胆碱能受体激动剂抑制小胶质细胞活化并保护脑缺血大鼠海马神经元迟发性死亡
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中风是最常见的危及生命的神经疾病,中风是继心脏病和癌症之后的第三位致死疾病,并且在老年人当中,它是主要的致残性疾病。在寻找药物治疗靶点的同时,预防和康复仍是主要的治疗策略,尽管这种策略减少致残和致死率效果还相对较差。大多数脑缺血源于血管问题而发生,并且由于神经元死亡而造成功能障为临床特点,因此几十年来,脑缺血的研究主要集中在脑血流、脑血管和神经元上。近些年才认识到星形胶质细胞、少突胶质细胞和小胶质细胞在缺血脑组织死亡、保护脑功能、促进神经再生等方面起着重要作用。在脑缺血中,根据抗炎化合物或一氧化氮合酶、环氧化酶2抑制剂能够减轻缺血脑损伤,并且能够改善脑缺血动物的预后,现在认为“炎症”是一种起着重要作用的机制。过去的二十几年的研究表明脑组织有内在的免疫系统,主要由小胶质细胞介导的慢性炎症,被认为是在许多神经疾病如阿耳茨海默(氏)病、帕金森(氏)病、及脑中风进行性神经元死亡中起重要作用。
     脑缺血导致的脑损伤一般在缺血后数小时至数天发生,尤其在全脑缺血模型,观察到海马CA1锥体神经元损伤发生在缺血后3天左右,提示有一种机制在脑缺血后对神经细胞延迟性死亡在起作用。近来的研究表明,在脑缺血后,有炎性细胞浸润到缺血脑区,并且在缺血脑区有几种致炎因子如:诱导型一氧化氮合酶、环氧化酶2及一些细胞因子大量表达。最近有人证明小胶质细胞上表达N型乙酰胆碱受体,并且此受体的激活可以抑制小胶质细胞释放几种炎性因子。根据以上研究结果提示,我们采用大鼠全脑缺血模型,用胆碱能受体激动剂通过抑制中枢小胶质细胞的炎性增殖来降低缺血再灌注引起的中枢炎症反应,从而保护海马神经元迟发性死亡。
     本实验做全脑缺血再灌注模型均使用200±20g雄性wistar大鼠,参照改良的Pulsinelli四血管闭塞法制作全脑缺血模型。结果发现缺血前腹腔注射烟碱组有显著的神经保护作用,使存活神经元由缺血对照组的11.9%增加到74.3%,但是这种预防作用的临床意义不理想,因为要在中风发作之前给予药物保护似乎不现实,目前临床很难准确预测中风发作的精确时机。所以,我们要探讨,在缺血后不同时间给予该药物,观察其对全脑缺血再灌注大鼠海马CA1区神经元迟发性死亡的治疗作用。
     当缺血后2小时给予0.5mg/kg/次烟碱腹腔注射,3次/天,给药7天观察到7只大鼠,海马CA1区神经元存活数目为114.2±17.6个/mm~2,为原有神经元数目的54.6%,差异显著。当缺血后6小时给予0.5mg/kg/次烟碱腹腔注射,3次/天,给药7天观察到6只大鼠,海马CA1区神经元存活数目为58.7±13个/mm~2,为原有神经元数目的28.1%,差异显著。当缺血后12小时给予0.5mg/kg/次烟碱腹腔注射,3次/天,给药7天观察到5只大鼠,海马CA1区神经元存活数目为42±10个/mm~2,为原有神经元数目的20.1%,差异显著。可见,全脑缺血再灌注后给予烟碱腹腔注射,给药时间越早,治疗效果越好,缺血后2小时给药可以保护半数以上的神经元免于死亡,至缺血后12小时给药仍有保护作用。
     为了观察烟碱是否能抑制缺血再灌注引起的中枢小胶质细胞炎反应,我们按上述时间给药,7天后观察海马CA1区小胶质细胞数目的反应,假手术组双侧海马CA1区小胶质细胞(OX-42阳性细胞)数目平均为26.5±4.5个/mm~2,缺血生理盐水组8只大鼠双侧海马CA1区小胶质细胞数目为283.4±24个/mm~2,即在全脑缺血再灌注7天时,海马CA1区活化的小胶质细胞数目为原有数目的10.7倍,当缺血后2小时给予0.5mg/kg/次烟碱腹腔注射,3次/天,给药7天观察到7只大鼠,海马CA1区小胶质细胞数目为62.9±11.5个/mm~2,为原有小胶质细胞数目的2.4倍,差异显著。当缺血后6小时给予烟碱0.5mg/kg/次,海马CA1区小胶质细胞数目为82.3±17.6个/mm~2,为原有小胶质细胞数目的3.1倍,差异显著。当缺血后12小时给予0.5mg/kg/次烟碱腹腔注射,海马CA1区小胶质细胞数目为151.3±24.6个/mm~2,为原有小胶质细胞数目的5.6倍,差异显著。可见,在全脑缺血再灌注模型中,海马CA1区小胶质细胞的数目是显著增多的,给药时间越早,对海马CA1区小胶质细胞数目的抑制作用越明显,至缺血后12小时给药,仍有较为明显的抑制作用。由此实验结果可知,烟碱对缺血再灌注引起的海马CA1区小胶质细胞数目反应性增多有显著的抑制作用,此效果具有剂量依赖性。
     为了进一步探讨烟碱是否能直接影响小胶质细胞的增殖过程,我们做了体外培养小胶质细胞实验。无菌条件下,取新生8只Wistar大鼠皮层做细胞混合培养,培养14天,收获前1日换液1次,轻摇培养瓶以去除贴壁未牢的细胞成分,吸出后加入新鲜培养液,此时所得细胞成分即绝大部分为小胶质细胞,经小胶质细胞特异性标记OX-42鉴定纯度为>98%。培养一天待小胶质细胞适应条件后,即纯化后第二天,观察生长良好的细胞开始加药观察药物效果。结果显示,烟碱对原代培养小胶质细胞小胶质细胞的数目有抑制作用,此作用在加药48小时效果较好,且浓度为10uM时效果更为显著,在小胶质细胞系同样得到了类似的结果。进一步观察烟碱是否能抑制(粒细胞巨噬细胞集落刺激因子)GM-CSF引起的原代培养小胶质细胞的数目增多,结果显示,烟碱对GM-CSF引起的原代培养小胶质细胞的数目增多有抑制作用,此作用在加药48小时效果较好,且浓度为10uM时效果更为显著。我们在小胶质细胞系(BV-2)重复了上述实验,同样得到了类似的结果,接着,我们又观察了另一种胆碱能受体激动剂卡巴胆碱,对小胶质细胞系在自然情况下及GM-CSF引起的小胶质细胞的存活数目的影响,也得到了类似的效果。
     我们又探讨了胆碱能受体激动剂烟碱抑制小胶质细胞的数量是否是通过抑制其增殖过程实现的,用BrdU(溴化脱氧尿嘧啶核苷)掺入法观察了烟碱的上述效应,结果发现,对照组小胶质细胞的BrdU阳性率为30.7±7.9%,GM-CSF有效诱导小胶质细胞增殖,BrdU阳性率为45.8±10.5%,10nM浓度的烟碱即可明显减少GM-CSF诱导的小胶质细胞BrdU阳性细胞数,BrdU阳性率降为31.6±4.0%,随着烟碱浓度的增大,其抑制GM-CSF诱导的小胶质细胞BrdU阳性率的作用越显著,浓度增加至10uM时,对小胶质细胞的BrdU阳性率抑制最为显著,BrdU阳性率降为14.1±5.2%,烟碱浓度增加至100uM时,其抑制作用略有回升,BrdU阳性率变为15.9±4.6%。可见,烟碱能有效抑制炎性细胞因子GM-CSF诱导的小胶质细胞炎性增殖。
     综上所述,胆碱能受体激动剂可以减少全脑缺血模型海马神经元迟发性死亡的程度,效果显著,并且明显减少海马CA1区小胶质细胞增殖。胆碱能受体激动剂使体外培养小胶质细胞的数目减少,并且能减少GM-CSF引起小胶质细胞增殖过程,我们可以得出结论,胆碱能受体激动剂可能通过抑制小胶质细胞炎性增殖,并且保护脑缺血大鼠海马神经元迟发性死亡。这为脑中风的治疗提供了一条新的途径。
Stroke is the most common life-threatening neurological disease, and is the thirdleading cause of death after heart disease and cancer, and in the elderly it is a majorsource of disability leading to institutionalization. While pharmacological therapy toreduce ischemic damage is being pursued, prevention and rehabilitation are still theonly strategies, albeit relatively inefficient; to reduce the disability and lethality of thedisease. Most forms of cerebral ischemia initiate from some sort of vascular problem,and are clinically defined by a loss of function due to the death of neurons. Fordecades, therefore, cerebral ischemia research was mainly focused on blood flow,cerebral vasculature, or neuronal cells. It is a rather recent concept that astrocytes,oligodendrocytes, as well as microglial cells, play significant roles in the demise ofbrain tissue after cerebral ischemia, in addition to protecting brain function andenhancing survival and regeneration under these conditions. Accumulating evidenceover the past two decades has indicated that the brain has an active endogenousimmune system. Chronic inflammation, predominantly mediated by microglial cells,is thought to play an important role in the progressive neuronal death seen in manyneurological diseased states, including Alzheimer's disease (AD), Parkinson's disease (PD) and stroke. The activation of microglia involves a change in morphology, andexpression and release of molecules such as inducible nitric oxide synthase (iNOS)and nitric oxide (NO), cyclooxygenase (COX)-2 and prostaglandins (PG) as well asproinflammatory cytokines and reactive oxygen species (ROS).
     The brain damage produced by cerebral ischemia maturates over a period ofseveral hours or days. Especially in global ischemia, a delayed hippocampal damageis observed 3 days or so after the insult in CA1 pyramidal neurons, suggesting thatmechanisms that develop slowly after ischemia have a role in ischemic cell death.Recent studies have shown that inflammatory cells infiltrate the ischemic brain area(24), and several proinflammatory genes or mediators, such as iNOS,cyclooxygenase-2, and cytokines are strongly expressed in the ischemic brain.Inflammation is now recognized as a significant contributing mechanism in cerebralischemia because antiinflammatory compounds or inhibitors of iNOS andcyclooxygenase-2 reduce ischemic damage and improve the outcome of animals afterischemic insult. It has been observed that N-cholinergic receptors were expressed onmicroglia and regulated some inflammatory factors released from these cells. Beingsuggested from the above cultures, we studied whether nicotine has neuroprotectiveeffects on delayed neuronal death in cerebral ischemia rat through anti-inflammationparthway.
     Transient cerebral ischemia was performed by occluding 4 major arteriessuppllying the brain ,i.e.,the bolateral vertibral and common carotid arteries,modifying the original method by Pulsinelli on adult mate wistar rats(body weight200+20g). We found that pretreatment of nicotine 30 minutes before ischemia areneuroprotective against ischemic stroke. However this prevention is not suitable onclinical therapy, it is not humanistic to apply nicotine on healthy people before theyare subject to stroke. Therefore we observed nicotine's neuroprotective effects at different time after ischemia against reperfusion.In sham operated rats, the number ofneurons in the CA1 pyramidal cell layer was 209.5±35个/mm2(n=8), whereas 7 daysafter 15-minute global ischemia,the number was decreased to 11.9% (25±7个/mm2).Nicotine-posttreated rats at 2, 6, 12 hours after ischemia had 54.6%(114.2±17.6个/mm2), 28.1%(58.7±13个/mm2), 20.1%(42±10个/mm2) of the neuron profilesleft in the CA1 pyramidal cell layer respectively. The neuroprotection wasstatistically significant in every animal group(P<0.05), and the effect of nicotine isdose-dependent. Treatment of the same dose of saline did not provide any protection.Therefore, the earlier posttreatment of nicotine after ischemia, the betterneuroprotection. The neuroprotective effects of nicotine are still statisticallysignificant even applied 12h after ischemia.
     In order to determine the effect of nicotine on microglia inflammatory reactioninduced by reperfusion after ischemia, we observed the number of microglia in theCA1 pyramidal cell layer 7 days after 15-minute global ischemia. In sham operatedrats, the number of microglia in the CA1 pyramidal cell layer was 26.5±4.5个/mm2(n=8), whereas 7 days after 15-minute global ischemia,the number was increased to10.7 times (283.4±24个/mm2). Nicotine-posttreated rats at 2,6,12 hours afterischemia had 2.4 times(62.9±11.5个/mm2), 3.1 times(82.3±17.6个/mm2), 5.6times(151.3±24.6个/mm2) of the microglia profiles left in the CA1 pyramidal celllayer respectively. The anti-inflammation of nicotine was statistically significant inevery animal group(P<0.05), and the effect of nicotine is dose-dependent. Treatmentof the same dose of saline did not provide any anti-inflammation effects. Therefore,the earlier posttreatment of nicotine after ischemia, the better anti-inflammationeffects. The anti-inflammation effects of nicotine are still statistically significant evenapplied 12h after ischemia.
     In order to study whether nicotine has a direct antiinflammtory effects on microglia, we performed the following experiments on cultured microglia in vitro.Microglial cultures were prepared from 10-14 day mixed primary glial culturesobtained from the cerebral cortex of 1-day-old rats, as previously described.Microglial cells, harvested from the mixed primary glial cultures by mild shaking,were resuspended in DMEM supplemented with 10 % fetal calf serum, and plated onuncoated plastic wells at a density of 1.25×105 cells/cm2. Cells were allowed toadhere for 20 min and then washed to remove non-adhering cells, the percents ofOX-42 positive cells is more than 98%. After a 24 h of incubation, the medium wasreplaced with fresh medium containing the substance(s) under study. Microglial cellswere stimulated with different concentrations of nicotine for different periods, anddetermined the microglia viability through MTT method. We found that nicotinedecreased the number of primary cultured microglia in 24 h,48 h, 72 h groupsrespectively, and the most appearent effect concentration is 10μM treated for 48 h.The similar effects of nicotine was observed on microglia cell line(BV-2). We furtherdetermined whether nicotine could decrease the number of survival primary culturedmicroglia pretreated with GM-CSF, microglial cells were prestimulated for 30 minwith different concentrations of nicotine, and then stimulated for 24 h, 48 h, 72 h inthe presence of 5 ng/ml GM-CSF. The results show that nicotine could decrease thenumber of survival primary cultured microglia pretreated with GM-CSF at differenttime points, and the most significant effect concentration is 10μM treated for 48 h.The similar effects of nicotine was observed on microglia cell line(BV-2). Then weobserved that carbachol, another cholinergic agonist, decreased the number ofmicroglia(BV-2), and the number of microglia induced by GM-CSF.
     At last, we determined whether nicotine decreased the number of microgliathrough inhibiting the proliferation of microglia, indicated by thymidine analog5'-bromo-2'deoxyuridine-5'-monophosphate (BrdU) positive cell proportions. We found that nicotine inhibited the proliferation of micrglia dose-dependently. Wefurther found that there are 30.7±7.9% BrdU positive cells of the DAPI positive cellsin control groups, and 45.8±10.5% BrdU positive cells of the DAPI positive cells inGM-CSF treated groups. Then BrdU positive cells decreased to 31.6±4.0% with10nM nicotine, and to 14.1±5.2% with 10μM nicotine, the most significant dose. Thedata suggested that nicotine could inhibit the proliferation of microglia induced byGM-CSF dose-dependently, which is a inflammtory factor.
     To conclude, Nicotine could increase the number of neurons left in the CA1pyramidal cell layer after ischemia, and decrease the number of microglia in the CA 1pyramidal cell layer 7 days after 15-minute global ischemia dose-dependently.cholinergic agonists decreased the number of micrglia, and they inhibited thespontaneous proliferation of microglia, as well as the proliferation induced byGM-CSF. All the data above suggests that cholinergic agonists are neuroprotective ondelayed neuronal death in the CA 1 of hippocampus in global ischemia rats and inhibitmicroglia activation even applied 12 hours after ischemia. Our results supplied a newmethod to cure stroke.
引文
[1]. Wolf, P. A., Cobb, J. L. & D'Agostino, R. B. in Stroke, Pathophysiology, Diagnosis and Management, eds. Barnett,H. J. M, Mohr, J. P., Stein, B. M. & Yatsu, F. M. (Churchill Livingstone, New York). 1997, pp. 3-27.
    [2]. Centers for Disease Control and Prevention, Division of Chronic Disease Control and Community (1994) Cardiovascular Disease Surveillance: Stroke 1980-1989 (Centers Dis. Control, Atlanta).
    [3]. Dereski, M. O., Chopp, M, Knight, R. A., et al. Acta Neuropathol. 1993, 85: 327-333.
    
    [4]. Marshall, R. S. & Mohr, J. P. Neurol. Neurosurg. Psychiatry 1993, 56:6-16.
    [5]. Siesjo¨, B. K. (1978) Brain Energy Metabolism (Wiley, New York).
    [6]. Feuerstein, G. Z., Wang, X. & Barone, F. C. in Cerebrovascular Diseases, eds. Ginsberg, M. D. & Bogousslavsky, J.(Blackwell Scientific, Oxford) 1997 pp. 856-862.
    
    [7]. Iadecola, C. Trends Neurosci. 1997, 20: 132-139.
    [8]. Koistinaho, J. & Ho¨kfelt, T. NeuroReport 1997, 8, i-viii.
    [9]. Iadecola, C, Zhang, F. M., Casey, R., et al. J. Neurosci. 1997, 17: 9157-9164.
    [10].Nogawa, S., Zhang, F., Ross, et al. J. Neurosci. 1997, 17: 2746-2755.
    [11]. Juha Yrj Anheikki, Riitta Kein¨Anen, Milla Pellikka, et al. Tetracyclines inhibit microglial activation and are neuroprotective in global brain ischemia. Proc. Natl. Acad. Sci. 1998, 95: 15769-15774
    [12]. Akiyama, H., Barger, S., Barnum, S., et al. Inflammation and Alzheimer's disease. Neurobiol. Aging 2000.21:383-421.
    [13].McGeer, PL., McGeer, E.G., Inflammation and neurodegeneration in Parkinson's disease. Parkinsonism Relat.Disord. 2004. 10 (Suppl. 1), S3-S7.
    [14].Orr, C.F, Rowe, D.B., Halliday, G.M.. An inflammatory review of Parkinson's disease. Prog. Neurobiol. 2002,68:325-340.
    [15].Danton, G.H., Dietrich, W.D. Inflammatory mechanisms after ischemia and stroke. J. Neuropathol. Exp. Neurol. 2003. 62:127-136.
    [16].Banati, R.B., Gehrmann, J., Schubert, et al. Cytotoxicity of microglia. Glia 1993.7: 111-118.
    [17]. Gehrmann, J., Matsumoto, Y., Kreutzberg, G.W.. Microglia: intrinsic immuneffector cell of the brain. Brain Res. Brain Res. Rev. 1995. 20:269-287.
    [18].Merrill, J.E., Benveniste, E.N.. Cytokines in inflammatory brain lesions: helpfuland harmful. Trends Neurosci. 1996.19, 331-338.
    [19].Munoz-Fernandez, M.A., Fresno, M.. The role of tumor necrosis factor, interleukin 6, interferon-gamma and inducible nitric oxide synthase in the development and pathology of the nervous system. Prog. Neurobiol. 1998. 56:307-340.
    [20].R. Douglas Shytle, Takashi Mori, Kirk Townsend, et al. Cholinergic modulation of microglial activation by a7 nicotinic receptors. Journal of Neurochemistry. 2004, 89,337-343.
    [21].Roberta De Simone, Maria Antonietta Ajmone-Cat, Daniela Carnevale, et al. Activation of α7 nicotinic acetylcholine receptor by nicotine selectively up-regulates cyclooxygenase-2 and prostaglandin E2 in rat microglial cultures. J Neuroinflammation. 2005 Jan 25;2(1):4.
    [22].He, Y., Imam, S.Z., et al. Role of nitric oxide in rotenone-induced nigro-striatal injury. J. Neurochem. 2003. 86:1338-1345.
    [23].Iravani, M.M., Kashefi, K., et al. Involvement of inducible nitric oxide synthase in inflammation-induced dopaminergic neurodegeneration.Neuroscience 2002. 110: 49-58.
    [24].Jeohn, G.H., Kim, et al. Time dependency of the action of nitric oxide in lipopolysaccharide- interferongamma- induced neuronal cell death in murine primary neuron-glia co-cultures. Brain Res. 2000. 880: 173-177.
    [25].Lee, P., Son, et al. Excessive production of nitric oxide induces the neuronal cell death in lipopolysaccharide-treated rat hippocampal slice culture. Neurosci. Lett. 2003. 349. 33-36.
    [26].Munch, G, Gasic-Milenkovic, et al. Microglial activation induces cell death, inhibits neurite outgrowth and causes neurite retraction of differentiated neuroblastoma cells. Exp. Brain Res. 2003. 150. 1-8.
    [27].Bal-Price, A., Brown, et al. Inflammatory neurodegeneration mediated by nitric oxide from activated glia-inhibiting neuronal respiration, causing glutamate release and excitotoxicity. J. Neurosci. 2001.21:6480-6491.
    [28].Jeohn, G, Chang, et al. Post-transcriptional inhibition of lipopolysaccharide induced expression of inducible nitric oxide synthase by Go6976 in murine microglia [In process citation]. Brain Res. Mol. Brain Res. 2000. 79: 18-31.
    [29]. Anthony, J.C., Breitner, et al. Reduced prevalence of AD in users of NSAIDs and H2 receptor antagonists: the Cache County study. Neurology 2000. 54: 2066-2071.
    [30].McGeer, P.L., Schulzer, et al. Arthritis and anti-inflammatory agents as possible protective factors for Alzheimer's disease: a review of 17 epidemiologic studies [see comments]. Neurology 1996. 47:425-432.
    [31].Acarin, L., Peluffo, et al. Expression of inducible nitric oxide synthase and cyclooxygenase-2 after excitotoxic damage to the immature rat brain. J. Neurosci. Res. 2002.68: 745-754.
    [32].Choi, S.H., Joe, et al. Thrombin-induced microglial activation produces degeneration of nigral dopaminergic neurons in vivo. J. Neurosci. 2003.23: 5877-5886.
    [33].Saha, R.N., Pahan, et al. Tumor necrosis factor-alpha at the crossroads of neuronal life and death during HIV-associated dementia. J. Neurochem. 2003.86:1057-1071.
    [34].Rogers, J., Strohmeyer, et al. Microglia and inflammatory mechanisms in the clearance of amyloid beta peptide. Glia 2002, 40: 260-269.
    [35].Streit, W.J., Walter, et al. Reactive microgliosis.Prog. Neurobiol. 57, 563-581.
    [36].Wyss-Coray, T., Mucke, L., 2002. Inflammation in neurodegenerative disease—A double-edged sword. Neuron 1999.35: 419-432.
    [37].Neumann, H.. Control of glial immune function by neurons. Glia 2001.36: 191-199.
    [38].N.J. Rothwell, G. Luheshi, Pharmacology of interleukin-1 actions in the brain, Adv. Pharmacol. 1994,25:1-20.
    [39].J. Yrjanheikki, R. Keinanen, M. Pellikka, et al, Tetracyclines inhibit microglial activation and are neuroprotective in global brain ischemia, Proc. Natl. Acad. Sci. 1998,95: 15769-15774.
    [40].B. Hemmer, J.J. Archelos, H.P. Hartung, New concepts in the immunopathogenesis of multiple sclerosis, Nat. Rev., Neurosci.2002, 3:291- 301.
    [41].Y. Matsumoto, M. Fujiwara, Absence of donor-type major histocompatibility complex class I antigen-bearing microglia in the rat central nervous system of radiation bone marrow chimeras, J. Neuroimmunol.1987,17: 71-82.
    [42].E.N. Benveniste, V.T. Nguyen, G.M. O'Keefe, Immunological aspects of microglia: relevance to Alzheimer's disease, Neurochem. Int.2001, 39:381-391.
    [43].P.L. McGeer, T. Kawamata, D.G. Walker, et al, Microglia in degenerative neurological disease. Glia,1993, 7:84- 92.
    [44].J. Cammermeyer, Juxtavascular karyokinesis and microglia cell proliferation during retrograde reaction in the mouse facial nucleus, Ergeb. Anat. Entwickl. Gesch.1965, 38:1-22.
    
    [45].N.P. Hailer, A. Grampp, R. Nitsch. Proliferation of microglia and astrocytes in the dentate gyrus following entorhinal cortex lesion: a quantitative bromodeoxyuridine-labelling study, Eur. J. Neurosci. 1999, 11:3359- 3364.
    [46].W.J. Streit, S.A. Walter, N.A. Pennell, Reactive microgliosis, Prog. Neurobiol. 1999,57:563-581.
    [47].A.M. Fagan, F.H. Gage, Mechanisms of sprouting in the adult central nervous system: cellular responses in areas of terminal degeneration and reinnervation in the rat hippocampus, Neuroscience 1994, 58:705- 725.
    [48].M.B. Graeber, W. Tetzlaff, W.J. Streit, et al, Microglial cells but not astrocytes undergo mitosis following rat facial nerve axotomy, Neurosci. Lett. 1988, 85:317- 321.
    [49].M.B. Jensen, B. Gonzalez, B. Castellano, et al, Microglial and astroglial reactions to anterograde axonal degeneration: a histochemical and immunocytochemical study of the adult rat fascia dentata R. Ladeby et al. / Brain Research Reviews 48 (2005) 196-206 204 after entorhinal perforant path lesions, Exp. Brain Res. 1994, 98:245-260.
    [50].R. Ladeby, M. Wirenfeldt, I. Dalmau, et al, Proliferating resident microglia express the stem cell antigen CD34 in response to acute neural injury, Glia (in press).
    [51].J. Priller, A. Flugel, T. Wehner, et al, Targeting genemodified hematopoietic cells to the central nervous system: use of green fluorescent protein uncovers microglial engraftment, Nat. Med.2001, 7:1356- 1361.
    [52].R. Tanaka, M. Komine-Kobayashi, H. Mochizuki, et al, Migration of enhanced green fluorescent protein expressing bone marrow-derived microglia/macrophage into the mouse brain following permanent focal ischemia, Neuroscience 2003, 117:531-539.
    [53].Rune Ladeby, Martin Wirenfeldt, Daniel Garcia-Ovejero, et al, Microglial cell population dynamics in the injured adult central nervous system, Brain Research Reviews 2005, 48 :196- 206
    
    [54].Barron KDThe microglial cell. A historical review. J Neurol Sci 1995,134:57-68.
    
    [55].Cuadros MA and Navascues J The origin and differentiation of microglial cells during development. Prog Neurobiol 1998, 56:173-189.
    [56].Dalmau, I., J. M. Vela, et al. Dynamics of microglia in the developing rat brain. J. Comp. Neurol. 2003. 458:144-157.
    
    [57].Kaur, C, A. J. Hao, et al. Origin of microglia. Microsc. Res. Tech. 2001.54:2-9.
    [58] Male, D., R Rezaie. Colonisation of the human central nervous system by microglia: the roles of Chemokines and vascular adhesion molecules. Prog. Brain Res. 2001. 132:81-93.
    [59].Kreutzberg GW. Microglia: a sensor for pathological events in the CNS. Trends Neurosci 1996, 19:312-318.
    [60].Boje KM and Arora PK. Microglial-produced nitric oxide and reactive nitrogen oxides mediate neuronal cell death. Brain Res 1992,587:250-256.
    [61].Chao CC, Hu S, Molitor TW, et al, Activated microglia mediate neuronal cell injury via a nitric oxide mechanism. J Immunol 1992, 149:2736-2741.
    [62].McGuire SO, Ling ZD, Lipton JW, et al. Tumor necrosis factor alpha is toxic to embryonic mesencephalic dopamine neurons. Exp Neurol 2001,169:219-230.
    [63].Chao CC, Hu S, Ehrlich L, et al. Interleukin-1 and tumor necrosis factor-_synergistically mediate neurotoxicity: involvement of nitric oxide and of N-methyl-D-aspartate receptors. Brain Behav Immun 1995, 9:355-365.
    [64]. Jeohn G-H, Kong L-Y, Wilson B, et al. Synergistic neurotoxic effects of combined treatments with cytokines in murine primary mixed neuron/glia cultures. J Neuroimmunol 1998, 85:1-10.
    [65].Xie Z, Wei M, Morgan TE, et al. Peroxynitrite mediates neurotoxicity of amyloid _-peptidel-42- and lipopolysaccharide-activated microglia. J Neurosci 2002, 22:3484-3492.
    [66].Robbins SL, Angell M, Kumar V, Basic Pathology 3rd edition. Philadelphia: W.B. Saunders; 1981.
    [67]. Sroga JM, Jones TB, Kigerl KA, et al. Rats and mice exhibit distinct inflammatory reactions after spinal cord injury. J Comp Neurol 2003, 462:223-240.
    [68].Streit WJ, Semple-Rowland SL, Hurley SD, et al, Cytokine mRNA profiles in contused spinal cord and axotomized facial nucleus suggest a beneficial role for inflammation and gliosis. Exp Neurol 1998, 152:74-87.
    [69].Kreutzberg GW, Principles of neuronal regeneration. Acta Neurochir Suppl (Wein) 1996,66:103-106.
    [70].Ito K, Ishikawa Y, Skinner RD, et al, Lesioning of the inferior olive using a ventral surgical approach: characterization of temporal and spatial responses at the lesion site and in cerebellum. Mol Chem Neuropathol 1997, 31:245-264.
    [71]. Garden GA: Microglia in human immunodeficiency virus-associated neurodegeneration. Glia 2002, 40:240-251.
    [72].Walz W, Ilschner S, Ohlemeyer C, et al. Extracellular ATP activates a cation conductance and a K+ conductance in cultured microglial cells from mouse brain. J Neurosci 1993.13:4403-4411.
    [73].Brockhaus J, Ilschner S, Banati RB,et al. Membrane properties of ameboid microglial cells in the corpus callosum slice from early postnatal mice. J Neurosci 1993,13:4412-4421.
    [74].Frei K, Siepl C, Groscurth P, et al. Antigen presentation and tumor cytotoxicity by interferongamma treated microglial cells. Eur J Immunol 1987,17:1271-1278.
    [75].Norenberg W, Gebicke-Haerter PJ, Illes P. Inflammatory stimuli induce a new Kl outward current in cultured rat microglia. Neurosci Lett 1992,147:171-174.
    [76].Gallin EK. Ion channels in leukocytes. Physiol Rev 1991, 71:775-811.
    [77].Mittelbronn, M., K. Dietz, et al. Local distribution of microglia in the normal adult human central nervous system differs by up to one order of magniture. Acta Neuropathol. 2001, 101:249-255.
    [78].Nakamura, Y. Regulating factors for microglial activation. Biol. Pharm. Bull. 2002, 25:945-953.
    [79].Banati, R. B. Neuropathological imaging: in vivo detection of glial activation as a measure of disease and adaptive change in the brain. Br. Med. Bull. 2003, 65:121-131.
    
    [80].Banati, R. B. Visualising microglial activation in vivo. Glia 2002, 40:206-217.
    [81].Wierzba-Bobrowicz, T., E. Gwiazda, et al. Morphological analysis of active microglia-rod and ramified microglia in human brains affected by some neurological diseases (SSPE, Alzheimer's disease and Wilson's disease). Folia Neuropathol. 2002, 40:125-131.
    [82].Bronstein DM, Perez-Otano I, Sun V, et al. Glia-dependent neurotoxicity and neuroprotection in mesencephalic cultures. Brain Res 1995, 704:112-116.
    [83].Araki E, Forster C, Dubinsky JM, et al. Cyclooxygenase-2 inhibitor NS-398 protects neuronal cultures from lipopolysaccharide-induced neurotoxicity. Stroke 2001,32:2370-2375.
    [84]. Liu B, Gao HM, Wang J-Y, et al. Role of nitric oxide in inflammation-mediated neurodegeneration. Ann NY Acad Sci 2002, 962:256-263.
    [85].Cicchetti F, Brownell AL, Williams K, et al. Neuroinflammation of the nigrostriatal pathway during progressive 6-OHDA dopamine degeneration in rats monitored by immunohistochemistry and PET imaging.Eur J Neurosci 2002, 15:991-998.
    [86].Qin L, Liu YX, Cooper CL, et al. The role of microglia in β-amyloid (1-42) toxicity to cortical and mesenceph- alic neurons. J Neurochem,2002.
    [87].McMillian MK, Thai L, Hong JS, et al. Brain injury in a dish: a model for reactive gliosis. Trends Neurosci 1994, 17:138-142.
    [88]. Chang RC, Hudson P, Wilson B, et al. Immune modulatory effects of neural cell adhesion molecules on lipopolysaccharide-induced nitric oxide production by cultured glia. Brain Res Mol Brain Res 2000, 81:197-201.
    [89].Chang RC, Chen W, Hudson P, et al. Neurons reduce glial responses to lipopolysaccharide (LPS) and prevent injury of microglial cells from over-activation by LPS. J Neurochem 2001, 76:1042-1049.
    [90].Eder C, Fischer HQ Hadding U, et al. Properties of voltage-gated currents of microglia developed with macrophage colony-stimulating factor. Pflu"gers Arch 1995,430:526-533.
    [91].Schilling T, Quandt FN, Cherny VV, et al. Up-regulation of Kv1.3 Kt channels in microglia deactivated by TGF-b. Am J Physiol 2000, 279:C1123-C1134.
    [92]. Chung S, Jung W, Lee MY. Inward and outward rectifying potassium currents set membrane potentials in activated rat microglia. Neurosci Lett 1999, 262:121-124.
    [93].Eder C, Schilling T, Heinemann U, et al. Morphological, immunophenotypical and electrophysiological properties of resting microglia in vitro. Eur J Neurosci 1999, 11:4251-4261.
    [94].Visentin S, Agresti C, Patrizio M, et al. Ion channels in rat microglia and their different sensitivity to lipopolysaccharide and interferon-γ. J Neurosci Res 1995, 42:439-451.
    [95].Franchini L, Levi G, Visentin S. Inwardly rectifying K+ channels influence Ca2t entry due to nucleotide receptor activation in microglia. Cell Calcium 2004, 35:449-459.
    [96].No¨renberg W, Gebicke-Haerter PJ, Illes P. Voltage-dependent potassium channels in activated rat microglia. J Physiol 1994, 475:15-32.
    
    [97].Eder C, Fischer HG, Hadding U, Heinemann U. Properties of voltage-gated potassium currents of microglia differentiated with granulocyte/macrophage colony-stimulating factor. J Membr Biol 1995, 147:137-146.
    
    [98]. Ku¨ st BM, Biber K, van Calker D, et al. Regulation of Kt channel mRNA expression by stimulation of adenosine A2areceptors in cultured rat microglia. Glia. 1999,25:120-130.
    [99].Kotecha SA, Schlichter LC. A Kv1.5 to Kv1.3 switch in endogenous hippocampal microglia and a role in proliferation. J Neurosci. 1999, 19:10680-10693.
    [100].McLarnon JG, Xu R, Lee YB, et al. Ion channels of human microglia in culture. Neuroscience. 1997, 78:1217-1228.
    
    [101].Bordey A, Spencer DD. Chemokine modulation of high- conductance Ca2t-sensitive Kt currents in microglia from human hippocampi. Eur J Neurosci. 2003, 18:2893-2898.
    
    [102].Schilling T, Repp H, Richter H, et al. Lysophospholipids induce membrane hyperpolarization in microglia by activation of IKCal Ca2t-dependent Kt channels. Neuroscience. 2002, 109:827-835.
    
    [103].Schilling T, Stock C, Schwab A, et al. Functional importance of Ca2t-activated Kt channels for lysophosphatidic acid-induced microglial migration. Eur J Neurosci. 2004, 19:1469-1474.
    
    [104].DeCoursey TE, Kim SY, Silver MR, et al. Ion channel expression in PMA-differentiated human THP-1 macrophages. J Membr Biol. 1996, 152:141-157.
    
    [105].Norenberg W, Gebicke-Haerter PJ, Illes P. Voltage-dependent potassium channels in activated rat microglia. J Physiol. 1994, 475:15-32.
    [106].Fischer HG, Eder C, Hadding U, et al. Cytokinedependent K1 channel profile of microglia at immunologically defined functional states. Neuroscience. 1995, 64:183-191.
    [107].Draheim HJ, Prinz M, Weber JR, et al. Induction of potassium channels in mouse brain microglia. Neuroscience. 1999, 89:1379-1390.
    [108].Schlichter LC, Sakellaropoulos G, Ballyk B, et al. Properties of Kt and C1- channels and their involvement in proliferation of rat microglial cells. Glia. 1996, 17:225-236.
    [109].No"renberg W, Gebicke-Haerter PJ, Illes P. Inflammatory stimuli induce a new Kt outward current in cultured rat microglia. Neurosci Lett. 1992, 147:171-174.
    [110].Visentin S, Renzi M, Levi G. Altered outward-rectifying Kt current reveals microglial activation induced by HIV-1 Tat protein. Glia. 2001, 33:181-190.
    [111] .Novarino G, Fabrizi C, Tonini R, et al. Involvement of the intracellular ion channel CLIC1 in microglia- mediated b-amyloid-induced neurotoxicity. J Neurosci . 2004,24:5322-5330.
    [112].Rouzaire-Dubois B, Milandri JB, Bostel S, et al. Control of cell proliferation by cell volume alterations in rat C6 glioma cells. Pflu¨gers Arch . 2000, 440:881-888.
    [113].Lang F, Busch GL, Ritter M, et al. Functional significance of cell volume regulatory mechanisms. Physiol Rev. 1998, 78:247-306.
    [114].Gallin EK, Grinstein S. Ion channels and carriers in leukocytes. In: Gallin JI, Snyderman, S, editors. Inflammation: basic principles and clinical correlates. Philadelphia: Lippincott Williams & Wilkins. 1992, p 441-458.
    [115].Ling EA, Wong WC. The origin and nature of ramified and ameboid microglia: a historical review and current concepts. Glia. 1993, 7:9-18.
    [116].Eder C. Ion channels in microglia (brain macrophages). Am J Physiol . 1998, 275:C327-C342.
    [117].Schilling T, Nitsch R, Heinemann U, et al. Astrocyte released cytokines induce ramification and outward Kt channel expression in microglia via distinct signalling pathways. Eur J Neurosci. 2001, 14:463-473.
    [118].Phipps DJ, Branch DR, Schlichter LC. Chloride-channel block inhibits T lymphocyte activation and signalling. Cell Signal. 1996, 8:141-149.
    [119].Raivich G, Bohatschek M, Kloss CU, et al. Neuroglial activation repertoire in the injured brain: graded response, molecular mechanisms and cues to physiological function. Brain Res Rev. 1999, 30:77-105.
    [120].Streit WJ, Walter SA, Pennell NA. Reactive microgliosis. Prog Neurobiol. 1999, 57:563-581.
    
    [121].Schilling T, Lehmann F, Ru¨ckert B, et al. Physiological mechanisms of lysophosphatidylcholine-induced de-ramification of murine microglia. J Physiol. 2004,557:105-120.
    [122].Kalla R, Bohatschek M, Kloss CU, et al. Loss of microglial ramification in microglia-astrocyte cocultures: involvement of adenylate cyclase, calcium, Phosphatase, and Gi-protein systems. Glia. 2003, 41:50-63.
    [123].Borovikova, L. V., Ivanova, S., et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature (London). 2000, 405, 458-462
    [124].Borovikova, L. V., Ivanova, S., et al. Role of vagus nerve signaling in CNI-1493-mediated suppression of acute inflammation Autonom. Neurosci. 2000, 85, 141-147
    [125].Shytle R. D., Baker M., Silver A. A., et al. Smoking, nicotine, and movement disorders. Nicotine in Psychiatry: Psychopathology and Emerging Therapeutics, 2000, pp. 183-202. APA Press, Halifax, Canada.
    [126]. O'Neill M. J., Murray T. K., Lakics V., et al. The role of neuronal nicotinic acetylcholine receptors in acute and chronic neurodegeneration. Curr. Drug Target CNS Neurol. Disord. 2002, 1, 399-411.
    [127]. Belluardo N., Mudo G, Blum M, et al. Central nicotinic receptors, neurotrophic factors and neuroprotection. Behav. Brain Res. 2000, 113, 21-34.
    [128]. Cormier A., Morin C, Zini R., et al. Nicotine protects rat brain mitochondria against experimental injuries. Neuropharmacology. 2003, 44, 642-652.
    [129]. Guan Z. Z., Nordberg A., Mousavi M., et al. Selective changes in the levels of nicotinic acetylcholine receptor protein and of corresponding mRNA species in the brains of patients with Parkinson's disease. Brain Res. 2002, 956, 358-366.
    [130]. Newman M. B., Arendash G W., Shytle R. D., et al. Nicotine's oxidative and antioxidant properties in CNS. Life Sci. 2002, 71, 2807-2820.
    [131]. Polazzi E. and Contestabile A. Reciprocal interactions between microglia and neurons: from survival to neuropathology. Rev. Neurosci. 2002, 13, 221-242.
    [132]. Streit W. J. Microglial response to brain injury: a brief synopsis.Toxicol. Pathol. 2000, 28, 28-30.
    [133]. Tan J., Town T. and Mullan M. CD40-CD40L interaction in Alzheimer's disease. Curr. Opin. Pharmacol.2002, 2, 445-451.
    [134]. Liu B. and Hong J. S. Role of microglia in inflammation-mediated neurodegenerative diseases: mechanisms and strategies for therapeutic intervention. J. Pharmacol. Exp. 2003, Ther. 304, 1-7.
    [135]. Wang H., Yu M., Ochani M. et al. Nicotinic acetylcholine receptor a7 subunit is an essential regulator of inflammation. Nature. 2003, 421, 384-388.
    [136]. Gotti C, Riganti L,Vailati S, et al. Brain neuronal nicotinic receptors as new targets for drug discovery, Curr Pharm Des. 2006, 12(4):407-28.
    [137]. Masato Nanri, Jyunji Yamamoto, Hidekazu Miyake, et al. Protective Effects of GTS-21,a Novel Nicotinic Receptor Agonist,on Delayed Neuronal Death Induced by Ischemia in Gerbils,Jpn.J.Pharmacol. 1998, 76,23-29.
    [138]. F.Kagitani, S.Uchida, H.hotta, et al. Effects of Nicotine on Blood Flow and Delayed Neuronal Death Following Intermittent Transient Ischemia in Rat Hippocampus, Japanese Journal of Physiology. 2000, 50,585-595,.
    [139]. Pulsinelli WA, Buchan AM. The Four-Vessel occlusion rat model: Method for complete occlusion of vertebral arteries and control of collateral circulation. Stroke, 1988, 19 (7): 913-914.
    [140].刘红梅,高天明,佟振清.大鼠全脑缺血再灌流后海马CA1区锥体细胞超微结构的改变.第一军医大学学报,1999;19(4):289-291.
    [141]. [141] McCarthy KD, de Vellis J. Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J Cell Biol. 1980 Jun;85(3):890-902.
    [142]. Giulian D, Baker TJ. Characterization of ameboid microglia isolated from developing mammalian brain. J Neurosci. 1986 Aug;6(8):2163-78.
    [143]. Hao C, Richardson A, Fedoroff S. Macrophage-like cells originate from neuroepithelium in culture: characterization and properties of the macrophage-like cells. Int J Dev Neurosci. 1991;9(1): 1-14
    [144]. Beal MF. Aging, energy, and oxidative stress in neurodegenerative diseases. Ann Neurol. 1995, 38: 357-366.
    [145]. Dirnagl U, Iadecola C, Moskowitz MA. Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci. 1999, 22: 391-397.
    [146]. Lee JM, Zipfel GJ, Choi DW. The changing landscape of ischaemic brain injury mechanisms. Nature [Suppl 6738]. 1999, 399:A7-A14.
    [147]. Smith T, Groom A, Zhu B, et al. Autoimmune encephalomyelitis ameliorated by AMPA antagonists. Nat Med. 2000, 6:62-66.
    [148]. Giulian D, Corpuz M . Microglial secretion products and their impact on the nervous system. Adv Neurol. 1993, 59:315-320.
    [149]. Giulian D. Vaca K. Inflammatory glia mediate delayed neuronal damage after ischemia in the central nervous system. Stroke [Suppl.]. 1993, 12:184 190.
    [150]. Kim WK, Ko KH. Potentiation of N-methyl-D-aspartate mediated neurotoxicity by immunostimulated murine microglia. J Neurosci Res. 1998, 54:17-26.
    [151]. Rogove AD, Tsirka SE. Neurotoxic responses by microglia elicited by excitotoxic injury in the mouse hippocampus. Curr Biol. 1998, 8:19-25.
    [152]. Yrja¨nheikki J, Keina¨nen R, Pellikka M, et al. Tetracyclines inhibit microglial activation and are neuroprotective in global brain ischemia. Proc Natl Acad Sci USA. 1998,95:15769-15774.
    [153]. Yrja¨nheikki J, Tikka T, Keina¨nen R, et al. A tetracycline derivative, minocycline, reduces inflammation and protects against focal cerebral ischemia with a wide therapeutic window. Proc Natl Acad Sci USA. 1999,96:13496 -13500.
    [154]. Schousboe A, Sonnewald U, Civenne G, et al. Role of astrocytes in glutamate homeostasis. Implications for excitotoxicity. Adv Exp Med Biol. 1997, 429:195-206.
    [155].Morioka T, Kalehua AN, Streit WJ. The microglial reaction in the rat dorsal hippocampus following transient forebrain ischemia. J Cereb Blood Flow Metab. 1991,11:966-973.
    [156].McGeer EG, McGeer PL.Brain inflammation in Alzheimer disease and the therapeutic implications. Curr Pharm Des. 1999, 5:821- 836.
    [157].Rothwell NJ, Luheshi G, Toulmond S. Cytokines and their receptors in the central nervous system: physiology, pharmacology, and pathology. Pharmacol Ther. 1996, 69:85-95.
    [158].Tsirka SE, Rogove AD, Strickland S. Neuronal cell death and tPA. Nature. 1996, 384:123-124.
    [159]. Flavin MP, Zhao G, Ho LT. Microglial tissue plasminogen activator (tPA) triggers neuronal apoptosis in vitro. Glia. 2000, 29:347-354.
    [160].Caggiano AO, Kraig RP. Eicosanoids and nitric oxide influence induction of reactive gliosis from spreading depression in microglia but not astrocytes. J Comp Neurol. 1996, 369:93-108.
    [161].Bhat NR, Zhang P, Lee JC, et al. Extracellular signalregulated kinase and p38 subgroups of mitogen-activated protein kinases regulate inducible nitric oxide synthase and tumor necrosis factor-a gene expression in endotoxin-stimulated primary glial cultures. J Neurosci. 1998, 18:1633-1641.
    [162].Fiebich BL, Butcher RD, Gebicke-Haerter PJ. Protein kinase C-mediated regulation of inducible nitric oxide synthase expression in cultured microglial cells. J Neuroimmunol. 1998, 92:170 -178.
    [163]. Gottlieb M, Matute C. Expression of ionotropic glutamate receptor subunits in glial cells of the hippocampal CA1 area following transient forebrain ischemia. J Cereb Blood Flow Metab . 1998,17:290 -300.
    [164].Noda M, Nakanishi H, Nabekura J, et al. AMPA-kainate subtypes of glutamate receptor in rat cerebral microglia. J Neurosci. 2000, 20:251-258.
    [165].Biber K, Laurie DJ, Berthele A, et al. Expression and signaling of group I metabotropic glutamate receptors in astrocytes and microglia. J Neurochem. 1999, 72:1671-1680.
    [166].Fujita H, Tanaka J, Toku K, et al. Effects of GM-CSF and ordinary supplements on the ramification of microglia in culture: a morphometrical study. Glia. 1996, 18:269-281.
    [167].Tanaka J, Fujita H, Matsuda S, et al. Glucocorticoid- and mineralocorticoid receptors in microglial cells:the two receptors mediate differential effects of corticosteroids. Glia. 1997, 20:23-37.
    [168].Williams GT, Smith CA, Spooncer E, et al. Haemopoietic colony stimulating factors promote cell survival by suppressing apoptosis. Nature. 1990, 343:76-79.
    [169].Park, L. S., U. Martin, et al. Cloning of the low-affinity murine granulocyte-macrophage colony-stimulating factor receptor and reconstitution of a high-affinity receptor complex. Proc. Natl. Acad. Sci. USA. 1992, 89:4295.
    [170].Kitamura, T., K. Hayashida, et al. Reconstitution of functional receptors for human granulocyte/macrophage colony-stimulating factor (GM-CSF): evidence that the protein encoded by the AIC2B cDNA is a subunit of the murine GM-CSF receptor. Proc. Natl. Acad. Sci. USA .1991, 88:5082.
    [171].Matsuguchi, T., M. B. Lilly, et al. Cytoplasmic domains of the human granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor Pchain (hβc) responsible for human GM-CSF-induced myeloid cell differentiation. J. Biol. Chem. 1998,273:19411.
    [172].Aloisi, F., R. De Simone, S. Columba-Cabezas,et al. Functional maturation of adult mouse resting microglia into an APC is promoted by granulocyte-macrophage colony-stimulating factor and interaction with Thl cells. J. Immunol. 2000, 164:1705.
    [173].Matyszak, M. K., S. Denis-Donini, et al. Microglia induce myelin basic protein-specific T cell anergy or T cell activation, according to their state of activation. Eur. J. Immunol. 1999,29:3063.
    [174].Wong, R. L., E. G. Lingenheld, et al. Murine T helper cell clones secrete granulocyte-macrophage colony-stimulating factor (GmCSF) by both interleukin-2-dependent and interleukin-2-independent pathways. Cell Immunol. 1989, 123:445.
    [175].Flugel, A., T. Berkowicz, et al. Migratory activity and functional changes of green fluorescent effector cells before and during experimental autoimmune encephalomyelitis. Immunity. 2001, 14:547.
    
    [176].Sedgwick, J. D., A. L. Ford, et al. Central nervous system microglial cell activation and proliferation follows direct interaction with tissue-infiltrating T cell blasts. J. Immunol. 1998, 160:5320.
    [177].Neumann, H., J. Boucraut, et al. Neuronal control of MHC class II inducibility in rat astrocytes and microglia. Eur. J. Neurosci. 1996, 8:2582.
    
    [178].Neumann, H., T. Misgeld, et al. Neurotrophins inhibit major histocompatibility class II inducibility of microglia: involvement of the p75 neurotrophin receptor. Proc. Natl. Acad. Sci. USA. 1998, 95:5779.
    
    [179].Eugene D. Ponomarev, Marina Novikova, Katarzyna Maresz,et al. Dvelopment of a culture system that supports adult microglial cell proliferation and maintenance in the resting state. Journal of Immunological Methods. 2005, 300:32-46.
    [180].Spranger M, Fontana A . Activation of microglia: a dangerous interlude in the brain. Neuroscientist. 1996, 2:293-299.
    [181].McGeer PL, McGeer EG. Mechanisms of cell death in Alzheimer disease-immunopathology. J Neural Transm Suppl. 1998, 54:159 -166.
    [182],Glass JD, Wesselingh SL. Microglia in HIV-associated neurological diseases. Microsc Res Tech. 2001, 54:95-105.
    [183].Bamberger ME, Landreth GE. Inflammation, apoptosis, and Alzheimer's disease. Neuroscientist. 2002, 8:276-283.
    
    [184].Zietlow R, Dunnett SB, Fawcett JW. The effect of microglia on embryonic dopaminergic neuronal survival in vitro: diffusible signals from neurons and glia change microglia from neurotoxic to neuroprotective. Eur J Neurosci. 1999, 11:1657-1667.
    [185].Shaked I, Porat Z, Gersner R, et al. Early activation of microglia as antigen-presenting cells correlates with T cell-mediated protection and repair of the injured central nervous system. J Neuroimmunol. 2004, 146:84 -93.
    [186].Schwartz M, Kipnis J. A common vaccine for fighting neurodegenerative disorders: recharging immunity for homeostasis. Trends Pharmacol Sci. 2004, 25:407- 412.
    [187].Streit WJ. Microglia as neuroprotective, immunocompetent cells of the CNS. Glia. 2002,40:133-139.
    [188].Nakajima K, Kohsaka S. Microglia: neuroprotective and neurotrophic cells in the central nervous system. Curr Drug Targets Cardiovasc Haematol Disord. 2004, 4:65- 84.
    [189].Suzuki T, Hide I, Ido K, et al. Production and release of neuroprotective tumor necrosis factor by P2X7 receptoractivated microglia. J Neurosci. 2004, 24:1-7.
    [190].Xie Z, Smith CJ, Van Eldik LJ. Activated glia induce neuron death via MAP kinase signaling pathways involving JNK and p38. Glia. 2004, 45:170 -179.
    [191].Hailer NP, Wirjatijasa F, Roser N, et al, Astrocytic factors protect neuronal integrity and reduce microglial activation in an in vitro model of N-methyl-D-aspartate-induced excitotoxic injury in organotypic hippocampal slice cultures. Eur J Neurosci 2001, 14:315-326.
    [192].Smits HA, van Beelen AJ, de Vos NM, et al. Activation of human macrophages by amyloid-beta is attenuated by astrocytes. J Immunol 2001, 166:6869-6876.
    [193].Olivera M. Mitrasinovic, Alicia Grattan, Christopher C. Robinson, et al. Microglia Overexpressing the Macrophage Colony-Stimulating Factor Receptor Are Neuroprotective in a Microglial-Hippocampal Organotypic Coculture System. The Journal of Neuroscience, 2005, April 27, 2005 . 25(17):4442-4451
    [194].Mitrasinovic OM, Perez GV, Zhao F, et al, Overexpression of macrophage colony-stimulating factor receptor on microglial cells induces an inflammatory response. J Biol Chem 2001, 276:30142-30149.
    [195].Francis K, Palsson BO Effective intercellular communication distances are determined by the relative time constants for cyto/chemokine secretion and diffusion. Proc Natl Acad Sci USA 1997,94:12258 -12262.
    [196].Giulian, D. and Ingeman . Colony-stimulating factors as promotars of ameboid microglia. J Neurosci 1998, 8, 4707-4717.
    [197].Suzumura, A., Sawada, et al. Effects of colony-stimulating factors on isolated microglia in vitro. J. Neuroimmunol 1990, 30, 1 1 1- 120.
    [198].[198] Raivich, G, Gehrmann, et al. Increase of macrophage colony stimulating factor and granulocyte macrophage colony stimulating factor receptors in the regenerating rat facial nucleus. J. Neurosci. Res, 1991, 30, 682-686.
    [199].Gehrmann, J. and Banati, R.B. Microglial turnover in the injured CNS: Activated microglia undergo delayed DNA fragmentation following peripheral nerve injury. J. Neuropathol. Exp. Neurol, 1995, 54, 680-688.
    [200].Jochen Gehrmann. Colony-stimulating factors regulate programmed cell death of rat microglia/brain macrophages in vitro, Journal of Neuroimmunology 1995, 63:55-61.
    [201].BARRY E. FLANARY AND WOLFGANG J. STREIT, Alpha-Tocopherol (Vitamin E) Induces Rapid, Nonsustained Proliferation in Cultured Rat Microglia, GLIA 2006, 53:669-674.
    [202].Hyeon-Sook Suh, Mee-Ohk Kim, and Sunhee C.Lee, Inhibition of Granulocyte-Macrophage Colony-Stimulating Factor Signaling and Microglial proliferation by Anti-CD45RO: Role of Hck Tyrosine Kinase and Phosphatidylinositol 3-Kinase/Akt, The Journal of Immunology,2004,2712-2719.
    [203].Lee SC, Liu W, Brosnan CF. GM-CSF promotes proliferation of human fetal and adult microglia in primary cultures. Glia. 1994 Dec;12(4):309-18.
    [204].By Gayle Cocita Baldwin, Etty N. Benveniste, Grace Y. Chung, et al. Golde Identification and Characterization of a High-Affinity Granulocyte-Macrophage Colony-Stimulating Factor Receptor on Primary Rat Oligodendrocytes, Blood, Vol 82, No 1 1 (December I), 1993: pp 3279-3282
    [205].Ponomarev ED, Novikova M, Maresz K, et al. Development of a culture system that supports adult microglial cell proliferation and maintenance in the resting state. J Immunol Methods. 2005 May;300(1-2):32-46.
    [206].Picciotto MR, Zoli M. Nicotinic receptors in aging and dementia. J Neurobiol 2002, 53:641-655.
    [207].Sopori M. Effects of cigarette smoke on the immune system. Nat Rev Immunol 2002, 2:372-377.
    [208].White HK, Levin ED. Four-week nicotine skin patch treatment effects on cognitive performance in Alzheimer's disease. Psychopharmacology 1999, 143:158-165.
    [209].Court JA, Piggott MA, Lloyd S, et al. Nicotine binding in human striatum: elevation in schizophrenia and reductions in dementia with Lewy bodies, Parkinson's disease and Alzheimer's disease and in relation to neuroleptic medication. Neuroscience 2000, 98:79-87.
    [210].Banerjee C, Nyengaard JR, Wevers A, et al. Cellular expression of alpha7 nicotinic acetylcholine receptor protein in the temporal cortex in Alzheimer's and Parkinson's disease-a stereological approach. Neurobiol Dis 2000, 7:666-672.
    [211].Newhouse PA, Potter A, Kelton M, et al. Nicotinic treatment of Alzheimer's disease. Biol Psychiatry 2001, 49:268-278.
    [212].Prendergast MA, Harris BR, Mayer S, et al. Chronic nicotine exposure reduces N-methyl-D-aspartate receptor-mediated damage in the hippocampus without altering calcium accumulation or extrusion: evidence of calbindin-D28K overexpression. Neuroscience 2001, 102:75-85.
    [213].Hellstrom-Lindahl E, Court J, Keverne J, Svedberg M,et al. Nicotine reduces Abeta in the brain and cerebral vessels of APPsw mice. Eur J Neurosci 2001, 19:2703-2710.
    [214]. Wilkinson DG, Francis PT, Schwam E, et al. Cholinesterase inhibitors used in the treatment of Alzheimer's disease: the relationship between pharmacological effects and clinical efficacy. Drugs Aging 2004, 21:453-78.
    [215].Tracey KJ: The inflammatory reflex. Nature 2002, 420:853-859.
    [216].Wessler I, Reinheimer T, Klapproth H,et al. Mammalian glial cells in culture synthesize acetylcholine. Naunyn Schmiedebergs Arch Pharmacol 1997, 356:694-7.
    [217]. Terry A. V. Jr and Buccafusco J. J. The cholinergic hypothesis of age and Alzheimer's disease-related cognitive deficits: recent challenges and their implications for novel drug development. J. Pharmacol. Exp. Ther,2003, 306, 821-827.
    [218]. Streit W. J. and Sparks D. L. Activation of microglia in the brains of humans with heart disease and hypercholesterolemic rabbits. J. Mol. Med,1997, 75, 130-138.
    [219].Wenk G. L., McGann K., Mencarelli A., et al. Mechanisms to prevent the toxicity of chronic neuroinflammation on forebrain cholinergic neurons. Eur. J. Pharmacol,2000, 402, 77-85.
    [220].Hilmas C, Pereira E. F., Alkondon M., et al. The brain metabolite kynurenic acid inhibits a7 nicotinic receptor activity and increases non-a7nicotinic receptor expression: physiopathological implications. J. Neurosci 2001, 21, 7463-7473.
    [221].van Rossum D, Hanisch UK. Microglia. Metab Brain Dis 2004, 19:393-411.
    [222].Dirnagl U, Priller J. Focal cerebral ischemia: the multifaceted role of glial cells. In: Kettenmann H, Ransom B, editors. Neuroglia. New York:Oxford University Press, 2004, 511-520.
    [223].Cunningham L, Wetzel M, Rosenberg G. Multiple roles for MMPs and TIMPs in cerebral ischemia. Glia, 2005. 50:329-339.
    [224].Sheehan J, Tsirka S. Fibrin modifying serine proteases thrombin, tPA and plasmin in ischemic stroke: a review. Glia2005, 50:340-350.
    [225].T. Kirino, A. Tamura, K. Sano. Delayed neuronal death in the rat hippocampus following transient forebrain ischemia, Acta Neuropathol, 1984, 64 : 139-147.
    [226]. W.A. Pulsinelli, J.B. Brierley, F. Plum, Temporal profile of neuronal damage in a model of transient forebrain ischemia, Ann. Neurol, 1982, 11 491-498.
    [227].J. Gehrmann, P. Bonnekoh, T. Miyazawa, et al. Hossmann, Immunohistochemical study of an early microglial activation in ischemia, J. Cereb. Blood Flow Metab1992, 12:257-269.
    [228]. H. Kato, K. Kogure, T. Araki, et al. Graded expression of immunomolecules on activated microglia in the hippocampus following ischemia in a rat model of ischemic tolerance, Brain Res1995, 694: 85-93.
    [229]. C.K. Petito, S. Morgello, J.C. Felix, et al. The two patterns of reactive astrocytosis in postischemic rat brain, J. Cereb. Blood Flow Metab. 1990, 10:850-885.
    [230]. T. Morioka, A.N. Kalehua, W.J. Streit. The microglial reaction in the rat dorsal hippocampus following transient forebrain ischemia, J. Cereb. Blood Flow Metab. 1991, 11: 966-973.
    [231]. H. Kato, S. Tanaka, T. Oikawa, et al. Expression of microglial response factor-1 in microglia and macrophages following cerebral ischemia in the rat, Brain Res.2000, 882:6-211.
    [232]. R. Schmidt-Kastner, S. Szymas, K.A. Hossmann. Immunohistochemical study of glial reaction and serum protein extravasation in relation to neuronal damage in rat hippocampus after ischemia, Neuroscience.1990, 38 :527-540.
    [233]. J. Gehrmann, P. Bonnekoh, T. Miyazawa, et al. The microglial reaction in the rat hippocampus following global ischemia: immuno-electron microscopy, Acta Neuropathol. 1992, 84 :588-595.
    [234]. R.B. Banati, J. Gehrmann, P. Schubert, et al. Cytotoxicity of microglia, Glia,1993, 7:111-118.
    [235]. D. Giulian, J. Li, B. Leara, et al. Phagocytic microglia release cytokines and cytotoxins that regulate the survival of astrocytes and neurons in culture, Neurochem. Int. 1994, 25 :227-233.
    [236]. Y. Li, M. Chopp, C. Powers,et al. Immunoreractivity of cyclin D1/cdk4 in neurons and oligodendrocytes after cerebral ischemia in rat, J. Cereb. Blood Flow Metab. 1997,17:846-856.
    [237]. H. Osuga, S. Osuga, F. Wang, et al. Cyclin independent kinases as a therapeutic target for stroke, Proc. Natl. Acad. Sci. USA.2000, 97: 10254-10259.
    [238]. A. Copani, D. Uberti, M.A. Sortino, et al. Activation of cell-cycle-associated proteins in neuronal death: a mandatory or dispensable path? Trends Neurosci. 2001,24:25-31.
    [239]. K. Herrup, J.C. Busser, The induction of multiple cell cycle events precedes target-related neuronal death, Development 1995, 121: 2385-2395.
    [240]. Hiroyuki Kato , Akira Takahashi , Yasuto Itoyama. Cell cycle protein expression in proliferating microglia and astrocytes following transient global cerebral ischemia in the rat, Brain Research Bulletin.2003, 60: 215-221.
    [241]. R.B. Banati, M.B. Graeber, Surveillance, intervention and cytotoxicity: is there a protective role of microglia? Dev. Neurosci. 1994, 16: 114-127.
    [242]. H. Kato, K. Kogure, X.-H. Liu, et al. Progressive expression of immunomolecules on activated microglia and invading leukocytes following focal cerebral ischemia in the rat, Brain Res.1996, 734: 3-212.
    [243]. P.N. Kochanek, J.M. Hallenbeck. Polymorphonuclear leukocytes and monocytes/ macrophages in the pathogenesis of cerebral ischemia and stroke, Stroke 1992, 25: 1367-1379.
    [244]. M. Schroeter, S. Jander, O.W. Witte, et al. Local immune responses in the rat cerebral cortex after middle cerebral artery occlusion, J. Neuroimmunol.1994, 55: 195-203.
    [245]. Gehrmann J, Banati RB, Wiessner C,et al. Reactive microglia in cerebral ischaemia; an early mediator of tissue damage? Neuropathol Appl Neurobiol. 1995,21:277-289.
    [246]. Kato H, Takahashi A, Itoyama Y. Cell cycle protein expression in proliferating microglia and astrocytes following transient global cerebral ischemia in the rat. Brain Res Bull.2003, 60(3):215-221.
    [247]. Hsu JH, Lee YS, Chang CN, et al. Sleep deprivation prior to transient global cerebral ischemia attenuates glial reaction in the rat hippocampal formation. Brain Res.2003, 984:170-181.
    [248]. C. pforte, P. Henrich-Noack, K. Baldauf, et al. Increase in proliferation and Gliogenesis but decrease of early neurogenesis in the Rat Forbrain shortly after Transient Global Ischemia. Neuroscience 2005, 136:1133-1146.
    [249].Banati RB, Graeber MB . Surveillance, intervention and cytotoxicity: is there a protective role of microglia? Dev Neurosci 1994, 16:114-127.
    [250], Henrich-Noack P, Gorkin AG, Krautwald K, et al. Tetanus-induced re-activation of evoked spiking in the post-ischemic dentate gyrus. Neuroscience 2005, 133 (2):571-581.
    [251].Golub, L. M., Lee, H. M., Ryan, M. E., Giannobile, W. V., Payne, J. & Sorsa, T. (1998) Adv. Dent. Res. 12, 12-26.
    [252].Rifkin, B. R., Vernillo, A. T., Golub, L. M. & Ramamurthy, N. S. (1994) Ann. N.Y.Acad. Sci. 732, 165-180.
    [253]. Amin, A. R., Attur, M. G, Thakker, G. D., Patel, P. D., Vyas, P. R., Patel, R. N., Patel, I. R. & Abramson, S. B. (1996) Proc. Natl. Acad. Sci. USA 93, 14014-14019.
    [254]. Juha Yrja¨ nheikki, Tiina Tikka, Riitta Keina'"nen, et al. A tetracycline derivative, minocycline, reduces inflammation and protects against focal cerebral ischemia with a wide therapeutic window, PNAS 1999, November 9, vol. 96 2, 313496-13500.
    [255]. Tiina Tikka, Bernd L. Fiebich, Gundars Goldsteins, et al. Minocycline, a Tetracycline Derivative, Is Neuroprotective against Excitotoxicity by Inhibiting Activation and Proliferation of Microglia, The Journal of Neuroscience, 2001, 21(8):2580-2588.
    [256]. Malcolm E. Meistrell III, Galina I. Botchkina, Kevin J. Tracey, et al. Tumor Necrosis Factor is a Brain Damaging Cytokine in Cerebral Ischemia, Shock, 1997,vol 8,No.5:341-348.
    [257].Arendash GW, Sengstock GJ, Sanberg pR et al. Improved Learning and memory in aged rats with chronic administration of the nicotinic receptor agonist GTS-21. Brain Res 1995, 674, 252-259.
    [258].Bjugstad KB, Mahnir VM, Kern WR, et al. Long-term treatment with GTS-21 or nicotine enhances water maze performance in aged rats without affecting the density of nicotinic receptor subtypes in neocortex. Drug Dev Res 1996, 39,19-28.
    [259].Meyer EM, de Fiebre CM, Hunter BE, et al. Effects of anabaseine-related analogs on rat brain nicotinic receptor binding and on avoidance behaviors. Drug Dev Res. 1994, 31:127-134.
    [260].Newhouse PA, Sunderland T, Tariot PN, et al. Intravenous nicotine in Alzheimaer's disease: a pilot study. Psychopharmacology(Bel), 1998, 95: 171-175.
    [261].Sahakian B, Jones G, Levy R,et al. The effects of nicotine on attention, information processing, and short-term memory in patients with dementia of the Alzheimer type. Br J Psychiatry. 1989, 154, 797-800.
    [262].Wallin A, Alafuzoff I, Carlsson A, et al. Neurotransmitter deficits in a non-multi-infarct category of vascular dementia, Acta Neurol Scand. 1989, 79:397-406.
    [263].Perry EK, Perry RH, Blessed G et al. Necropsy evidence of central cholinergic deficits in senile dementia, Lancet. 1977, 1,189.
    [264].Claudia L.R. Gonzalez, Omar A. Gharbawie, Bryan Kolb. Chronic low-dose administration of nicotine facilitates recovery and synaptic change after focal ischemia in rats, Neuropharmacology.2006, 50: 777-787.
    [265].Liang Wang, Mamoru Kittaka, Ning Sun, er al. Chronic Nicotine Treatment Enhances Focal Ischemic Brain Injury and Depletes Free Pool of Brain Microvascular Tissue Plasminogen Activator in Rats, .1 Cereb Blood Flow Metab. 1997, Vol. 17,No.2: 136-146.
    [266].Djoher Nora Abrous, Walter Adriani, Marie-Franc, et al. Nicotine Self-Administration Impairs Hippocampal Plasticity , The Journal of Neuroscience, May 1, 2002, 22(9):3656-3662.
    [267].Rosa AO, Egea J, Gandia L, et al. Neuroprotection by nicotine in hippocampal slices subjected to oxygen-glucose deprivation: involvement of the alpha7 nAChR subtype. J Mol Neurosci. 2006;30(1-2):61-2.
    [268].Nakamizo T, Kawamata J, Yamashita H, et al. Stimulation of nicotinic acetylcholine receptors protects motor neurons, Biochem Biophys Res Commun. 2005 May 20;330(4):1285-9.
    [269].Dajas-Bailador FA, Lima PA, Wonnacott S. The alpha7 nicotinic acetylcholine receptor subtype mediates nicotine protection against NMDA excitotoxicity in primary hippocampal cultures through a Ca(2+) dependent mechanism, Neuropharmacology. 2000 Oct;39(13):2799-807.
    [270]. Vincent Laudenbach, Fadia Medja, Michele Zoli, et al. Selective activation of central subtypes of the nicotinic acetylcholine receptor has opposite effects on neonatal excitotoxic brain injuriesl, The FASEB Journal. 2002, Vol. 16 March: 423-425.
    [271]. Yoshihisa Kitamural, Kazuyuki Takatal, Masatoshi Inden, et al. Intracerebroventricular Injection of Microglia Protects Against Focal Brain Ischemia, J Pharmacol Sci. 2004, 94, 203 - 206 .
    [272].Neumann J, Gunzer M, Gutzeit HO, et al. Microglia provide neuroprotection after ischemia , FASEB J. 2006 Apr;20(6):714-6
    [1]. Eder C. 1998. Ion channels in microglia (brain macrophages). Am J Physiol 275: C327-C342.
    [2]. Eder C. 2002. Microglial ion channels. In: Streit WJ, editor. Microglia in the regenerating and degenerating CNS. New York: Springer-Verlag.p 36-57.
    [3]. Eder C, DeCoursey TE. 2001. Voltage-gated proton channels in microglia.Prog Neurobiol 64: 277-305.
    [4]. Barron KD (1995) The microglial cell. A historical review. J Neurol Sci 134: 57-68.
    [5]. Cuadros MA and Navascues J (1998) The origin and differentiation of microglial cells during development. Prog Neurobiol 56: 173-189.
    [6]. Dalmau, I., J. M. Vela, B. Gonzalez, B. Finsen, and B. Castellano. 2003.Dynamics of microglia in the developing rat brain. J. Comp. Neurol. 458: 144-157.
    [7]. Kaur, C., A. J. Hao, C. H. Wu, and E. A. Ling. 2001. Origin of microglia. Microsc. Res. Tech. 54: 2-9.
    [8]. Male, D., and P. Rezaie. 2001. Colonisation of the human central nervous system by microglia: the roles of Chemokines and vascular adhesion molecules. Prog. Brain Res. 132:81-93.
    [9]. Kreutzberg GW (1996) Microglia: a sensor for pathological events in the CNS. Trends Neurosci 19:312-318.
    [10].Boje KM and Arora PK (1992) Microglial-produced nitric oxide and reactive nitrogen oxides mediate neuronal cell death. Brain Res 587:250-256.
    [11].Chao CC, Hu S, Molitor TW, Shaskan EG, and Peterson PK (1992) Activated microglia mediate neuronal cell injury via a nitric oxide mechanism. J Immunol 149:2736-2741.
    [12]. McGuire SO, Ling ZD, Lipton JW, Sortwell CE, Collier TJ, and Carvey PM (2001) Tumor necrosis factor alpha is toxic to embryonic mesencephalic dopamine neurons. Exp Neurol 169:219-230.
    [13]. Chao CC, Hu S, Ehrlich L, and Peterson PK (1995) Interleukin-1 and tumor necrosis factor-_ synergistically mediate neurotoxicity: involvement of nitric oxide and of N-methyl-D-aspartate receptors. Brain Behav Immun 9:355-365.
    [14].Jeohn G-H, Kong L-Y, Wilson B, Hudson P, and Hong J-S (1998) Synergistic neurotoxic effects of combined treatments with cytokines in murine primary mixed neuron/glia cultures. J Neuroimmunol 85:1-10.
    [15]. Xie Z, Wei M, Morgan TE, Fabrizio P, Han D, Finch CE, and Longo VD (2002) Peroxynitrite mediates neurotoxicity of amyloid -peptide 1-42- and lipopolysaccharide-activated microglia. J Neurosci 22:3484-3492.
    [16]. Eder, Claudia. Ion channels in microglia (brain macrophages). Am. J.Physiol. 275 (Cell Physiol. 44): C327-C342, 1998.-
    
    [17].Xinpo Jiang(?), Evan W. Newell, and Lyanne C. Schlichter (2003) .Regulation of a TRPM7-like Current in Rat Brain Microglia. THE JOURNAL OF BIOLOGICAL CHEMISTRY Vol. 278, No. 44, Issue of October 31, pp. 42867-42876,
    [18]. Robbins SL, Angell M, Kumar V: Basic Pathology 3rd edition. Philadelphia: W.B. Saunders; 1981.
    [19].Sroga JM, Jones TB, Kigerl KA, McGaughy VM, Popovich PG: Rats and mice exhibit distinct inflammatory reactions after spinal cord injury. J Comp Neurol 2003, 462:223-240.
    [20]. Streit WJ, Semple-Rowland SL, Hurley SD, Miller RC, Popovich PG,Stokes BT: Cytokine mRNA profiles in contused spinal cord and axotomized facial nucleus suggest a beneficial role for inflammation and gliosis. Exp Neurol 1998, 152:74-87.
    [21].Kreutzberg GW: Principles of neuronal regeneration. Acta Neurochir Suppl (Wein) 1996,66:103-106.
    [22].Ito K. Ishikawa Y, Skinner RD, Mrak RE, Morrison-Bogorad M, Mukawa J, Griffin WST: Lesioning of the inferior olive using a ventral surgical approach: characterization of temporal and spatial responses at the lesion site and in cerebellum. Mol Chem Neuropathol 1997, 31:245-264.
    [23]. Garden GA: Microglia in human immunodeficiency virus-associated neurodegeneration. Glia 2002, 40:240-251.
    [24].Walz W, Ilschner S, Ohlemeyer C, Banati R, Kettenmann H. 1993. Extracellular ATP activates a cation conductance and a K~+ conductance in cultured microglial cells from mouse brain. J Neurosci 13:4403-4411.
    [25].Brockhaus J, Ilschner S, Banati RB, Kettenmann H. 1993. Membraneproperties of ameboid microglial cells in the corpus callosum slice from early postnatal mice. J Neurosci 13:4412-4421.
    [26].Frei K, Siepl C, Groscurth P, Bodmer S, Schwerdel C, Fontana A. 1987. Antigen presentation and tumor cytotoxicity by interferongamma treated microglial cells. Eur J Immunol 17:1271-1278.
    [27].Norenberg W, Gebicke-Haerter PJ, Illes P. 1992. Inflammatory stimuli induce a new K1 outward current in cultured rat microglia. Neurosci Lett 147:171-174.
    [28].GaIlin EK. 1991. Ion channels in leukocytes. Physiol Rev 71:775-811.
    [29].Mittelbronn, M., K. Dietz, H. J. Schluesener, and R. Meyermann. 2001.Local distribution of microglia in the normal adult human central nervous system differs by up to one order of magniture. Acta Neuropathol. 101:249-255.
    [30].Nakamura, Y. 2002. Regulating factors for microglial activation. Biol. Pharm. Bull. 25:945-953.
    [31].Banati, R. B. 2003. Neuropathological imaging: in vivo detection of glial activation as a measure of disease and adaptive change in the brain. Br. Med. Bull. 65:121-131.
    
    [32].Banati, R. B. 2002. Visualising microglial activation in vivo. Glia 40:206-217.
    [33].Wierzba-Bobrowicz, T., E. Gwiazda, E. Kosno-Kruszewska, E. Lewandowska, W. Lechowicz, E. Bertrand, G. M. Szpak, and B. Schmidt-Sidor.2002. Morphological analysis of active microglia-rod and ramified microglia in human brains affected by some neurological diseases (SSPE, Alzheimer's disease and Wilson's disease). Folia Neuropathol. 40:125-131.
    [34].BIN LIU and JAU-SHYONG HONG.2003. Role of Microglia in Inflamma- tion- Mediated Neurodegenerative Diseases: Mechanisms and Strategies for Therapeutic Intervention. THE JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS. 304:1-7
    [35].Bronstein DM, Perez-Otano I, Sun V, Mullis-Sawin SB, Chan J, Wu GC, Hudson PM, Kong LY, Hong JS, and McMillian MK (1995) Glia-dependent neurotoxicity and neuroprotection in mesencephalic cultures. Brain Res 704:112-116.
    [36].Araki E, Forster C, Dubinsky JM, Ross ME, and Iadecola C (2001) Cyclooxygenase-2 inhibitor NS-398 protects neuronal cultures from lipopolysaccharide-induced neurotoxicity. Stroke 32:2370-2375.
    [37].Liu B, Gao HM, Wang J-Y, Jeohn G-H, Cooper CL, and Hong JS (2002) Role of nitric oxide in inflammation-mediated neurodegeneration. Ann NY Acad Sci 962:256-263.
    [38].Cicchetti F, Brownell AL, Williams K, Chen YI, Livni E, and Isacson O (2002)Neuroinflammation of the nigrostriatal pathway during progressive 6-OHDA dopamine degeneration in rats monitored by immunohistochemistry and PET imaging.Eur J Neurosci 15:991-998.
    [39].Qin L, Liu YX, Cooper CL, Liu B, Wilson B, and Hong JS (2002) The role of microglia in β-amyloid (1-42) toxicity to cortical and mesenceph- alic neurons. J Neurochem,in press.
    [40].McMillian MK, Thai L, Hong JS, O'Callaghan JP, and Pennypacker KR (1994) Brain injury in a dish: a model for reactive gliosis. Trends Neurosci 17:138-142.
    [41].Chang RC, Hudson P, Wilson B, Liu B, Abel H, Hemperly J, and Hong JS (2000a) Immune modulatory effects of neural cell adhesion molecules on lipopolysaccharide-induced nitric oxide production by cultured glia. Brain Res Mol Brain Res 81:197-201.
    [42]. Chang RC, Chen W, Hudson P, Wilson B, Han DS, and Hong JS (2001) Neurons reduce glial responses to lipopolysaccharide (LPS) and prevent injury of microglial cells from over-activation by LPS. J Neurochem 76:1042-1049.
    [43].Eder C, Fischer HG, Hadding U, Heinemann U. 1995a. Properties of voltage-gated currents of microglia developed with macrophage colony-stimulating factor. Pflu'gers Arch 430:526-533.
    [44]. Schilling T, Quandt FN, Cherny VV, Zhou W, Heinemann U, DeCoursey TE, Eder C. 2000. Up-regulation of Kv1.3 Kt channels in microglia deactivated by TGF-b. Am J Physiol 279:C1123-C1134.
    [45].Chung S, Jung W, Lee MY. 1999. Inward and outward rectifying potassium currents set membrane potentials in activated rat microglia. Neurosci Lett 262:121-124.
    [46].Eder C, Schilling T, Heinemann U, Haas D, Hailer N, Nitsch R. 1999. Morphological, immunophenotypical and electrophysiological properties of resting microglia in vitro. Eur J Neurosci 11:4251-4261.
    [47].Visentin S, Agresti C, Patrizio M, Levi G. 1995. Ion channels in rat microglia and their different sensitivity to lipopolysaccharide and interferon-y. J Neurosci Res 42:439-451.
    [48].Franchini L, Levi G, Visentin S. 2004. Inwardly rectifying K~+ channels influence Ca2t entry due to nucleotide receptor activation in microglia. Cell Calcium 35:449-459.
    [49].No¨renberg W, Gebicke-Haerter PJ, Illes P. 1994. Voltage-dependent potassium channels in activated rat microglia. J Physiol 475:15-32.
    [50].Eder C, Fischer HG, Hadding U, Heinemann U. 1995b. Properties of voltage-gated potassium currents of microglia differentiated with granulocyte/ macrophage colony-stimulating factor. J Membr Biol 147:137-146.
    [51]. Schilling T, Quandt FN, Cherny VV, Zhou W, Heinemann U,DeCoursey TE, Eder C. 2000. Up-regulation of Kv1.3 Kt channels in microglia deactivated by TGF-b. Am J Physiol 279:C1123-C1134.
    [52].Ku¨st BM, Biber K, van Calker D, Gebicke-Haerter PJ. 1999. Regulation of Kt channel mRNA expression by stimulation of adenosine A2areceptors in cultured rat microglia. Glia 25:120-130.
    [53].Kotecha SA, Schlichter LC. 1999. A Kv1.5 to Kv1.3 switch in endogenous hippocampal microglia and a role in proliferation. J Neurosci 19:10680-10693.
    [54].McLarnon JG, Xu R, Lee YB, Kim SU. 1997. Ion channels of human microglia in culture. Neuroscience 78:1217-1228.
    [55].Bordey A, Spencer DD. 2003. Chemokine modulation of high- conductance Ca2t-sensitive Kt currents in microglia from human hippocampi. Eur J Neurosci 18:2893-2898.
    [56].Schilling T, Repp H, Richter H, Koschinski A, Heinemann U, Dreyer F, Eder C. 2002. Lysophospholipids induce membrane hyperpolarization in microglia by activation of IKCal Ca2t-dependent Kt channels.Neuroscience 109:827-835.
    [57]. Schilling T, Stock C, Schwab A, Eder C. 2004b. Functional importance of Ca2t-activated Kt channels for lysophosphatidic acid-induced microglial migration. Eur J Neurosci 19:1469-1474.
    [58].DeCoursey TE, Kim SY, Silver MR, Quandt FN. 1996. Ion channel expression in PMA-differentiated human THP-1 macrophages. J Membr Biol 152:141-157.
    [59].Chung S, Jung W, Lee MY. 1999. Inward and outward rectifying potassium currents set membrane potentials in activated rat microglia. Neurosci Lett 262:121-124.
    [60].Norenberg W, Gebicke-Haerter PJ, Illes P. 1994. Voltage-dependent potassium channels in activated rat microglia. J Physiol 475:15-32.
    [61].Fischer HG, Eder C, Hadding U, Heinemann U. 1995. Cytokinedependent K1 channel profile of microglia at immunologically defined functional states. Neuroscience 64:183-191.
    [62].Draheim HJ, Prinz M, Weber JR, Weiser T, Kettenmann H, Hanisch UK. 1999. Induction of potassium channels in mouse brain microglia. Neuroscience 89:1379-1390.
    [63].Schlichter LC, Sakellaropoulos G, Ballyk B, Pennefather PS, Phipps DJ.1996. Properties of Kt and Cl- channels and their involvement in proliferation of rat microglial cells. Glia 17:225-236.
    [64].Eder C, Klee R, Heinemann U. 1998. Involvement of stretch-activated Cl- channels in ramification of murine microglia. J Neurosci 18:7127-7137.
    [65].Schilling T, Lehmann F, Ru¨ckert B, Eder C. 2004. Physiological mechanisms of lysophosphatidylcholine-induced de-ramification of murine microglia. J Physiol 557:105-120.
    [66].Lewis RS. 2001. Calcium signaling mechanisms in T lymphocytes. Annu Rev Immunol 19:497-521.
    [67].Mo¨ller T. 2002. Calcium signaling in microglial cells. In: Streit WJ, editor.Microglia in the regenerating and degenerating CNS. New York: Springer-Verlag. p 36-57.
    [68].No¨renberg W, Cordes A, Blo¨hbaum G, Fro¨hlich R, Illes P. 1997. Coexistence of purino- and pyrimidinoceptors on activated rat microglial cells. Br J Pharmacol 121:1087-1098.
    [69].Hahn J, Jung W, Kim N, Uhm DY, Chung S. 2000. Characterization and regulation of rat microglial Ca2t release-activated Ca2t (CRAC) channel by protein kinases. Glia 31:118-124.
    [70].Lewis RS. 2001. Calcium signaling mechanisms in T lymphocytes. Annu Rev Immunol 19:497-521.
    [71].Jiang X, Newell EW, Schlichter LC. 2003. Regulation of a TRPM7-like current in rat brain microglia. J Biol Chem 278:42867-42876.
    [72].Kraft R, Grimm C, Grosse K, Hoffmann A, Sauerbruch S, Kettenmann H, Schultz G, Harteneck C. 2004. Hydrogen peroxide and ADP-ribose induce TRPM2-mediated calcium influx and cation currents in microglia. Am J Physiol 286:C129-C137.
    [73].DeCoursey TE, Grinstein S. 1999. Ion channels and carriers in leukocytes. In: Gallin JI, Snyderman R, editors. Inflammation: basic principles and clinical correlates. Philadelphia: Lippincott Williams & Wilkins. p 639-659.
    [74].DeCoursey TE, Morgan D, Cherny VV. 2003. The voltage dependence of NADPH oxidase reveals why phagocytes need proton channels. Nature 422:531-534.
    [75].Klee R, Heinemann U, Eder C. 1999. Voltage-gated proton currents in microglia of distinct morphology and functional state. Neuroscience 91:1415-1424.
    [76].Morihata H, Kawawaki J, Sakai H, Sawada M, Tsutada T, Kuno M.2000a. Temporal fluctuations of voltage-gated proton currents in rat spinal microglia via pH-dependent and -independent mechanisms.Neurosci Res 38:265-271.
    [77].Fischer HG, Eder C, Hadding U, Heinemann U. 1995. Cytokinedependent Kt channel profile of microglia at immunologically defined functional states. Neuroscience 64:183-191.
    [78].No¨renberg W, Gebicke-Haerter PJ, Illes P. 1992. Inflammatory stimuli induce a new Kt outward current in cultured rat microglia. Neurosci Lett 147:171-174.
    [79].Visentin S, Renzi M, Levi G. 2001. Altered outward-rectifying Kt current reveals microglial activation induced by HIV-1 Tat protein. Glia 33:181-190.
    [80].Novarino G, Fabrizi C, Tonini R, Denti MA, Malchiodi-Albedi F,Lauro GM, Sacchetti B, Paradisi S, Ferroni A, Curmi PM, Breit SN,Mazzanti M. 2004. Involvement of the intracellular ion channel CLIC1 in microglia- mediated b-amyloid-induced neurotoxicity. J Neurosci 24:5322-5330.
    [81].Rouzaire-Dubois B, Milandri JB, Bostel S, Dubois JM. 2000. Control of cell proliferation by cell volume alterations in rat C6 glioma cells.Pflu¨gers Arch 440:881-888.
    [82].Lang F, Busch GL, Ritter M, Volkl H, Waldegger S, Gulbins E, Haussinger D. 1998. Functional significance of cell volume regulatory mechanisms. Physiol Rev 78:247-306.
    [83].Kotecha SA, Schlichter LC. 1999. A Kv1.5 to Kv1.3 switch in endogenous hippocampal microglia and a role in proliferation. J Neurosci 19:10680- 10693.
    [84].Gallin EK, Grinstein S. 1992. Ion channels and carriers in leukocytes. In: Gallin JI, Snyderman, S, editors. Inflammation: basic principles and clinical correlates. Philadelphia: Lippincott Williams & Wilkins. p 441-458.
    [85].Hanisch UK. 2002. Microglia as a source and target of cytokine activities in the brain. In: Streit WJ, editor. Microglia in the regenerating and degenerating CNS. New York: Springer-Verlag. p 79-124.
    [86].Rothwell N. 2003. Interleukin-1 and neuronal injury: mechanisms, modification, and therapeutic potential. Brain Behav Immun 17:152-157.
    [87].Fantuzzi G, Dinarello CA. 1999. Interleukin-18 and interleukin-1b: two cytokine substrates for ICE (caspase-1). J Clin Immunol 19:1-11.
    [88].Cheneval D, Ramage P, Kastelic T, Szelestenyi T, Niggli H, Hemmig R, Bachmann M, MacKenzie A. 1998. Increased mature interleukin-1b (IL-1b) secretion from THP-1 cells induced by nigericin is a result of activation of p45 IL-1b-converting enzyme processing. J Biol Chem 273:17846-17851.
    [89].Sanz JM, Di Virgilio F. 2000. Kinetics and mechanism of ATP- dependent IL-lb release from microglial cells. J Immunol 164:4893-4898.
    [90].Caggiano AO, Kraig RP. 1998. Prostaglandin E2 and 4-aminopyridine prevent the lipopolysaccharide-induced outwardly rectifying potassium current and interleukin-1b production in cultured rat microglia. J Neurochem 70:2357-2368.
    [91]. Chan PH. 2001. Reactive oxygen radicals in signaling and damage in the ischemic brain. J Cereb Blood Flow Metab 21:2—14.
    [92].Behl C, Moosmann B. 2002. Oxidative nerve cell death in Alzheimer's disease and stroke: antioxidants as neuroprotective compounds. Biol Chem 383:521-536.
    [93].Henderson LM, Chappell JB, Jones OTG. 1987. The superoxide- generating NADPH oxidase of human neutrophils is electrogenic and associated with an Ht channel. Biochem J 246:325-329.
    [94].Eder C, DeCoursey TE. 2001. Voltage-gated proton channels in microglia. Prog Neurobiol 64:277-305.
    [95].DeCoursey TE. 2004. During the respiratory burst, do phagocytes need proton channels or potassium channels, or both? Sci STKE 233:pe21.
    [96].Khanna R, Roy L, Zhu X, Schlichter LC. 2001. Kt channels and the microglial respiratory burst. Am J Physiol Cell Physiol 280:C796-C806.
    [97].Colton CA, Jia M, Li MX, Gilbert DL. 1994. Kt modulation of microglial superoxide production: involvement of voltage-gated Ca2t channels.Am J Physiol 266:C1650-C1655.
    [98].Parvathenani LK, Tertyshnikova S, Greco CR, Roberts SB, Robertson B, Posmantur R. 2003. P2X7 mediates superoxide production in primary microglia and is up-regulated in a transgenic mouse model of Alzheimer's disease. J Biol Chem 278:13309-13317.
    [99]. Raivich G, Bohatschek M, Kloss CU, Werner A, Jones LL, Kreutzberg GW. 1999. Neuroglial activation repertoire in the injured brain: graded response, molecular mechanisms and cues to physiological function. Brain Res Rev 30:77-105.
    [100]. Yao J, Harvath L, Gilbert DL, Colton CA. 1990. Chemotaxis by a CNS macrophage, the microglia. J Neurosci Res 27:36-42.
    [101]. Cross AK, Woodroofe MN. 1999. Chemokines induce migration and changes in actin polymerization in adult rat brain microglia and a human fetal microglial cell line in vitro. J Neurosci Res 55:17-23.
    [102].Honda S, Sasaki Y, Ohsawa K, Imai Y, Nakamura Y, Inoue K, Kohsaka S. 2001. Extracellular ATP or ADP induce chemotaxis of cultured microglia through Gi/o-coupled P2Y receptors. J Neurosci 21:1975-1982.
    [103].Rappert A, Biber K, Nolte C, Lipp M, Schubel A, Lu B, Gerard NP, Gerard C, Boddeke HW, Kettenmann H. 2002. Secondary lymphoid tissue chemokine (CCL21) activates CXCR3 to trigger a Cl- current and chemotaxis in murine microglia. J Immunol 168:3221-3226.
    [104].Klein M, Seeger P, Schuricht B, Alper SL, Schwab A. 2000. Polarization of Nat/Ht and C1-/HCO3- exchangers in migrating renal epithelial cells. J Gen Physiol 115:599-608.
    [105].Schwab A, Schuricht B, Seeger P, Reinhardt J, Dartsch PC. 1999. Migration of transformed renal epithelial cells is regulated by Kt channel modulation of actin cytoskeleton and cell volume. Pflu¨gers Arch 438:330-337.
    [106].Soroceanu L, Manning TJ Jr, Sontheimer H. 1999 Modulation of glioma cell migration and invasion using Cl- and Kt ion channel blockers. J Neurosci 19:5942-5954.
    [107]. Schwab A. 2001. Function and spatial distribution of ion channels and transporters in cell migration. Am J Physiol 280:F739-F747.
    [108].Marks PW, Maxfield FR. 1990. Transient increases in Cytosolic free calcium appear to be required for the migration of adherent human neutrophils. J Cell Biol 110:43-52.
    [109].Manning TJ Jr, Parker JC, Sontheimer H. 2000. Role of lysophosphatidic acid and rho in glioma cell motility. Cell Motil Cytoskeleton 45:185-199.
    [110].Ling EA, Wong WC. 1993. The origin and nature of ramified and ameboid microglia: a historical review and current concepts. Glia 7:9-18.
    [111].Schilling T, Nitsch R, Heinemann U, Haas D, Eder C. 2001. Astrocyte released cytokines induce ramification and outward Kt channel expression in microglia via distinct signalling pathways. Eur J Neurosci 14:463-473.
    [112].Phipps DJ, Branch DR, Schlichter LC. 1996. Chloride-channel block inhibits T lymphocyte activation and signalling. Cell Signal 8:141-149.
    [113].Raivich G, Bohatschek M, Kloss CU, Werner A, Jones LL, Kreutzberg GW. 1999. Neuroglial activation repertoire in the injured brain: graded response, molecular mechanisms and cues to physiological function.Brain Res Rev 30:77-105.
    [114].Streit WJ, Walter SA, Pennell NA. 1999. Reactive microgliosis. Prog Neurobiol 57:563-581.
    [115].Kalla R, Bohatschek M, Kloss CU, Krol J, Von Maltzan X, Raivich G. 2003. Loss of microglial ramification in microglia-astrocyte cocultures: involvement of adenylate cyclase, calcium, Phosphatase, and Gi-protein systems. Glia 41:50-63.
    [116].Boucsein C, Kettenmann H, Nolte C. 2000. Electrophysiological properties of microglial cells in normal and pathologic brain slices. Eur J Neurosci 12:2049-2058.