出MyD88抑制了PRE介导的preS2/S RNAs出核。
     为了进一步研究MyD88抑制PRE介导的preS/S RNAs出核机制,检测了PTB的表达水平。结果显示MyD88可以同等程度地下调PRE核输出因子PTB的蛋白水平和mRNA水平,提示MyD88对PTB表达的抑制发生在PTB mRNA水平。进一步检测MyD88对PTB mRNA稳定性的影响发现,MyD88对PTBmRNA稳定性没有明显影响,提示MyD88对PTB表达水平的抑制是一转录水平事件。
     总之,本研究进一步探讨了MyD88的抗病毒作用和机制,对该机制的阐明将有助于新的治疗乙型肝炎的药物的开发。
The hepatitis B virus (HBV) belongs to the family of Hepadnaviradae with a unique genome structure and life cycle. Hepatitis B is the most common serious liver infection in the world. Current antiviral therapies involve the use of nucleoside analogs and interferon-alpha (IFN-a). Importantly, the precise antiviral mechanism of IFN-a and the biological functions of many IFN-stimulated genes (ISGs) have not been fully elucidated. We and others have shown that the expression of Myeloid differentiation primary response protein 88 (MyD88) can be induced by IFN-a, and that MyD88 has an antiviral activity against HBV in hepatoma cells that is mediated by nuclear factor-kappaB (NF-κB) activation. To counteract its inhibition, the HBV polymerase dampens activation of the MyD88 promoter by blocking nuclear translocation of Statl, thereby reducing IFN-a-inducible MyD88 expression, further suggesting a critical role for MyD88 in antiviral activity against HBV. The aim of the present study was to further investigate the antiviral activity of MyD88 and the mechanism of action.
     To determine the effect of MyD88 on established HBV replication, a cell line stably transformed with replicating HBV genomic DNA, HepG2.2.15, was infected with adenovirus expressing MyD88 (Ad-MyD88). The amount of viral RNA and core particle-associated DNA were determined by northern and southern blot analyses, respectively. The results showed that viral DNA levels were decreased to the same extent as viral RNA levels by Ad-MyD88 infection, suggesting that the main primary antiviral target of MyD88 was most likely the viral RNA, which was verified using using the pCIdA-HBV construct, which is capable of viral gene expression and incapable of viral geneome replication. In addition, consistent with in vitro results, MyD88 significantly reduced the levels of viral core particle-associated DNA and RNA in a mouse model of acute HBV infection established using hydrodynamic-based transfection.
     To investigate the antiviral activity of MyD88 in physiological condition, Huh7 cells were transfected with siRNA targeting MyD88, and the antiviral activity of IFN-a was tested. The results showed that HBV showed resistant to IFN-a treatment in the MyD88 knock-down cells to some extent, suggesting that MyD88 plays an active antiviral role in the IFN-a-mediated inhibition of HBV replication.
     To determine whether this inhibition occurs transcriptionally or posttranscriptionally, we first employed reporter plasmids in which the luciferase reporter gene was under control of HBV promoters/enhancers. The results showed that MyD88 had little inhibitory effect on the activity of the viral promoters/enhancers. But MyD88 inhibited the expression of pregenomic RNA from pCMV-HBV in which the transcription of viral pregenomic RNA is under control of CMV promoter. All these results suggest that MyD88 posttranscriptionally reduces the levels of HBV RNA.
     Because the inhibition of pregenomic RNA expression is a posttranscriptional event, we investigated whether the decrease in RNA was due to an accelerated turnover rate of the pregenomic RNA using the Tet-off system. The results showed that MyD88 accelerated the decay of the pregenomic RNA. Furthermore, cytoplasmic and nuclear fractionation analysis showed that MyD88-induced decay of the pregnomic RNA occurred in the cytoplasm, and not in the nucleus. In addition, we blocked the 5'-3'and 3'-5'mRNA decay pathways by siRNAs and found that the two mRNA decay pathways were required for the MyD88-induced decay of viral pregenomic RNA.
     It has been reported that the La protein contributes to HBV pregenomic RNA stability through specific binding to the viral RNA. In this study, we showed that the MyD88-induced decay of viral pregenomic RNA was independent of the interaction of La with viral pregenomic RNA. The mapping analysis showed that HBV(1804-2454) and HBV(1151-1684) are MyD88-responsive regions of the pregenomc RNA. To investigate the relative contribution of the two MyD88-responsive sequences to MyD88-induced decay of viral pregenomic RNA, we constructed deletion mutants of these sequences and tested their response to MyD88. Our results showed that the HBV(1151-1684) deletion mutant retained sensitivity to MyD88, while the HBV(1804-2454) deletion mutant was resistant to MyD88. These results define the HBV(1804-2454) region as a crucial cis-regulatory sequence for MyD88-induced decay of viral pregenomic RNA.
     The HBV(1151-1684) region, which is located in the 3'overlapping region of the pregenomic RNA and preS/S RNAs, was not required for MyD88-induced decay of the pregenomic RNA, we determined whether it selectively conferred sensitivity of preS/S RNAs to MyD88. The results showed that the HBV(1151-1684) region selectively mediated the decay of viral preS/S RNAs. Furthermore, cytoplasmic and nuclear fractionation analysis showed that MyD88-induced decay of the preS/S RNAs occurred in the nucleus, and not in the cytoplasm.
     Interestingly, we found that the HBV(1151-1684) region overlaps with an RNA cis element termed the posttranscriptional regulatory element (PRE). The PRE selectively mediates the nuclear export of viral preS/S RNAs. In addition, viral preS/S RNAs fail to translocate to the cytoplasm and degrade in the nucleus with an elusive mechanism. We evaluated whether the decay of preS/S RNAs in the nucleus was associated with a deficiency in nuclear transport mediated by the PRE using the pRSV138PRE-CAT construct. The results showed that CAT activity derived from the PRE-containing transcript was significantly decreased by MyD88. In addition, MyD88 did not further diminish CAT expression, when co-expressed with NES(-)RanBP1, an inhibitor of the PRE-mediated nuclear export. Expression of polypyrimidne tract-binding protein (PTB), an export factor for PRE-containing RNA, almost fully restored the function of the PRE. Given that the CAT assays only represent an indirect measure of RNA levels, we also performed northern blot analysis for CAT RNA in the nucleus and cytoplasm. The results showed that the changes in RNA levels are in good agreement with the observed changes in CAT activity. Therefore, we conclude that MyD88 inhibits the nuclear export of HBV preS/S RNAs mediated by the PRE.
     To uncover the mechanism underlying the impaired PRE function in nuclear export, we evaluated the expression of PTB in MyD88-overexpressing cells. The results showed that MyD88 has an equally inhibitory effect on both PTB protein and mRNA levels, suggesting that PTB mRNA may be the target of MyD88. We investigated the effect of MyD88 on the stability of PTB mRNA. The results showed that the expression of MyD88 could not accelerate the degradation of PTB mRNA. Therefore, MyD88 transcriptionally inhibits the expression of PTB.
     In conclusion, our results provide further insights into the mechanism of MyD88 antiviral activity. Elucidation of this antiviral pathway may ultimately lead to the development of new therapeutics for HBV infection.
引文
1. HBV(Fields virology).pdf.
    2. Bonvin, M., F. Achermann, I. Greeve, D. Stroka, A. Keogh, D. Inderbitzin, D. Candinas, P. Sommer, S. Wain-Hobson, J. P. Vartanian, and J. Greeve. 2006. Interferon-inducible expression of APOBEC3 editing enzymes in human hepatocytes and inhibition of hepatitis B virus replication. Hepatology 43:1364-74.
    3. Borden, E. C., G. C. Sen, G Uze, R. H. Silverman, R. M. Ransohoff, G. R. Foster, and G R. Stark.2007. Interferons at age 50:past, current and future impact on biomedicine. Nat Rev Drug Discov 6:975-90.
    4. Bowie, A. G, and L. Unterholzner.2008. Viral evasion and subversion of pattern-recognition receptor signalling. Nat Rev Immunol 8:911-22.
    5. Chebath, J., P. Benech, M. Revel, and M. Vigneron.1987. Constitutive expression of (2'-5') oligo A synthetase confers resistance to picornavirus infection. Nature 330:587-8.
    6. Dienstag, J. L.2008. Hepatitis B virus infection. N Engl J Med 359:1486-500.
    7. Ehlers, I., S. Horke, K. Reumann, A. Rang, F. Grosse, H. Will, and T. Heise.2004. Functional characterization of the interaction between human La and hepatitis B virus RNA. J Biol Chem 279:43437-47.
    8. Fallows, D. A., and S. P. Goff.1995. Mutations in the epsilon sequences of human hepatitis B virus affect both RNA encapsidation and reverse transcription. J Virol 69:3067-73.
    9. Gao, B., Z. Duan, W. Xu, and S. Xiong.2009. Tripartite motif-containing 22 inhibits the activity of hepatitis B virus core promoter, which is dependent on nuclear-located RING domain. Hepatology 50:424-33.
    10. Garneau, N. L., J. Wilusz, and C. J. Wilusz.2007. The highways and byways of mRNA decay. Nat Rev Mol Cell Biol 8:113-26.
    11. Georgantas, R. W.,3rd, R. Hildreth, S. Morisot, J. Alder, C. G. Liu, S. Heimfeld, G. A. Calin, C. M. Croce, and C. I. Civin.2007. CD34+ hematopoietic stem-progenitor cell microRNA expression and function:a circuit diagram of differentiation control. Proc Natl Acad Sci U S A 104:2750-5.
    12. Ghosh, A., S. N. Sarkar, and G. C. Sen.2000. Cell growth regulatory and antiviral effects of the P69 isozyme of 2-5 (A) synthetase. Virology 266:319-28.
    13. Gordien, E., O. Rosmorduc, C. Peltekian, F. Garreau, C. Brechot, and D. Kremsdorf.2001. Inhibition of hepatitis B virus replication by the interferon-inducible MxA protein. J Virol 75:2684-91.
    14. Guidotti, L. G, S. Guilhot, and F. V. Chisari.1994. Interleukin-2 and alpha/beta interferon down-regulate hepatitis B virus gene expression in vivo by tumor necrosis factor-dependent and-independent pathways. J Virol 68:1265-70.
    15. Guo, H., D. Jiang, D. Ma, J. Chang, A. M. Dougherty, A. Cuconati, T. M. Block, and J. T. Guo.2009. Activation of pattern recognition receptor-mediated innate immunity inhibits the replication of hepatitis B virus in human hepatocyte-derived cells. J Virol 83:847-58.
    16. Heise, T., L. G. Guidotti, V. J. Cavanaugh, and F. V. Chisari.1999. Hepatitis B virus RNA-binding proteins associated with cytokine-induced clearance of viral RNA from the liver of transgenic mice. J Virol 73:474-81.
    17. Heise, T., L. G. Guidotti, and F. V. Chisari.1999. La autoantigen specifically recognizes a predicted stem-loop in hepatitis B virus RNA. Journal of virology 73:5767-76.
    18. Heise, T., G Sommer, K. Reumann, I. Meyer, H. Will, and H. Schaal.2006. The hepatitis B virus PRE contains a splicing regulatory element. Nucleic Acids Res 34:353-63.
    19. Horke, S., K. Reumann, A. Rang, and T. Heise.2002. Molecular characterization of the human La protein.hepatitis B virus RNA.B interaction in vitro. J Biol Chem 277:34949-58.
    20. Houseley, J., and D. Tollervey.2009. The many pathways of RNA degradation. Cell 136:763-76.
    21. Huang, J., and T. J. Liang.1993. A novel hepatitis B virus (HBV) genetic element with Rev response element-like properties that is essential for expression of HBV gene products. Mol Cell Biol 13:7476-86.
    22. Huang, Z. M., and T. S. Yen.1994. Hepatitis B virus RNA element that facilitates accumulation of surface gene transcripts in the cytoplasm. J Virol 68:3193-9.
    23. Huang, Z. M., and T. S. Yen.1995. Role of the hepatitis B virus posttranscriptional regulatory element in export of intronless transcripts. Mol Cell Biol 15:3864-9.
    24. Jost, S., P. Turelli, B. Mangeat, U. Protzer, and D. Trono.2007. Induction of antiviral cytidine deaminases does not explain the inhibition of hepatitis B virus replication by interferons. J Virol 81:10588-96.
    25. Kawai, T., and S. Akira.2007. TLR signaling. Semin Immunol 19:24-32.
    26. Kim, J. H., J. K. Luo, and D. E. Zhang.2008. The level of hepatitis B virus replication is not affected by protein ISG15 modification but is reduced by inhibition of UBP43 (USP18) expression. J Immunol 181:6467-72.
    27. Ladner, S. K., M. J. Otto, C. S. Barker, K. Zaifert, G. H. Wang, J. T. Guo, C. Seeger, and R. W. King.1997. Inducible expression of human hepatitis B virus (HBV) in stably transfected hepatoblastoma cells:a novel system for screening potential inhibitors of HBV replication. Antimicrob Agents Chemother 41:1715-20.
    28. Lin, S., M. Wu, Y. Xu, W. Xiong, Z. Yi, X. Zhang, and Y. Zhenghong.2007. Inhibition of hepatitis B virus replication by MyD88 is mediated by nuclear factor-kappaB activation. Biochim Biophys Acta 1772:1150-7.
    29. Lucifora, J., D. Durantel, B. Testoni, O. Hantz, M. Levrero, and F. Zoulim. Control of hepatitis B virus replication by innate response of HepaRG cells. Hepatology 51:63-72.
    30. Nguyen, D. H., S. Gummuluru, and J. Hu.2007. Deamination-independent inhibition of hepatitis B virus reverse transcription by APOBEC3G. J Virol 81:4465-72.
    31. Nguyen, D. H., and J. Hu.2008. Reverse transcriptase-and RNA packaging signal-dependent incorporation of APOBEC3G into hepatitis B virus nucleocapsids. J Virol 82:6852-61.
    32. Papatheodoridis, G. V., S. Manolakopoulos, G. Dusheiko, and A. J. Archimandritis.2008. Therapeutic strategies in the management of patients with chronic hepatitis B virus infection. Lancet Infect Dis 8:167-78.
    33. Pasquetto, V., S. F. Wieland, S. L. Uprichard, M. Tripodi, and F. V. Chisari.2002. Cytokine-sensitive replication of hepatitis B virus in immortalized mouse hepatocyte cultures. J Virol 76:5646-53.
    34. Peltekian, C., E. Gordien, F. Garreau, V. Meas-Yedid, P. Soussan, V.
    Willams, M. L. Chaix, J. C. Olivo-Marin, C. Brechot, and D. Kremsdorf. 2005. Human MxA protein participates to the interferon-related inhibition of hepatitis B virus replication in female transgenic mice. J Hepatol 43:965-72.
    35. Perri, S., and D. Ganem.1996. A host factor that binds near the termini of hepatitis B virus pregenomic RNA. J Virol 70:6803-9.
    36. Proto, S., J. A. Taylor, S. Chokshi, N. Navaratnam, and N. V. Naoumov. 2008. APOBEC and iNOS are not the main intracellular effectors of IFN-gamma-mediated inactivation of Hepatitis B virus replication. Antiviral Res 78:260-7.
    37. Qin, J., J. Zhai, R. Hong, S. Shan, Y. Kong, Y. Wen, Y. Wang, J. Liu, and Y. Xie.2009. Prospero-related homeobox protein (Proxl) inhibits hepatitis B virus replication through repressing multiple cis regulatory elements. J Gen Virol 90:1246-55.
    38. Rang, A., M. Bruns, T. Heise, and H. Will.2002. Antiviral activity of interferon-alpha against hepatitis B virus can be studied in non-hepatic cells and Is independent of MxA. J Biol Chem 277:7645-7.
    39. Rang, A., and H. Will.2000. The tetracycline-responsive promoter contains functional interferon-inducible response elements. Nucleic Acids Res 28:1120-5.
    40. Rosler, C., J. Kock, M. Kann, M. H. Malim, H. E. Blum, T. F. Baumert, and F. von Weizsacker.2005. APOBEC-mediated interference with hepadnavirus production. Hepatology 42:301-9.
    41. Roth, J., and M. Dobbelstein.1997. Export of hepatitis B virus RNA on a Rev-like pathway:inhibition by the regenerating liver inhibitory factor IkappaB alpha. J Virol 71:8933-9.
    42. Scherbik, S. V., J. M. Paranjape, B. M. Stockman, R. H. Silverman, and M. A. Brinton.2006. RNase L plays a role in the antiviral response to West Nile virus. J Virol 80:2987-99.
    43. Sells, M. A., M. L. Chen, and G. Acs.1987. Production of hepatitis B virus particles in Hep G2 cells transfected with cloned hepatitis B virus DNA. Proc Natl Acad Sci U S A 84:1005-9.
    44. Spellman, R., M. Llorian, and C. W. Smith.2007. Crossregulation and functional redundancy between the splicing regulator PTB and its paralogs nPTB and ROD1. Mol Cell 27:420-34.
    45. Tsui, L. V., L. G. Guidotti, T. Ishikawa, and F. V. Chisari.1995. Posttranscriptional clearance of hepatitis B virus RNA by cytotoxic T lymphocyte-activated hepatocytes. Proc Natl Acad Sci U S A 92:12398-402.
    46. Turelli, P., B. Mangeat, S. Jost, S. Vianin, and D. Trono.2004. Inhibition of hepatitis B virus replication by APOBEC3G. Science 303:1829.
    47. Wieland, S. F., A. Eustaquio, C. Whitten-Bauer, B. Boyd, and F. V. Chisari. 2005. Interferon prevents formation of replication-competent hepatitis B virus RNA-containing nucleocapsids. Proc Natl Acad Sci U S A 102:9913-7.
    48. Wieland, S. F., L. G. Guidotti, and F. V. Chisari.2000. Intrahepatic induction of alpha/beta interferon eliminates viral RNA-containing capsids in hepatitis B virus transgenic mice. J Virol 74:4165-73.
    49. Wollerton, M. C., C. Gooding, F. Robinson, E. C. Brown, R. J. Jackson, and C. W. Smith.2001. Differential alternative splicing activity of isoforms of polypyrimidine tract binding protein (PTB). RNA 7:819-32.
    50. Wu, M., Y. Xu, S. Lin, X. Zhang, L. Xiang, and Z. Yuan.2007. Hepatitis B virus polymerase inhibits the interferon-inducible MyD88 promoter by blocking nuclear translocation of Statl. J Gen Virol 88:3260-9.
    51. Xiong, W., X. Wang, X. Liu, L. Xiang, L. Zheng, and Z. Yuan.2004. Interferon-inducible MyD88 protein inhibits hepatitis B virus replication. Virology 319:306-14.
    52. Xiong, W., X. Wang, X. Y. Liu, L. Xiang, L. J. Zheng, J. X. Liu, and Z. H. Yuan.2003. Analysis of gene expression in hepatitis B virus transfected cell line induced by interferon. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai) 35:1053-60.
    53. Yang, P. L., A. Althage, J. Chung, and F. V. Chisari.2002. Hydrodynamic injection of viral DNA:a mouse model of acute hepatitis B virus infection. Proc Natl Acad Sci U S A 99:13825-30.
    54. Zang, W. Q., B. Li, P. Y. Huang, M. M. Lai, and T. S. Yen.2001. Role of polypyrimidine tract binding protein in the function of the hepatitis B virus posttranscriptional regulatory element. J Virol 75:10779-86.
    55. Zang, W. Q., and T. S. Yen.1999. Distinct export pathway utilized by the hepatitis B virus posttranscriptional regulatory element. Virology 259:299-304.
    56. Zolotukhin, A. S., and B. K. Felber.1997. Mutations in the nuclear export
    signal of human ran-binding protein RanBPl block the Rev-mediated posttranscriptional regulation of human immunodeficiency virus type 1. J Biol Chem 272:11356-60.
    1. Ait-Goughoulte, M., T. Kanda, K. Meyer, J. S. Ryerse, R. B. Ray, and R. Ray.2008. Hepatitis C virus genotype 1a growth and induction of autophagy. J Virol 82:2241-9.
    2. Ashford, T. P., and K. R. Porter.1962. Cytoplasmic components in hepatic cell lysosomes. J Cell Biol 12:198-202.
    3. Berg, T. O., M. Fengsrud, P. E. Stromhaug, T. Berg, and P. O. Seglen.1998. Isolation and characterization of rat liver amphisomes. Evidence for fusion of autophagosomes with both early and late endosomes. J Biol Chem 273:21883-92.
    4. Berkova, Z., S. E. Crawford, G. Trugnan, T. Yoshimori, A. P. Morris, and M. K. Estes.2006. Rotavirus NSP4 induces a novel vesicular compartment regulated by calcium and associated with viroplasms. J Virol 80:6061-71.
    5. Brabec-Zaruba, M., U. Berka, D. Blaas, and R. Fuchs.2007. Induction of autophagy does not affect human rhinovirus type 2 production. J Virol 81:10815-7.
    6. Chiang, H. L., S. R. Terlecky, C. P. Plant, and J. F. Dice.1989. A role for a 70-kilodalton heat shock protein in lysosomal degradation of intracellular proteins. Science 246:382-5.
    7. Cuervo, A. M.2004. Autophagy:many paths to the same end. Mol Cell Biochem 263:55-72.
    8. Cuervo, A. M., and J. F. Dice.1996. A receptor for the selective uptake and degradation of proteins by lysosomes. Science 273:501-3.
    9. Dreux, M., P. Gastaminza, S. F. Wieland, and F. V. Chisari.2009. The autophagy machinery is required to initiate hepatitis C virus replication. Proc Natl Acad Sci U S A 106:14046-51.
    10. Dunn, W. A., Jr.1990. Studies on the mechanisms of autophagy:formation of the autophagic vacuole. J Cell Biol 110:1923-33.
    11. English, L., M. Chemali, J. Duron, C. Rondeau, A. Laplante, D. Gingras, D. Alexander, D. Leib, C. Norbury, R. Lippe, and M. Desjardins.2009. Autophagy enhances the presentation of endogenous viral antigens on MHC class I molecules during HSV-1 infection. Nat Immunol 10:480-7.
    12. Gutierrez, M. G., D. B. Munafo, W. Beron, and M. I. Colombo.2004. Rab7 is required for the normal progression of the autophagic pathway in mammalian cells. J Cell Sci 117:2687-97.
    13. Hosokawa, N., T. Hara, T. Kaizuka, C. Kishi, A. Takamura, Y. Miura, S. Iemura, T. Natsume, K. Takehana, N. Yamada, J. L. Guan, N. Oshiro, and N. Mizushima.2009. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol Biol Cell 20:1981-91.
    14. Jackson, W. T., T. H. Giddings, Jr., M. P. Taylor, S. Mulinyawe, M. Rabinovitch, R. R. Kopito, and K. Kirkegaard.2005. Subversion of cellular autophagosomal machinery by RNA viruses. PLoS Biol 3:e156.
    15. Jager, S., C. Bucci, I. Tanida, T. Ueno, E. Kominami, P. Saftig, and E. L. Eskelinen.2004. Role for Rab7 in maturation of late autophagic vacuoles. J Cell Sci 117:4837-48.
    16. Jounai, N., F. Takeshita, K. Kobiyama, A. Sawano, A. Miyawaki, K. Q. Xin, K. J. Ishii, T. Kawai, S. Akira, K. Suzuki, and K. Okuda.2007. The Atg5 Atgl2 conjugate associates with innate antiviral immune responses. Proc Natl Acad Sci U S A 104:14050-5.
    17. Juhasz, G., and T. P. Neufeld.2006. Autophagy:a forty-year search for a missing membrane source. PLoS Biol 4:e36.
    18. Kawai, T., and S. Akira.2007. TLR signaling. Semin Immunol 19:24-32.
    19. Klionsky, D. J.2005. Autophagy. Curr Biol 15:R282-3.
    20. Klionsky, D. J., H. Abeliovich, P. Agostinis, D. K. Agrawal, G. Aliev, D. S. Askew, M. Baba, E. H. Baehrecke, B. A. Bahr, A. Ballabio, B. A. Bamber, D. C. Bassham, E. Bergamini, X. Bi, M. Biard-Piechaczyk, J. S. Blum, D. E. Bredesen, J. L. Brodsky, J. H. Brumell, U. T. Brunk, W. Bursch, N. Camougrand, E. Cebollero, F. Cecconi, Y. Chen, L. S. Chin, A. Choi, C. T. Chu, J. Chung, P. G. Clarke, R. S. Clark, S. G. Clarke, C. Clave, J. L. Cleveland, P. Codogno, M. I. Colombo, A. Coto-Montes, J. M. Cregg, A. M. Cuervo, J. Debnath, F. Demarchi, P. B. Dennis, P. A. Dennis, V. Deretic, R. J. Devenish, F. Di Sano, J. F. Dice, M. Difiglia, S. Dinesh-Kumar, C. W. Distelhorst, M. Djavaheri-Mergny, F. C. Dorsey, W. Droge, M. Dron, W. A. Dunn, Jr., M. Duszenko, N. T. Eissa, Z. Elazar, A. Esclatine, E. L. Eskelinen, L. Fesus, K. D. Finley, J. M. Fuentes, J. Fueyo, K. Fujisaki, B. Galliot, F. B. Gao, D. A. Gewirtz, S. B. Gibson, A. Gohla, A. L. Goldberg, R. Gonzalez, C. Gonzalez-Estevez, S. Gorski, R. A. Gottlieb, D. Haussinger, Y. W. He, K. Heidenreich, J. A. Hill, M. Hoyer-Hansen, X. Hu, W. P. Huang, A. Iwasaki, M. Jaattela, W. T. Jackson, X. Jiang, S. Jin, T. Johansen, J. U. Jung, M. Kadowaki, C. Kang, A. Kelekar, D. H. Kessel, J. A. Kiel, H. P. Kim, A. Kimchi, T. J. Kinsella, K. Kiselyov, K. Kitamoto, E. Knecht, et al.2008. Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy 4:151-75.
    21. Kloetzel, P. M.2001. Antigen processing by the proteasome. Nat Rev Mol Cell Biol 2:179-87.
    22. Komatsu, M., S. Waguri, T. Ueno, J. Iwata, S. Murata, I. Tanida, J. Ezaki, N. Mizushima, Y. Ohsumi, Y. Uchiyama, E. Kominami, K. Tanaka, and T. Chiba.2005. Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol 169:425-34.
    23. Kumar, S. H., and A. Rangarajan.2009. Simian virus 40 small T antigen activates AMPK and triggers autophagy to protect cancer cells from nutrient deprivation. J Virol 83:8565-74.
    24. Kyei, G. B., C. Dinkins, A. S. Davis, E. Roberts, S. B. Singh, C. Dong, L. Wu, E. Kominami, T. Ueno, A. Yamamoto, M. Federico, A. Panganiban, I. Vergne, and V. Deretic.2009. Autophagy pathway intersects with HIV-1 biosynthesis and regulates viral yields in macrophages. J Cell Biol 186:255-68.
    25. Lee, D. Y., and B. Sugden.2008. The latent membrane protein 1 oncogene modifies B-cell physiology by regulating autophagy. Oncogene 27:2833-42.
    26. Lee, H. K., J. M. Lund, B. Ramanathan, N. Mizushima, and A. Iwasaki. 2007. Autophagy-dependent viral recognition by plasmacytoid dendritic cells. Science 315:1398-401.
    27. Lee, Y. R., H. Y. Lei, M. T. Liu, J. R. Wang, S. H. Chen, Y. F. Jiang-Shieh, Y. S. Lin, T. M. Yeh, C. C. Liu, and H. S. Liu.2008. Autophagic machinery activated by dengue virus enhances virus replication. Virology 374:240-8.
    28. Levine, B., and D. J. Klionsky.2004. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 6:463-77.
    29. Levine, B., and G. Kroemer.2008. Autophagy in the pathogenesis of disease. Cell 132:27-42.
    30. Liang, X. H., L. K. Kleeman, H. H. Jiang, G. Gordon, J. E. Goldman, G. Berry, B. Herman, and B. Levine.1998. Protection against fatal Sindbis virus encephalitis by beclin, a novel Bcl-2-interacting protein. J Virol 72:8586-96.
    31. Liu, Y., M. Schiff, K. Czymmek, Z. Talloczy, B. Levine, and S. P. Dinesh-Kumar.2005. Autophagy regulates programmed cell death during the plant innate immune response. Cell 121:567-77.
    32. Massey, A. C., C. Zhang, and A. M. Cuervo.2006. Chaperone-mediated autophagy in aging and disease. Curr Top Dev Biol 73:205-35.
    33. Mizushima, N., and D. J. Klionsky.2007. Protein turnover via autophagy: implications for metabolism. Annu Rev Nutr 27:19-40.
    34. Mizushima, N., T. Noda, T. Yoshimori, Y. Tanaka, T. Ishii, M. D. George, D. J. Klionsky, M. Ohsumi, and Y. Ohsumi.1998. A protein conjugation system essential for autophagy. Nature 395:395-8.
    35. Nakashima, A., N. Tanaka, K. Tamai, M. Kyuuma, Y. Ishikawa, H. Sato, T. Yoshimori, S. Saito, and K. Sugamura.2006. Survival of parvovirus B19-infected cells by cellular autophagy. Virology 349:254-63.
    36. Orvedahl, A., D. Alexander, Z. Talloczy, Q. Sun, Y. Wei, W. Zhang, D. Burns, D. A. Leib, and B. Levine.2007. HSV-1 ICP34.5 confers neurovirulence by targeting the Beclin 1 autophagy protein. Cell Host Microbe 1:23-35.
    37. Orvedahl, A., and B. Levine.2009. Eating the enemy within:autophagy in infectious diseases. Cell Death Differ 16:57-69.
    38. Paludan, C., D. Schmid, M. Landthaler, M. Vockerodt, D. Kube, T. Tuschl, and C. Munz.2005. Endogenous MHC class Ⅱ processing of a viral nuclear antigen after autophagy. Science 307:593-6.
    39. Panyasrivanit, M., A. Khakpoor, N. Wikan, and D. R. Smith.2009. Co-localization of constituents of the dengue virus translation and replication machinery with amphisomes. J Gen Virol 90:448-56.
    40. Seglen, P. O., and P. B. Gordon.1982.3-Methyladenine:specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes. Proc Natl Acad Sci U S A 79:1889-92.
    41. Shelly, S., N. Lukinova, S. Bambina, A. Berman, and S. Cherry.2009. Autophagy is an essential component of Drosophila immunity against vesicular stomatitis virus. Immunity 30:588-98.
    42. Shintani, T., and D. J. Klionsky.2004. Autophagy in health and disease:a double-edged sword. Science 306:990-5.
    43. Sir, D., W. L. Chen, J. Choi, T. Wakita, T. S. Yen, and J. H. Ou.2008. Induction of incomplete autophagic response by hepatitis C virus via the unfolded protein response. Hepatology 48:1054-61.
    44. Takahashi, M. N., W. Jackson, D. T. Laird, T. D. Culp, C. Grose, J. I. Haynes,2nd, and L. Benetti.2009. Varicella-zoster virus infection induces autophagy in both cultured cells and human skin vesicles. J Virol 83:5466-76.
    45. Tal, M. C., M. Sasai, H. K. Lee, B. Yordy, G. S. Shadel, and A. Iwasaki. 2009. Absence of autophagy results in reactive oxygen species-dependent amplification of RLR signaling. Proc Natl Acad Sci U S A 106:2770-5.
    46. Tang, H., L. Da, Y. Mao, Y. Li, D. Li, Z. Xu, F. Li, Y. Wang, P. Tiollais, T. Li, and M. Zhao.2009. Hepatitis B virus X protein sensitizes cells to starvation-induced autophagy via up-regulation of beclin 1 expression. Hepatology 49:60-71.
    47. Tanida, I., M. Fukasawa, T. Ueno, E. Kominami, T. Wakita, and K. Hanada.2009. Knockdown of autophagy-related gene decreases the production of infectious hepatitis C virus particles. Autophagy 5:937-45.
    48. Tasdemir, E., M. C. Maiuri, L. Galluzzi, I. Vitale, M. Djavaheri-Mergny, M. D'Amelio, A. Criollo, E. Morselli, C. Zhu, F. Harper, U. Nannmark, C. Samara, P. Pinton, J. M. Vicencio, R. Carnuccio, U. M. Moll, F. Madeo, P. Paterlini-Brechot, R. Rizzuto, G. Szabadkai, G. Pierron, K. Blomgren, N. Tavernarakis, P. Codogno, F. Cecconi, and G Kroemer.2008. Regulation of autophagy by cytoplasmic p53. Nat Cell Biol 10:676-87.
    49. Taylor, M. P., and K. Kirkegaard.2007. Modification of cellular autophagy protein LC3 by poliovirus. J Virol 81:12543-53.
    50. Unterholzner, L., and A. G Bowie.2008. The interplay between viruses and innate immune signaling:recent insights and therapeutic opportunities. Biochem Pharmacol 75:589-602.
    51. Wei, Y., S. Pattingre, S. Sinha, M. Bassik, and B. Levine.2008. JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. Mol Cell 30:678-88.
    52. Wong, J., J. Zhang, X. Si, G. Gao, I. Mao, B. M. McManus, and H. Luo. 2008. Autophagosome supports coxsackievirus B3 replication in host cells. J Virol 82:9143-53.
    53. Xie, Z., and D. J. Klionsky.2007. Autophagosome formation:core machinery and adaptations. Nat Cell Biol 9:1102-9.
    54. Yamamoto, A., Y. Tagawa, T. Yoshimori, Y. Moriyama, R. Masaki, and Y. Tashiro.1998. Bafilomycin A1 prevents maturation of autophagic vacuoles by inhibiting fusion between autophagosomes and lysosomes in rat hepatoma cell line, H-4-Ⅱ-E cells. Cell Struct Funct 23:33-42.
    55. Zhang, H., C. E. Monken, Y. Zhang, J. Lenard, N. Mizushima, E. C. Lattime, and S. Jin.2006. Cellular autophagy machinery is not required for vaccinia virus replication and maturation. Autophagy 2:91-5.
    56. Zhou, X., and K. Munger.2009. Expression of the human papillomavirus type 16 E7 oncoprotein induces an autophagy-related process and sensitizes normal human keratinocytes to cell death in response to growth factor deprivation. Virology 385:192-7.
    57. Zhou, Z., X. Jiang, D. Liu, Z. Fan, X. Hu, J. Yan, M. Wang, and G. F. Gao. 2009. Autophagy is involved in influenza A virus replication. Autophagy 5:321-8.
    1. Christen, V., S. Treves, F. H. Duong, and M. H. Heim.2007. Activation of endoplasmic reticulum stress response by hepatitis viruses up-regulates protein phosphatase 2A. Hepatology 46:558-65.
    2. Codogno, P., and A. J. Meijer.2005. Autophagy and signaling:their role in cell survival and cell death. Cell Death Differ 12 Suppl 2:1509-18.
    3. Deretic, V., and B. Levine.2009. Autophagy, immunity, and microbial adaptations. Cell Host Microbe 5:527-49.
    4. Dreux, M., P. Gastaminza, S. F. Wieland, and F. V. Chisari.2009. The autophagy machinery is required to initiate hepatitis C virus replication. Proc Natl Acad Sci U S A 106:14046-51.
    5. Dunn, W. A., Jr.1990. Studies on the mechanisms of autophagy:formation of the autophagic vacuole. J Cell Biol 110:1923-33.
    6. English, L., M. Chemali, J. Duron, C. Rondeau, A. Laplante, D. Gingras, D. Alexander, D. Leib, C. Norbury, R. Lippe, and M. Desjardins.2009. Autophagy enhances the presentation of endogenous viral antigens on MHC class I molecules during HSV-1 infection. Nat Immunol 10:480-7.
    7. Espert, L., P. Codogno, and M. Biard-Piechaczyk.2007. Involvement of autophagy in viral infections:antiviral function and subversion by viruses. J Mol Med 85:811-23.
    8. Guo, H., T. Zhou, D. Jiang, A. Cuconati, G. H. Xiao, T. M. Block, and J. T. Guo.2007. Regulation of hepatitis B virus replication by the phosphatidylinositol 3-kinase-akt signal transduction pathway. J Virol 81:10072-80.
    9. Hosokawa, N., T. Hara, T. Kaizuka, C. Kishi, A. Takamura, Y. Miura, S. Iemura, T. Natsume, K. Takehana, N. Yamada, J. L. Guan, N. Oshiro, and N. Mizushima.2009. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol Biol Cell 20:1981-91.
    10. Jackson, W. T., T. H. Giddings, Jr., M. P. Taylor, S. Mulinyawe, M. Rabinovitch, R. R. Kopito, and K. Kirkegaard.2005. Subversion of cellular autophagosomal machinery by RNA viruses. PLoS Biol 3:e156.
    11. Jung, C. H., S. H. Ro, J. Cao, N. M. Otto, and D. H. Kim. mTOR regulation
    of autophagy. FEBS Lett 584:1287-1295.
    12. Kabeya, Y., N. Mizushima, T. Ueno, A. Yamamoto, T. Kirisako, T. Noda, E. Kominami, Y. Ohsumi, and T. Yoshimori.2000. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19:5720-8.
    13. Khakpoor, A., M. Panyasrivanit, N. Wikan, and D. R. Smith.2009. A role for autophagolysosomes in dengue virus 3 production in HepG2 cells. J Gen Virol 90:1093-103.
    14. Kirkegaard, K.2009. Subversion of the cellular autophagy pathway by viruses. Curr Top Microbiol Immunol 335:323-33.
    15. Kouroku, Y., E. Fujita, I. Tanida, T. Ueno, A. Isoai, H. Kumagai, S. Ogawa, R. J. Kaufman, E. Kominami, and T. Momoi.2007. ER stress (PERK/eIF2alpha phosphorylation) mediates the polyglutamine-induced LC3 conversion, an essential step for autophagy formation. Cell Death Differ 14:230-9.
    16. Kudchodkar, S. B., and B. Levine.2009. Viruses and autophagy. Rev Med Virol 19:359-78.
    17. Kyei, G. B., C. Dinkins, A. S. Davis, E. Roberts, S. B. Singh, C. Dong, L. Wu, E. Kominami, T. Ueno, A. Yamamoto, M. Federico, A. Panganiban, I. Vergne, and V. Deretic.2009. Autophagy pathway intersects with HIV-1 biosynthesis and regulates viral yields in macrophages. J Cell Biol 186:255-68.
    18. Lee, D. Y, J. Lee, and B. Sugden.2009. The unfolded protein response and autophagy:herpesviruses rule! J Virol 83:1168-72.
    19. Lee, H. K., and A. Iwasaki.2008. Autophagy and antiviral immunity. Curr Opin Immunol 20:23-9.
    20. Lee, H. K., J. M. Lund, B. Ramanathan, N. Mizushima, and A. Iwasaki. 2007. Autophagy-dependent viral recognition by plasmacytoid dendritic cells. Science 315:1398-401.
    21. Lee, Y R., H. Y. Lei, M. T. Liu, J. R. Wang, S. H. Chen, Y. F. Jiang-Shieh, Y. S. Lin, T. M. Yeh, C. C. Liu, and H. S. Liu.2008. Autophagic machinery activated by dengue virus enhances virus replication. Virology 374:240-8.
    22. Levine, B., and D. J. Klionsky.2004. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 6:463-77.
    23. Levine, B., and G. Kroemer.2008. Autophagy in the pathogenesis of disease. Cell 132:27-42.
    24. Mizushima, N., T. Noda, T. Yoshimori, Y. Tanaka, T. Ishii, M. D. George, D. J. Klionsky, M. Ohsumi, and Y. Ohsumi.1998. A protein conjugation system essential for autophagy. Nature 395:395-8.
    25. Orvedahl, A., and B. Levine.2009. Eating the enemy within:autophagy in infectious diseases. Cell Death Differ 16:57-69.
    26. Paludan, C., D. Schmid, M. Landthaler, M. Vockerodt, D. Kube, T. Tuschl, and C. Munz.2005. Endogenous MHC class II processing of a viral nuclear antigen after autophagy. Science 307:593-6.
    27. Prentice, E., W. G. Jerome, T. Yoshimori, N. Mizushima, and M. R. Denison.2004. Coronavirus replication complex formation utilizes components of cellular autophagy. J Biol Chem 279:10136-41.
    28. Qin, L., Z. Wang, L. Tao, and Y. Wang. ER stress negatively regulates AKT/TSC/mTOR pathway to enhance autophagy. Autophagy 6.
    29. Ron, D., and P. Walter.2007. Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8:519-29.
    30. Salonen, A., T. Ahola, and L. Kaariainen.2005. Viral RNA replication in association with cellular membranes. Curr Top Microbiol Immunol 285:139-73.
    31. Seeger, C., and W. S. Mason.2000. Hepatitis B virus biology. Microbiol Mol Biol Rev 64:51-68.
    32. Seglen, P. O., and P. B. Gordon.1982.3-Methyladenine:specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes. Proc Natl Acad Sci U S A 79:1889-92.
    33. Shintani, T., and D. J. Klionsky.2004. Autophagy in health and disease:a double-edged sword. Science 306:990-5.
    34. Sir, D., W. L. Chen, J. Choi, T. Wakita, T. S. Yen, and J. H. Ou.2008. Induction of incomplete autophagic response by hepatitis C virus via the unfolded protein response. Hepatology 48:1054-61.
    35. Sir, D., Y. Tian, W. L. Chen, D. K. Ann, T. S. Yen, and J. H. Ou. The early autophagic pathway is activated by hepatitis B virus and required for viral DNA replication. Proc Natl Acad Sci U S A 107:4383-8.
    36. Tang, H., L. Da, Y. Mao, Y. Li, D. Li, Z. Xu, F. Li, Y. Wang, P. Tiollais, T. Li, and M. Zhao.2009. Hepatitis B virus X protein sensitizes cells to starvation-induced autophagy via up-regulation of beclin 1 expression. Hepatology 49:60-71.
    37. Tanida, I., M. Fukasawa, T. Ueno, E. Kominami, T. Wakita, and K. Hanada.2009. Knockdown of autophagy-related gene decreases the production of infectious hepatitis C virus particles. Autophagy 5:937-45.
    38. Wong, J., J. Zhang, X. Si, G. Gao, I. Mao, B. M. McManus, and H. Luo. 2008. Autophagosome supports coxsackievirus B3 replication in host cells. J Virol 82:9143-53.
    39. Xie, Z., and D. J. Klionsky.2007. Autophagosome formation:core machinery and adaptations. Nat Cell Biol 9:1102-9.
    40. Yorimitsu, T., U. Nair, Z. Yang, and D. J. Klionsky.2006. Endoplasmic reticulum stress triggers autophagy. J Biol Chem 281:30299-304.