可生物降解高分子微球载药系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着药剂学的不断发展,传统的载药体系已经不能满足其需求。因此出现了许多新型的具有不同功能特性的药物载体。在本论文中,我们通过不同制备手段获得了几种药物控制释放的载体。
     首先,我们制备了以疏水性聚乳酸-乙醇酸共聚物(PLGA)纳米颗粒为核,亲水性海藻酸为壳层的核-壳结构微球。选择人血清白蛋白(human serum albumin, HSA)和扑热息痛作为药物模型,分别被包埋在壳层和核层内。实验中,对于制备出的核-壳结构微球,我们使用扫描电子显微镜(Scanning electron microscope, SEM),光学显微镜(Optical microscopy, OM)和透射电子显微镜(Transmission electron microscope, TEM)表征微球的形貌和结构。实验结果直接证明了微球核-壳结构存在。随后的体外降解和药物释放实验中,我们得到了载药微球在药物释放过程中的降解特性和药物释放特性。因此,实验结果表明核-壳结构微球作为一种新型药物载体在一定程度上能实现了抑制内层药物突释现象和不同时间段的药物释放。
     其次,在本实验中,选用含有不同聚乙二醇(Poly(ethylene glycol), PEG)比例的聚乳酸-聚乙二醇共聚物作为药物载体,并将荧光标记物异硫氰酸荧光素(Fluorescein isothiocyanate, FITC)包埋入微球中。主要采用扫描电子显微镜、原子力显微镜(Atomic force microscope, AFM)和激光粒度分析仪(Laser diffraction particle size analyzer, LDPSA)表征颗粒的粒径和形貌。本次实验选用小鼠成骨细胞来考察不同PEG含量和粒径的PELA颗粒的细胞毒性和吞噬情况。实验结果显示在同一粒径下,随着PELA中PEG比例的增加,成骨细胞对纳米颗粒的吞噬量在减少。
     最后,我们通过模板法制备了可降解壳聚糖(Chitosan, CS)中空纳米颗粒,并对其药物释放特性以及细胞实验做了研究。实验中首先得到纳米核-壳结构颗粒,壳层主要利用改性后PELA表面的硫酸基团和壳聚糖的氨基基团的静电反应,采用层层自组装的方法在PELA模板上建立。然后加入戊二醛将壳聚糖交联固化,最后用溶剂除去PELA核层后即得到了CS中空纳米颗粒。实验中我们用TEM、SEM和AFM对PELA模板,CS-PELA核-壳结构纳米颗粒和中空纳米颗粒的结构进行表征。颗粒的平均粒径和粒径分布用动态激光散射仪(Dynamic light scattering, DLS)分析。此外,我们考察了携载阿霉素的中空纳米颗粒在磷酸缓冲溶液(Phosphate buffered solution, PBS, pH7.4)和醋酸缓冲溶液(Acetate buffered solution, ABS, pH 4.5)中的药物释放情况,并评价了其对肿瘤细胞生长抑制效果。
With the development of biopharmaceuticals, the traditional drug delivery systems have several inherent problems. So many new and advanced drug deliverys with different functions occurred. In the study, we investigated several biodegradable carriers for drug controlled release system by different fabrication methods.
     Firstly, the core-shell biodegradable microspheres loading human serum albumin (HSA) and paracetamol were fabricated with a hydrophilic alginic acid (ALG) shell and a hydrophobic poly(D,L-lactide-co-glycolide) (PLGA) core. The two model drugs, HSA and paracetamol, were entrapped in the shell and core, respectively. These microspheres were characterized in terms of morphology, mean size and size distribution, drug loading efficiency, in vitro degradation and drugs release. The morphology of the microspheres was observed with scanning electron microscope (SEM), optical microscopy (OM) and transmission electron microscope (TEM). These photos revealed directly that the microspheres possessed core-shell structure. The degradation and drug release results showed that the microspheres have different feature on the degradation and drug release. The distinct double-walled structure of the microspheres would make an interesting device for exact controlled delivery of therapeutic agents at different stages.
     Secondly, PELA copolymers with different weight ratios of polyethylene glycol (PEG) were used as drug carriers in the study. Fluorescein isothiocyanate (FITC) as a fluorescent marker were entrapped. The size and morphology of the particles were observed with scanning electron microscope (SEM), atomic force microscope (AFM) and laser diffraction particle size analyzer (LDPSA). The purpose of the present work was mainly to investigate the cytotoxicity and the process of endocytosis of PELA particles with different contents of PEG and variable particle size using rat osteoblasts (OBs). The endocytosis was observed through a light microscope and a fluorescence microscope, and moreover, their intracellular uptake and retention were determined quantitatively using fluorescence spectrophotometer (FSP). The results showed that with content of PEG in PELA increased, the endocytosis of nanoparticles in osteoblasts was to reduce.
     Finally, biodegradable chitosan (CS) hollow nanospheres have been fabricated by employing uniform PELA nanoparticles as templates. The chitosan was adsorbed onto the surface of the PELA templates with layer by layer self-assemble method through the electrostatic interaction between the sulphuric acid groups (from SDS) on the templates and the amino groups on the chitosan. Subsequently, the core-coated structure of CS-PELA nanospheres was obtained with the adsorbed chitosan layer being crosslinked with glutaraldehyde. After the removal of the templates, PELA cores, CS hollow nanospheres were achieved. The morphology of the PELA templates, the CS-PELA core-coated nanospheres and the hollow CS nanospheres was characterized with transmission electron microscopy (TEM), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The mean size and size distribution of these nanospheres were also measured with dynamic light scattering (DLS). The hollow structure was identified by TEM, AFM and laser confocal scanning microscope (LCSM). The antitumor drug model, adriamycin, was adsorbed on/into the CS hollow nanospheres. The drug release behaviors from the CS hollow nanospheres were investigated in phosphate buffered solution (PBS) at pH 7.4 and acetate buffered solution (ABS) at pH 4.5, respectively, at 37℃, and in vitro tumor cell growth inhibition assay was also evaluated. The results indicated that the biodegradable hollow nanospheres possess great potential applications in drug controlled release system.
引文
[1]颜成虎.聚乳酸-聚乙二醇(PLA-PEG)纳米粒子表面功能化及其脑胶质瘤靶向研究.天津大学材料科学与工程学院硕士论文.2007;
    [2]徐辉碧.纳米医药.北京:清华大学出版社,2004;
    [3]常津,刘海峰,姚康德.医用纳米控释系统的研究进展.中国生物医学工程学报.2000,19(4):423-430;
    [4]安超.壳聚糖基药物纳米载体的研究.天津大学,2003;
    [5]L Nair, C Laurencin. Polymers as biomaterials for tissue engineering and controlled drug delivery. Springer-Verlag Berlin Heidelberg.2006,47-90;
    [6]JB Streisand, TH Stanley. Newer drug delivery systems. Current Anaesthesia Critical Care.1995,6(2):113-120;
    [7]AJ DeFail, CR Chu, N Izzo. Controlled release of bioactive TGF-β1 from microspheres embedded within biodegradable hydrogels. Biomaterials.2006,27(8):1579-1585;
    [8]ZH Li, W Ning, JM Wang. Controlled gene delivery system based on thermosensitive biodegradable hydrogel. Phar. Res.2003,20(6):884-888;
    [9]W Dang, T Davlau, P Ylng. Effects of GLIADEL wafer initial molecular weight on the erosion of wafer and release of BCNU. J. Control. Release 1996,42:83-92;
    [10]AJ Domb, M Rock, C Perkint. Excretion of a radiolabelled anticancer biodegradable polymeric implant from the rabbit brain. Biomaterials.1995,16:1069-1072;
    [11]S Zhou, J Sun, L Sun. Preparation and characterization of interferon-loaded magnetic biodegradable microspheres. J. Biomed. Mater. Res.2008,87 (1):189-196;
    [12]WJ Jia, JG Liu, YD Zhang. Preparation, characterization and optimization of pancreas-targeted 5-Fu loaded magnetic bovine serum albumin microspheres. J. Drug Target.2007.15(2):140-145;
    [13]M Leonard, M Rastello De Boisseson, P Hubert. Hydrophobically modified alginate hydrogels as protein carriers with specific controlled release properties. J. Control. Release 2004.98(3):395-405;
    [14]马光辉,苏志国.高分子微球材料.化学工业出版社.2005;
    [15]WR Gombotz, SF Wee. Protein release from alginate matrices. Adv. Drug Deliver. Rev. 1998,31(3):267-285;
    [16]R Rastogi, Y Sultana, M Aqil. Alginate microspheres of isoniazid for oral sustained drug delivery. Int. J. Pharm.2007,334(1-2):71-77;
    [17]AL Hillberg, M Tabrizia. Biorecognition through layer-by-layer polyelectrolyte assembly:in-situ hybridization on living cells. Biomacromolecules. 2006,7(10):2742-50;
    [18]KY Lee, HJ Kong, RG Larson, DJ Mooney. Hydrogel formation via cell cross-linking. Adv. Mater.2003,15(21):1828-1832;
    [19]J He, D Li, Y Liu, B Yao, Q Lian. Fabricaton and characterization of chitosan/gelatin porous scaffolds with predefined internal microstructures. Polymer.2007,48(15): 4578-4588;
    [20]WC Hsieh, CP Chang, SM Lin. Morphology and characterization of 3D micro-porous structured chitosan scaffolds for tissue engineering. Colloids Surf. B:Biointerfaces. 2007,57(2):250-255;
    [21]Y Yuan, BM Chesnutt, G Utturkar, WO Haggard, Y Yang, JL Ong, JD Bumgardner. The effect of cross-linking of chitosan micro spheres with genipin on protein release. Carb. Polym.2007,68(3):561-567;
    [22]J Berger, M Reist, JM Mayer, O Felt, NA Peppas, R Gurny. Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. Eur. J. Phar. Biopharm.2004,57:19-34;
    [23]JS Mao, LG Zhao, YJ Yin. Structure and properties of bilayer chitosan-gelatin scaffolds. Biomaterials.2003,24(6):1067-1074;
    [24]A Grenha, B Seijo, CR Lopez. Microencapsulated chitosan nanoparticles for lung protein delivery. Eur. J. Phar. Sci.2005,25,427-437;
    [25]HM Li, MZ Wang, LY Song, XW Ge. Uniform chitosan hollow microspheres prepared with the sulfonated polystyrene particles templates. Colloid. Polym. Sci. 2008,286:819-825;
    [26]B Sarmento, A Ribeiro, F Veiga, P Sampaio, R Neufeld, D Ferreira. Alginate/chitosan nanoparticles are effective for oral insulin delivery. Phar. Res.2007,24:2198-2206;
    [27]K Peh, T Khan, H Chong. Bioadhesive strength and biological evaluations of chitosan films for wound dressing. J. Pharm. Sci.2000,3(3):303-311;
    [28]HT Pang, XG Chen, QX Ji. Preparation and function of composite asymmetric chitosan/CM-chitosan membrane. J. Mater. Sci.2008,19(3):1413-1417;
    [29]IY Kim, SJ Seo, HS Moon. Chitosan and its derivatives for tissue engineering applications. Biotechnol. Adv.2008,26(1):1-21;
    [30]FA Putri, JF Kennedy. Application of chitin and chitosan. Carb. Polym. 1998,34(4):414-417;
    [31]J Mao, L Zhao, KYao. Study of novel chitosan-gelatin artificial skin in vitro. J. Biomed. Mat. Res.2003,64:301-308;
    [32]J Ma, H Wang, B He. A preliminary in vitro study on the fabrication and tissue engineering applications of a novel chitosan bilayer material as a scaffold of human neofetal dermal fibroblasts. Biomaterials.2001,22(4):331-337;
    [33]C Chatelet, O Damour, A Domard. Influence of the degree of acetylation on some biological properties of chitosan films. Biomaterials.2001,22:261-168;
    [34]LY Wang, YH Gu, QZ Zhou, GH Ma. Preparation and characterization of uniform-sized chitosan micro spheres containing insulin by membrane emulsification and a two-step solidification process. Colloids Surf. B:Biointerfaces. 2006,50:126-135;
    [35]A Chenite, C Chaput, D Wang, C Combes, MD Buschmann, CD Hoemann, JC Leroux, BL Atkinson, F Binette, A Selmani. Novel injectable neutral solutions of chitosan from biodegradable gels in situ. Biomaterials.2000,21:2155-2161;
    [36]JH Cho, SH Kim, KD Park, MC Jung, WI Yang, SW Han, JY Noh, JW Lee. Chondrogenic differentiation of human mesenchymal stem cells using a thermosensitive poly(N-isopropylacrylamide) and water-soluble chitosan copolymer. Biomaterials.2004,25:5743-5751;
    [37]李孝红,邓先模.生物医用高分子在癌症药物治疗中的应用.高分子通报.1999,3:94-98;
    [38]王亚辉,张新民,熊成东.在药物缓释体系中应用的可生物降解材料.合成化 学.1999,7(4):394-40;
    [39]马建标.功能高分子材料.化学工业出版社.2000;
    [40]袁明龙,熊成东,邓先模.聚乳酸及其共聚物的合成和在生物医学上的应用.高分子通报.1999,1:24-32;
    [41]张晟.新型多功能生物降解药物载体材料的合成.成都:中国科学院成都有机化学研究所;2003;
    [42]S Freiberg, XX Zhu. Polymer microspheres for controlled drug release. Int. J. Pharm. 2004,282(1-2):1-18;
    [43]顾其胜,侯春林,徐政.实用生物医用材料学.上海科学技术出版社.2005;
    [44]TM Allen, PR Cullis. Drug delivery systems:entering the mainstream. Science. 2004,303(5665):1818-1822;
    [45]M Hideki, K Masao, T Hirofumi. Further application of a modified spontaneous emulsification solvent diffusion method to various types of PLGA and PLA polymers for preparation of nanoparticles. Powder Technology 2000,107:137-143;
    [46]X Deng, S Zhou, X Li, J Zhao, M Yuan. In vitro degradation and release profiles for poly-dl-lactide-poly(ethylene glycol) microspheres containing human serum albumin. J. Control. Release 2001,71:165-73;
    [47]RA. Jain. The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials 2000,21 (23):2475-2490;
    [48]JJ Blaker, JC Knowles, RM Day. Novel fabrication techniques to produce microspheres by thermally induced phase separation for tissue engineering and drug delivery. Acta Biomater.2008,4(2):264-272;
    [49]杨文胜,高明远,白玉白.纳米材料与生物技术.北京:化学工业出版社,2005:154-166;
    [50]ZS Haidar, RC Hamdy, M Tabrizian. Protein release kinetics for core-shell hybrid nanoparticles based on the layer-by-layer assembly of alginate and chitosan on liposomes. Biomaterials.2008,29:1207-1215;
    [51]Y Wang, SJ Gao, WH Ye, HS Yoon, YY Yang. Co-delivery of drugs and DNA from cationic core-shell nanoparticles self-assembled from a biodegradable copolymer. Nature Materials.2006,5:791-796;
    [52]KJ Pekarek, JS Jacob, E Mathiowitz. Double-walled polymer microspheres for controlled drug release. Nature.1994,367:258-260;
    [53]喻发全.核-壳型复合结构纳米粒子研究进展.现代化工,2004,24(2):12-15;
    [54]AT Bell. The impact of nano-science on heterogeneous catalysis. Science. 2003,299(5613):1688-1691;
    [55]周学永,陈守文,喻子牛.医药和农药纳米剂型研究和应用.化学与生物工程.2004,21(1):4-6;
    [56]师少军,李忠芳,曾繁典.载药纳米微粒的研究进展.中国临床药理学杂志.2004,20(5):395-398;
    [57]谭忠华.载药纳米微粒靶向输送和控释系统的研究进展.国外医学放射医学—核医学分册.2003,27(5):204-207;
    [58]邹江,孙慧.纳米控释紫杉醇对小鼠乳癌的凋亡诱导研究.中国肿瘤临床.2007,34(7):407-410;
    [59]陈江浩,李郁,凌瑞.阿霉素纳米脂质体不同途径给药治疗晚期兔VX2乳腺移植癌模型.中华医学杂志.2005,85(43):3039-3042;
    [60]S Stoeva, F Huo, J Lee. Three-layer composite magnetic nanoparticle probes for DNA. J. Am. Chem. Soc.2005,127(44):15362-15363;
    [61]P Jiang, JF Bertone, VL Colvin. A Lost-Wax Approach to Monodisperse Colloids and Their Crystals. Science.2001,291:453-457;
    [62]YH Ni, R Liu, XF Cao, XW Wei, JM Hong. Preparation and transformation to hollow nanospheres of wrapped CuS nanowires by a simple hydrothermal route. Mater. Lett. 2007,61:1986-1989;
    [63]K Breitenkamp, T Emrick. Novel polymer capsules from amphiphilic graft copolymers and cross-metathesis. J. Am. Chem. Soc.2003,125:12070-12071;
    [64]JW, Kim, YG Joe, KD Suh. Poly(methyl methacrylate) hollow particles by water-in-oil-in-water emulsion polymerization. Colloid. Polym. Sci. 1999,277:252-256;
    [65]GJ Liu, S Stewart. Hollow nanospheres from polyisoprene-block-poly(2-cinnamoylethyl-methacrylate)-block-poly(tert-butyl-acrylat e). Chem. Mater.1999,11:1048-1054;
    [66]WJ Liu, ZC Zhang, WD He. Novel one-step route for synthesizing sub-micrometer PSt hollow spheres via redox interfacial-initiated method in inversed emulsion. Mater. Lett.2007,61:2818-2821;
    [67]Y Yang, C Ying, YP Zhang, FY Yang, JL Liu. Polystyrene-ZnO core-shell microspheres and hollow ZnO structures synthesized with the sulfonated polystyrene templates. J. Solid. State. Chem.2006,179:470-475;
    [68]TH Kim, KH Lee, YK Kwon. Monodisperse hollow titania nanospheres prepared using a cationic colloidal template. J. Colloid Inter. Sci.2006,304:370-377;
    [69]N Singh, LA Lyon. Au nanoparticle templated synthesis of pNIPAm nanogels. Chem. Mater.2007,19:719-726;
    [70]GD Fu, JP Zhao, YM Sun, ET Kang, KG Neoh. Conductive hollow nanospheres of polyaniline via surface-initiated atom transfer radical polymerization of 4-vinylaniline and oxidative graft copolymerization of aniline. Macromolecules 2007,40:2271-2275;
    [71]X He, X Ge, M Wan, Z Zhang. Morphology control of hollow polymer latex particle preparation. J. Appl. Polym. Sci.2005,98:860-863;
    [72]VN Pavlyuchenko, OV Sorochinskaya, SS Ivanchev, vv Klubin, GS Kreichman, VP Budto, M Skrifvars, E Halme, J Koskinen,. Hollow-particle latexes:preparation and properties. J. Polym. Sci., Part A:Polym. Chem.2001,39:1435-1449;
    [73]W Wu, D Caruntu, A Martin. Synthesis of magnetic hollow silica using polystyrene bead as a template. J. Magn. Magn. Mater.2007,311:578-582;
    [74]C Barthet, SP Armes, SF Lascelles, SY Luk, HME Stanley. Synthesis and characterization of micrometer-sized, polyaniline-coated polystyrene latexes. Langmuir. 1998,14:2032-2041;
    [75]SF Lascelles, SP Armes. Synthesis and characterization of micrometre-sized, polypyrrole-coated polystyrene latexes. J. Mater. Chem.1997,7:1339-1347;
    [76]SF Lascelles, SP Armes, PA Zhdan, SJ Greaves, AM Brown, JF Watts, SR Leadley, SY Luk. Surface characterization of micrometre-sized, polypyrrole-coated polystyrene latexes:verification of a'core-shell'morphology. J. Mater. Chem.1997,7:1349-1355;
    [77]Y Yang, Y Chu, FY Yang, YP Zhang. Uniform hollow conductive polymer microspheres synthesized with the sulfonated polystyrene template. Mater. Chem. Phys. 2005,92:164-171;
    [78]杨文胜,高明远,白玉白.纳米材料与生物技术.北京:化学工业出版社.2005:154-166;
    [79]汤庆超,王锡山.纳米药物应用于肿瘤治疗的研究进展.实用肿瘤学杂志.2006,20(5):441-443;
    [80]U Karel, S Vladimir. Polymeric anticancer drugs with pH-controlled activation. Adv. Drug Deliv. Rev.2004,56(7):1023-1050;
    [81]R Langer, DA Tirrell. Designing materials for biology and medicine. Nature 1994,428(6982):487-492;
    [82]O Pillai, R Panchagnula. Polymers in drug delivery. Curr. Opin. Chem. Biol. 2001,5(4):447-451;
    [83]LS Nair, CT Laurencin. Biodegradable polymers as biomaterials. Prog. Polym. Sci. 2007,32:762-798;
    [84]SN Rothstein, WJ Federspiel, SR Little. A unified mathematical model for the prediction of controlled release from surface and bulk eroding polymer matrices. Biomaterials.2009,30(8):1657-1664;
    [85]F Burkersroda, L Schedl, A Gopferich. Why degradable polymers undergo surface erosion or bulk erosion. Biomaterials.2002,23(21):4221-4231;
    [86]A Gopferich. Polymer bulk erosion. Macromolecules.1997,30(9):2598-2604;
    [87]R Jalil, JR Nixon. Biodegradable poly(lactic acid) and poly(lactide-co-glycolide) microcapsules:problems associated with preparative techniques and release properties. J. Microencapsul.1990,7(3):297-325;
    [88]KJ Pekarek, MJ Dyrud, K Ferrer, YS Jong, E Mathiowitz. In vitro and in vivo degradation of double-walled polymer microspheres. J. Control. Release 1996,40:169-178;
    [89]S Zhou, XM Deng, WX Jia. Synthesis and characterization of biodegradable low-molecular-weight aliphatic polyesters and their use in protein delivery system. J. App. Poly. Sci.2004,91(3):1848-1856.
    [90]T Pongjanyakul, S Puttipipatkhachorn. Modulating drug release and matrix erosion of alginate matrix capsules by microenvironmental interaction with calcium ion. Eur. J. Pharm. Biopharm.2007,67:187-195;
    [91]BS Zolnik, DJ Burgess. Evaluation of in vivo-in vitro release of dexamethasone from PLGA microspheres. J. Control. Release 2008,127(2):137-145;
    [92]SM Moghimi, AC Hunter, JC Murray. Long-circulating and target-specific nanoparticles:theory to practice. Pharm. Rev.2001,53:283-318;
    [93]H Riezman, PG Woodman, G van Meer, M Marsh. Molecular mechanisms of endocytosis. Cell.1997,91:731-738;
    [94]L Johannes, C Lamaze. Clathrin-dependent or not:is it still the question? Traffic. 2002,3:443-451;
    [95]SD Conner, SL Schmid. Regulated portals of entry into the cell. Nature 2003,422:37-44;
    [96]IA Khalil, K Kogure, H Akita, H Harashima. Uptake pathways and subsequent intracellular trafficking in nonviral gene delivery. Pharm. Rev.2006,58:32-45;
    [97]C Lamaze, SL Schmid. The emergence of clathrin-independent pinocytic pathways. Curr. Opin. Cell. Biol.1995,7:573-580;
    [98]JM Chan, LF Zhang, KP Yuet, G Liao, JW Rhee, R Langer, OC Farokhzad. PLGA-lecithin-PEG core-shell nanoparticles for controlled drug delivery. Biomaterials.2009,30:1627-1634;
    [99]K Sandstrom, L Hakansson, A Lukinius, P Venge. A method to study apoptosis in eosinophils by flow cytometry. J. Immunol. Methods 2000,240:55-68;
    [100]GR Pullen, PJ Chalmers, APP Nind, RC Nairn. Criteria of cell killing in vitro. J. Immunol. Methods 1981,43:87;
    [101]H Suh, B Jeong, F Liu, SW Kim. Cellular uptake study of biodegradable nanoparticles in vascular smooth muscle cells. Pharm. Res.1998,15:1495-1498;
    [102]MS Cartiera, KM Johnson, V Rajendran, MJ Caplan, WM Saltzman. The uptake and intracellular fate of PLGA nanoparticles in epithelial cells. Biomaterials 2009,30:2790-2798;
    [103]SB Zhou, XM Deng, XH Li. Investigation on a novel core-coated microspheres protein delivery system. J. Control. Release 2001,75(1-2):27-36;
    [104]Y Hu, JW Xie, YW Tong, CH Wang. Effect of PEG conformation and particle size on the cellular uptake efficiency of nanoparticles with the HepG2 cells. J. Control. Release 2007,118:7-17;
    [105]K Sandstrom, L Hakansson, A Lukinius, P Venge. A method to study apoptosis in eosinophils by flow cytometry. J. Immunol. Methods 2000,240:55-68;
    [106]H Yamamoto, Y Kuno, S Sugimoto, H Takeuchi, Y Kawashima. Surface-modified PLGA nanosphere with chitosan improved pulmonary delivery of calcitonin by mucoadhesion and opening of the intercellular tight junctions. J. Control. Release 2005,102:373-381;
    [107]H Rosen, T Abribat. The rise of drug delivery. Nat. Rev. Drug Discov. 2005,4:381-385;
    [108]U Wattendorf, HP Merkle. PEGylation as a tool for the biomedical engineering of surface modified microparticles. J. Pharm. Sci.2008,97:4655-4669;
    [109]W Zauner, NA Farrow, AM Haines. In vitro uptake of polystyrene microspheres: effect of particle size, cell line and cell density. J. Control. Release 2001,71:39-51;
    [110]KA Foster, M Yazdanian, KL Audus. Microparticulate uptake mechanisms of in vitro cell culture models of the respiratory epithelium. J. Pharm.2001,53:57-66;
    [111]J Bertling, J Blomer, R Kummel. Template-free fabrication of porous zinc oxide hollow spheres and their enhanced photocatalytic performance. Chem. Eng. Technol. 2004,27:8290-8297;
    [112]F Caruso, RA Caruso, H Mohwald. Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science.1998,282:1111-1114;
    [113]J Liu, QH Yang, L Zhang. Organic-inorganic hybrid hollow nanospheres with microwindows on the shell. Chem. Mater.2008,20:4268-4275;
    [114]H Huang, EE Remsen, T Kowalewski, KL Wooley. Nanocages Derived from Shell Cross-Linked Micelle Templates. J. Am. Chem. Soc.1999,121:3805-3806;
    [115]DY Wang, F Caruso. Polyelectrolyte-Coated Colloid Spheres as Templates for Sol-Gel Reactions. Chem. Mater.2002,14:1909-1913;
    [116]Y Yang, W Jia, X Qi, C Yang, L Liu, Z Zhang, J Ma, S Zhou, X Li. Novel Biodegradable Polymers as Gene Carriers. Macromol. Biosci.2004,4:1113-1117;
    [117]WJ Tong, CY Gao, H Mohwald. Manipulating the Properties of Polyelectrolyte Microcapsules by Glutaraldehyde Cross-Linking. Chem. Mater.2005,17:4610-4616;
    [118]HM Li, MZ Wang, LY Song, XW Ge. Uniform chitosan hollow microspheres prepared with the sulfonated polystyrene particles templates. Colloid. Polym. Sci. 2008,286:819-825;
    [119]L Sun, SB Zhou, WJ Wang, XH Li, JX Wang, J Weng. Preparation and characterization of porous biodegradable microspheres used for controlled protein delivery. Colloids Surf. A:Physicochem. Eng. Aspects.2009,345:173-181;
    [120]H Qian, Y Yang. Alterations of cellular organelles in human liver-derived hepatoma G2 cells induced by adriamycin. Anticancer Drugs.2009,20(9):779-86;
    [121]R Misra, SK Sahoo. Intracellular trafficking of nuclear localization signal conjugated nanoparticles for cancer therapy. Eur. J. Pharm. Sci.2010,39:152-163;
    [122]J Daruwalla, K Greish, C Malcontenti-Wilson, V Muralidharan, A Iyer, H Maeda, C Christophi. Styrene maleic acid-pirarubicin disrupts tumor microcirculation and enhances the permeability of colorectal liver metastases. J Vasc. Res. 2009,46(3):218-228;
    [123]YY Lin, JJ Li, CH Chang, YC Lu, JJ Hwang, YL Tseng, WJ Lin, G Ting, HE Wang. Evaluation of pharmacokinetics of lllin-labeled VNB-PEGylated liposomes after intraperitoneal and intravenous administration in a tumor/ascites mouse model. Cancer Biother. Radiopharm.2009,24(4):453-460;
    [124]CY Gong, S Shi, PW Dong, B Kan, ML Gou, XH Wang, XY Li, F Luo, X Zhao, YQ Wei, ZY Qian. Synthesis and characterization of PEG-PCL-PEG thermosensitive hydrogel. Inter. J. Phar.2009,365:89-99;
    [125]F Mwale, HT Wang, S Lerouge, J Antoniou, MR Wertheimer. Suppression of genes related to hypertrtophy and osteogenesis in committed human mesenchymal stem cells cultured on novel nitrogen-rich plasma polymer coatings. Tissue Eng. 2006,12(9):2639-2647.
    [126]W Arap, R Pasqualini, E Ruoslahti. Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science.1998,279:377-380.