生物活性分子的快速识别
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微量或超微量生物活性成分研究一直是人们关注的热点之一,建立与发展相关的分析方法具有良好的学术意义与应用价值,本论文围绕生物活性成分快速识别进行了如下的研究:
     1.以微管蛋白作为靶分子并构建功能超滤装置,通过靶蛋白与具有抗肿瘤活性成分的相互作用而对这些生物活性成分加以识别;通过检测形成复合物前和形成复合物后的活性物质量的差异来确定活性物质与微管蛋白的相互作用能力,运用高效液相色谱/质谱联用技术(HPLC/MS~n)测定上述识别前后的指纹图谱并进行对照比较以发现差异,从中提取抗肿瘤活性成分的信息;并对未知活性分子进行在线结构鉴定。具体研究内容为:
     (1)分别对临床用抑制微管聚合抗癌药物秋水仙碱、柔红霉素、促进微管聚合抗癌药物紫杉醇以及非抗癌药物酮洛酚进行了单一的识别研究,结果表明:微管蛋白对秋水仙碱、柔红霉素和紫杉醇有识别作用,而非抗癌药物酮洛酚则不被微管蛋白识别;同时,通过比较靶分子与生物活性小分子的结合摩尔比及结合率可判断紫杉醇与微管蛋白相互结合作用最强,秋水仙碱次之,柔红霉素较弱。该结果与这些药物的实际药用机制相符。
     应用该方法进行了混合物的识别,结果表明活性成分能互不干扰的被一一识别,非活性成分则能被排除,这些研究为发展并建立微量水平上生物活性成分快速识别和分析一体化方法奠定了基础。
     (2)对天然来源的一些潜在抗肿瘤活性成分白藜芦醇,植物多酚提取物进行了识别研究,结果表明:parthenocissin B,parthenocissin A,quadrangularin A和两个未知化合物的与微管蛋白相互作用较强,其中parthenocissin B的相互作用最强;而pallidol和Amurensin A的相互作用较弱。这些成份与微管蛋白作用时,体现了相互竞争的关系。识别实验的结果与体外活性实验结果一致,表明该识别途径可用于天然来源抗肿瘤生物活性的快速筛选;同时通过液相色谱质谱联用技术对两个未知活性成分进行了初步结构分析鉴定。
     (3)对一些天然抗肿瘤衍生物如鬼臼毒素衍生物、毛兰素衍生物和cis-(±)-7-deoxynimbidiol进行了识别研究,结果表明:β构型鬼臼毒素自由基衍生物与微管蛋白的结合较α构型强。毛兰素自由基衍生物与微管蛋白的结合较母体强。不饱和自由基较饱和自由基强。cis-(±)-7-deoxynimbidiol与微管蛋白有较强的结合能力,而其氧化产物则与微管蛋白作用较弱。识别实验的结果与体外活性实验结果一致,该识别方法为药物合成中的活性评价提供了新途径。
     2.发展了一种快速、灵敏、准确的鉴定荜茇酰胺类生物碱的液相色谱质谱联用分析方法。在对荜茇酰胺类生物碱单体进行二级质谱分析的基础上,总结出了基于该类化合物结构特征的质谱碎裂规律,根据这个规律,运用HPLC/ESI-MS/MS快速地鉴定了不皂化物中的42个酰胺类组分。14个为首次从该植物中分离得到的化合物,其中,6个是新化合物。二级质谱技术对于快速分析结构特征,锁定官能团和发现新结构类型尤其有效,离子萃取技术的运用有效的增加了灵敏度和选择性,为从天然来源有效成分中发现新型结构分子和指导靶向分离提供了简捷可靠的方法。
     3.发展了一种快速、灵敏、有效的分析鉴定原料药中微量杂质结构的分析方法。在对西酞普兰进行多级质谱碎裂分析得出其碎裂机理的基础上,利用液相色谱/质谱联用对西酞普兰原料药中的一个微量未知杂质进行了在线的正离子模式下的多级质谱和离线高分辨质谱分析,直接推断出了该杂质的可能化学结构。杂质核磁共振数据完全证实了质谱推断的正确性,该杂质为新化合物。在美洛培南原料药中微量杂质结构分析时,通过高分辨质谱(FTICR-MS)和电喷雾离子阱多级质谱碎裂(ESI-MS~n)分析结果,对杂质的可能化学结构、杂质的产生过程和裂解机理进行了推测。本研究不仅对于原料药的杂质分析、质量控制具有重要作用,而且对其合成工艺的改进也具有重要的指导意义。
     此外,论文还对现代质谱技术在活性筛选中应用进展进行了简单总结。
The study of biologically active constituents in the trace level is a challenging task. Therefore, setting up and developing its corresponding analytical methods is of great value in both academic research and application fields. The current dissertation focuses on the rapid recognition of biologically active molecules, and it is organized into three parts as follows.
     Part I: A functional ultra-filtration device was constructed using tubulin as the target protein. The potential anti-tumor compounds were recognized according to the bio-affinity interactions between the target protein and the bioactive constituents. The interactions were evaluated using the quantity difference of bioactive compounds before and after the formation of the complexes. In addition, the liquid chromatography tandem multi-stage mass spectrometry (LC/MS~n) approach was applied to provide the fingerprint spectra of the screening process, to obtain specific information on potential anti-tumor compounds, as well as to analyze and identify unknown compounds. The detailed investigations are concluded in the following:
     1) The polymerization and depolymerization of microtubule drugs such as colchicine, taxol, and daunorubicin with other anti-tumor mechanisms and ketoprofen with no anti-tumor activity were screened, respectively. The results indicated that there were interactions among colchicine, taxol, and daunorubicin, while the interaction between tubulin and ketoprofen was not observed. Moreover, comparing the binding molar ratio and binding efficiency of the target protein and the bioactive compounds, it was presumed that taxol had the strongest interaction with tubulin. Meanwhile, the interaction between colchicine and daunorubicin with tubulin was relatively weak. The results matched very well the actual cases. Then mixtures were subjected to this rapid recognition process, and the results indicated that all of the anti-tumor constituents could be exactly recognized without any disturbance, and the inactive compounds were excluded. Overall, all of the above works provide a good foundation for the subsequent development of a rapid recognition method at trace level.
     2) The proposed screening method was then applied to some potential anti-tumor natural polyphenol extracts. The results indicated that parthenocissin B, parthenocissin A, quadrangularin A, and two unknown compounds had a relatively strong interaction with tubulin. Among them, parthenocissin B exhibited the strongest interaction. Meanwhile, interactions among tubulin, pallidol A, and murensin A were evaluated as relatively weak. All the results are consistent with those obtained from the vitro experiments, indicating that the proposed approach could potentially be applied for the rapid recognition of naturally occurring anti-tumor constituents. In addition, the two unknown compounds were identified by the LC/MS~n technique.
     3) Some natural anti-tumor derivatives such as the spin-labeled derivatives of podophyllotoxin, erianin derivatives, and cis- (±)-7-deoxynimbidiol were subjected to recognition investigation. The results indicated that theβ-configuration spin-labeled derivatives of podophyllotoxin presented stronger interactions with tubulin thanα-configuration. Referring to the erianin derivertives, it is observed that the spin-labeled derivatives exhibited a stronger interaction than erianin, and unsaturation spin-labeled derivatives are stronger than the saturated ones. In addition, cis-(±)-7-deoxynimbidiol was observed to have a relatively strong interaction with tubulin, while the interaction of its oxidizing product was relatively weaker. All the results are consistent with those from the vitro experiments, indicating that the proposed method is a novel and effective approach for evaluating the bioactivities in drug synthesis.
     Part II: A rapid, sensitive, and exact HPLC/ MS/MS method for the structural analysis of amides from Piper Longum. on-line has been developed. A total of 42 amides were rapidly identified, of which 14 were found in this plant for the first time, and 6 were new compounds on the basis of the MS/MS results. In the determination of the structure of unknown amides, MS/MS data provided more information on the molecular structure by clearly defining the category of observed product ions, especially for minor constituents, helping locate characteristic functionalities, discovering a new skeleton, and providing guidance for herbal isolation and preparation. Furthermore, the extracted ion chromatography (EIC) and constant neutral losses extracted technique effectively increased sensitivity and selectivity especially for minor unknown components, which will also provide a highly effective approach for phytochemical investigations.
     Part III: A rapid, sensitive, and practical method for the structural elucidation of the trace impurities in bulk drugs by HPLC-MS~n and FTICR-MS analysis has been developed. Using this method, the fragmentation behavior of citalopram was investigated, and an unknown impurity was rapidly elucidated and further confirmed by NMR experiments after preparative isolation. Also, the proposed structure, formed mechanism, and fragmentation pathway of an unknown impurity in bulk drug meropenem was rapidly characterized. This method is of importance for the control of the quality of bulk medicine and the synthesis process.
     In addition, the application and developments of modern mass spectrometric technique in screening have also been summarized briefly in this dissertation.
引文
1. 杨玉良 等.《跨世纪的高分子科学》,化学工业出版社, 2001.
    2. Meng C K, Mann M, Fenn J B. Electrospray ionization of same polypeptides and small protein. 36th ASMS Conf on Mass Spectrometry and Allied Topics, San Francisco, CA, 1988, 771-772.
    3. Karas M, Hillenkamp F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Analytical chemistry, 1988,60(20): 2299-301.
    4. Whitehouse C M, Dreyer R N, Yamashita M, Fenn J B. Electrospray interface for liquid chromatographs and mass spectrometers. Anal. Chem., 1985, 57: 675.
    5. Voyksner R D. Electrospray Ionization Mass Spectrometry. New York: Wiley, 1997, Chap 9.
    6. Issaq H J, Janini G M, Chan K C, Veenstra T D. Sheathless electrospray ionization interfaces for capillary electrophoresis-mass spectrometric detection: Advantages and limitations. J. Chromatogr. A., 2004,1053: 37.
    7. Valaskovic G A, Kelleher N L, Mclafferty F W. Attomole protein characterization by capillary electrophoresis-mass spectrometry. Science, 1996,273:1199.
    8. Mateus L, Cherkaoui S, Christen P, Veuthey J. Capillary electrophoresis-diode array detection - electrospray mass spectrometry for the analysis of selected tropane alkaloids in plant extracts. Electrophoresis, 1999,20: 3402.
    9. Frank H, Hasmik K, Craig M. Automated high throughput multiple target screening of molecular libraries by microfluidic MALDI - TOF MS. Journal of Biomolecular Screening. 1998,3(3): 189-198.
    10. Budzikiewicz H. Selected reviews on mass spectrometric topics. XLII. Ion trap mass spectrometry. Mass Spectrometry Reviews, 1992, 11: 69.
    11. Smith R D, Loo J A, Edmonds C G New developments in biochemical mass spectrometry: electrospray ionization. Anal. Chem., 1990,62: 882.
    12. Biemann K. Mass spectrometry in the biological, environmental and medical sciences. Biomedical and Environmental Mass Spectrometry, 1988,16: 99.
    13.Tomer K B.FAB/MS/MS for the determination of biomolecules:Mass Spectrometry Reviews,1989,8:483.
    14.Aebersold R,Goodlett D R.Mass spectrometry in proteomics.Chem.Rev.2001,101(2):269-295.
    15.Sandra K,Devreese B,Van Beeumen J.The Trap mass spectrometer,a novel tool in the study of protein glycosylation.J Am Soc Mass Spectrom.,2004,15(3):413-423.
    16.Cordwell S,Wilkins M R,Cerpa-Poljak A,Gooley A A,Duncan M,Williams K L,Humphery-Smith I.Electrophoresis,1995,16:438-443.
    17.成海平,钱小红.蛋白质组研究的技术体系及其进展.生物化学与生物物理进展,2000,27:584-588.
    18.Morris H R,Panico M,Barber M,Bordoli R S,Sedgwick R D,Tyler A.Fast atom bombardment:A new mass spectrometric method for peptide sequence analysis.Biochemical and Biophysical Research Communications,1981,101:623-631.
    19.张国安,许雪姣,张素艳,樊惠芝,杨芃原.蛋白质组的分离与分析及其应用进展,分析化学,2003,05.
    20.Creese A J,Cooper H J.Liquid Chromatography Electron Capture Dissociation Tandem Mass Spectrometry(LC-ECD-MS/MS)versus Liquid Chromatography Collision-induced Dissociation Tandem Mass Spectrometry(LC-CID-MS/MS)for the Identification of Proteins.J Am Soe Mass Spectrom.,2007,18:891-897
    21.Thomas M,Brady L.HIV integrase:A target for AIDs therapeutics.Trends Biotechnol.,1997,15:167-172.
    22.Loo J A,Edmonds C G,Smith R D.Tandem mass spectrometry of very large molecules.2.Dissociation of multiply charged proline-containing proteins from electrospray ionization.Anal Chem.,1993,65:425-438.
    23.Brichory F,Beer D,Le Naour F.Proteomics-based identification of protein gene product 9.5 as atumoran tigen thatinduces a humoral immune response in lung cancer.Cancer Res.,2001,61(21):7908-7912.
    24.Li J,Zhang Z,Rosenzweig J.Proteomics and bioinformatics approaches for identification of serum biomarkers to detect breast cancer.Clin Chem.,2002, 48(8): 1296-1304.
    25.Vercoutter-Edouart A S, Lemoine J, Le-Bourhis X, et al. Proteomic analysis reveals that 14-3-3 sigma is down—regulated in human breast cancer cells. Cancer Res., 2001, 61(1): 76-80.
    26. Zhang H, Kong B, Qu X, Jia L, Deng B P, Yang Q F. Biomarker discovery for ovarian cancer using SELDI-TOF-MS. Gynecologic Oncology., 2006, 102: 61-66.
    27. Barbacid M, Oncogenes R. Their role in neoplasia. Eur J Clin Invest, 1990, 20: 225-235.
    28. Ganem B, Li Y T, Henion J D. Detection of non-covalent receptor-ligand complexs by mass spectrometry. J Am Chem Soc, 1991, 113: 6294-6296.
    29. Pramanik B N, Bartner P L, Mirza U A, Liu Y H, Ganguly A K. Electrospray ionization mass spectrometry for study of non- covalent complexs: An emerging technology. J Mass Spectrom, 1998, 33: 564-70.
    30. Huang E C, Pramanik B N, Tsarbopoulos A, Reichert P, Guanguly A K, Trotta P P, Nagabhushan T L. Application of electrospray mass spectrometry in probing protein-protein and protein-ligand non-covalent interrections. J Am Soc Mass Spectrom, 1993,4: 624-626.
    31. Baca M, Kent S B H. Direct observation of a ternary complex between the dimeric enzyme HIV-1 protease and a substrate-based inhibitor. J Am Chem Soc, 1992,114:3992-3993.
    32. Youngquist R S, Fuentes G. R, Lacey M P, and Keough T. Generation and screening of combinatorial peptide libraries designed for rapid sequencing by mass spectrometry. J. Am. Chem. Soc, 1995,117: 3900-3906.
    33. Swali V, Langley G J and Bradley M. Mass spectrometry analysis in combinatorial chemistry. Curr. Opin. Chem. Biol., 1999, 3: 337-341.
    34. Fenn J B, Mann M, Meng C K, Wong S F, Whitehouse C M. Electrospray ionization for mass spectrometry of large biomolecules. Science, 1989, 246: 64-71.
    35. Loo J A. Studying noncovalent protein complexes by electrospray ionization mass spectrometry. Mass Spectrum. Rev., 1997,16: 1-23.
    36. Loo J A. Electrospray ionization mass spectrometry: a technology for studying noncovlent micromolecular complexes. Int. J. Mass Spectrom., 2000, 200: 175-186.
    37. Berkel W J H V, Heuvel R H H. Detection of intact megadalton protein assemblies of vanillyl-alcohol oxidase by mass spectrometry. Protein Sci., 2000, 9: 435-439.
    38. Trigg G L, Immergut E H. Encyclopedia of Applied Physics, 1997,19:289-330.
    39. Farmer T B, Caprioli R M. Determination of protein-protein interactions by matrix-assisted laser desorption/ionization mass spectrometry. J. Mass Spectrom., 1998, 33: 697-704.
    40. Ganem B, Li YT, Henion J D. Detection of noncovalent receptor ligand complexes by mass spectrometry. J. Am. Chem. Soc, 1991,113: 6294-6296.
    41. Katta V, Chait B T. Observation of the heme-globin complex in native myoglobin by electrospray-ionization mass spectrometry. J. Am. Chem. Soc, 1991, 113: 8534-8535.
    42. Baca M, Kent S B H. Direct observation of a ternary complex between the dimeric enzyme HIV-1 protease and a substrate-based inhibitor. J. Am. Chem. Soc, 1992,114:3992-3993.
    43. Madhusudanan K P, Katti S B, Haq W, Misra P K. Antisense peptide interactions studied by electrospray ionization mass spectrometry. J. Mass Spectrom., 2000,35: 237-241.
    44. Bartok M, Szabo P T, Bartok T, Szollosi G Identification of ethyl pyruvate and dihydrocinchonidine adducts by electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom., 2000,13: 509-514.
    45. Wang Y, Schubert M, Ingendoh A, Franzen J. Analysis of non-covalent protein complexes up to 290 kDa using electrospray ionization and ion trap mass spectrometry. Rapid Commun. Mass Spectrom., 2000,14: 12-17.
    46. Pramanik B N, Bartner B L, Mirza U A , Liu Y H, Ganguly A K. Electrospray ionization mass spectrometry for the study of non-covalent complexes: an emerging technology. J. Mass Spectrom., 1998, 33: 911-920.
    47. Ishigai M, Langridge J I, Bordoli R S. A New Approach for Dynamics of Enzyme-Catalyzed Glutathione Conjugation by Electrospray Quadrupole/ Time-of-Flight Mass Spectrometry. Anal. Biochem., 2001, 298: 83-92.
    48. Darmanin C, Chevreux G, Potier N, Dorsselaer AV, Hazemann I, Podjarny A, El-Kabbani O. Probing the ultra-high resolution structure of aldose reductase with molecular modelling and noncovalent mass spectrometry. Bioorg. Med. Chem., 2004,12: 3797-3806.
    49. Kapur A, Beck J L, Sheil M M. Observation of daunomycin and nogalamycin complexes with duplex DNA using electrospray ionisation mass spectrometry. Rapid Commun. Mass Spectrom., 1999,13: 2489-2497.
    50. Loo J A, Holler T P, Foltin S K, McConnell P, Banotai C A, Horne N M, Mueller W T, Stevenson T I, Mack D P. Application of electrospray ionization mass spectrometry for studying human immunodeficiency virus protein complexes. Proteins, 1998,2 (Suppl.): 28-37.
    51. Duijn E, Bakkes P J, Heeren R M, Heuvel R H, Heerikhuizen H, Vies S M, Heck A J, Monitoring macromolecular complexes involved in the chaperonin-assisted protein folding cycle by mass spectrometry. Nat. Methods, 2005,2: 371-376.
    52. Wigger M, Eyler J R, Benner S A, Marshall W L A G Fourier transform-ion cyclotron resonance mass spectrometric resolution, identification, and screening of non-covalent complexes of Hck Src homology 2 domain receptor and ligands from a 324-member peptide combinatorial library. J. Am. Soc. Mass Spectrom., 2002,13:1162-1169.
    53. Gao J, Cheng X, Chen R, Sigal G B, Bruce J E, Schwartz B L, Hofstadler S A, Anderson G A, Smith R D, Whitesides G M. Screening Derivatized Peptide Libraries for Tight Binding Inhibitors to Carbonic Anhydrase II by Electrospray Ionization-Mass Spectrometry. J. Med. Chem., 1996, 39: 1949-1955.
    54. Ganguly A K, Wang Y S, et al. Interaction of a novel GDP exchange inhibitor with the ras protein. Biochemistry, 1998, 37: 15631-15637.
    55. Sinz A, Kalkhof S, Ihling C. Mapping Protein Interfaces by a Trifunctional Cross-Linker Combined with MALDI-TOF and ESI-FTICR Mass Spectrometry. J Am Soc Mass Spectrom., 2005,16: 1921-1931
    56. Davis R G, Anderegg R J, Blanchard SG Interative size-exclusion chromatography coupled with liquid chromatographic mass spectrometry to enrich and identify tight-binding ligands from complex mixtures. Tetrahedron, 1999,55,11653-11667
    57. Wabnitz P A, Loo J A. Drag screening of pharmaceutical discovery compounds by micro-size exclusion chromatography/mass spectrometry. Rapid Commun. Mass Spectrom., 2002,16, 85-91.
    58. Dunayevskiy Y M, Lai J J, Quinn C, Talley F, Vouros P. Mass spectrometric identification of ligands selected from combinatorial libraries using gel filtration. Rapid Commun. Mass Spectrom., 1997,11: 1178-1184.
    59. Blom K F, Larsen B S, McEwen C N. Determining Affinity-Selected Ligands and Estimating Binding Affinities by Online Size Exclusion Chromatography/Liquid Chromatography-Mass Spectrometry. J. Comb. Chem., 1999,1: 82-90.
    60. Zhao Y Z, Breemen R B, Nikolic D, Huang C R, Woodbury C P, Schilling A, Venton D L. Screening Solution-Phase Combinatorial Libraries Using Pulsed Ultrafiltration/Electrospray Mass Spectrometry. J. Med. Chem., 1997, 40: 4006-4012.
    61. Zhang H, Gu Q, Liang XL, Pan YJ. Screening for topoisomerase I binding compounds by high-performance liquid chromatography-mass spectrometry. Analytical biochemistry, 2004,329 (2): 173-179
    62. Siegel M M, Tabei K, Bebernitz G A, Baum E Z. Rapid methods for screening low molecular mass compounds non-covalently bound to proteins using size exclusion and mass spectrometry applied to inhibitors of human cytomegalovirus protease. J. Mass Spectrom., 1998,33: 264-273.
    63. Kasai K, Sakura R, Ishii S. Frontal affinity chromatography using microcolumns as investigative tools for molecular recognition. International Journal of Bio-Chromotography, 1994, 1: 83-91.
    64. Slon-Usakiewicz J J, Dai J R, Foster J E, Deretey E, Toledo-Sherman L, Redden PR, Pasternak A, Reid N. Global Kinase Screening. Applications of Frontal Affinity Chromatography Coupled to Mass Spectrometry in Drug Discovery. Anal Chem, 2005, 77: 1268-1274.
    65. Schriemer D C, Bundle D R, Li L, Hindsgaul O. Micro-Scale Frontal Affinity Chromatography with Mass Spectrometric Detection: A New Method for the Screening of Compound Libraries. Angew. Chem. 1998, 37: 3383-3387.
    66. Zhang B, Palcic M M, Mo H, Goldstein I J, Hindsgaul O. Rapid determination of the binding affinity and specificity of the mushroom Polyporus squamosuslectin using frontal affinity chromatography coupled to electrospray mass spectrometry. Glycobiology, 2001,11: 141-147.
    67. Zhu L, Chen L, Luo H, Xu X. Frontal Affinity Chromatography Combined On-Line with Mass Spectrometry: A Tool for the Binding Study of Different Epidermal Growth Factor Receptor Inhibitors. Anal Chem., 2003,75: 6388-6393.
    68. Zhang B, Palcic M M, Schriemer D C, Alvarez-Manilla G, Pierce M, Hindsgaul O. Frontal Affinity Chromatography Coupled to Mass Spectrometry for Screening Mixtures of Enzyme Inhibitors. Anal. Biochem. 2001,299: 173-182.
    69. Chan N W, Lewis D F, Hewko S, Hindsgaul O, Schriemer D C. Frontal affinity chromatography for the screening of mixtures. Comb. Chem. High Throughput Screen, 2002, 5: 395-406.
    70. Su J, Mrksich M. Using Mass Spectrometry to Characterize Self-Assembled Monolayers Presenting Peptides, Proteins, and Carbohydrates. Angew. Chem. 2002,41:4715-4718.
    71. Tang N, Tomatore P, Weinberger S R. Current developments in SELDI affinity technology. Mass Spectrom. Rev., 2004,23: 34-44.
    72. Dick L W, McGown L B. Aptamer-Enhanced Laser Desorption/Ionization for Affinity Mass Spectrometry. Anal. Chem., 2004, 76: 3037-3041.
    73. Cancilla M T, Leavell M D, Chow J, Leary J A. Mass spectrometry and immobilized enzymes for the screening of inhibitor libraries. Proc. Natl. Acad. Sci. U.S.A., 2000, 97:12008-12013.
    74. Wilson-Lingardo L, Davis P W, Ecker D J, Hebert N, Acevedo O, Sprankle K, Brennan T, Schwarcz L, Freier S M, Wyatt J R. Deconvolution of combinatorial libraries for drug discovery: experimental comparison of pooling strategies J. Med. Chem., 1996, 39: 2720-6.
    75. Gordon E M, Barrett R W, Dower W J, Fodor S P, Gallop M A. Applications of combinatorial technologies to drug discovery. 2. Combinatorial organic synthesis, library screening strategies, and future directions. J. Med. Chem., 1994, 37: 1385-1401.
    76. Kenan D J, Tsai D E, Keene J D. Exploring molecular diversity with combinatorial shape libraries Trends. Biochem. Sci., 1994, 19: 57-64.
    77. Zuckermann R N, Kerr J M, Siani M A, Banville S C, Santi D V. Identification of highest-affinity ligands by affinity selection from equimolar peptide mixtures generated by robotic synthesis. Proc.Natl.Acad.Sci.U.S.A, 1992, 89: 4505-9.
    78. Kelly M A, Liang H, Sytwu 11, Vlattas I, Lyons N L, Bowen B R, Wennogle L P. Characterization of SH2-ligand interactions via library affinity selection with mass spectrometric detection. Biochemistry, 1996, 35: 11747-55.
    79. Kassel D B. Combinatorial chemistry and mass spectrometry in the 21st Century drug discovery Laboratory. Chem. Rev., 2001,101:255-267.
    80. Giannakakou P, Sackett D, Fojo T. Tubulin / microtubules: still a promising target for new chemotherapeutic agents, J Nail Cancer Inst, 2000, 92(3): 182-183.
    81. Shaw S L, Kamyar R, Ehrhardt D W. Sustained microtubule treadmilling in Arabidopsis cortical arrays. Science, 2003, 300(5626): 1715-1718.
    82. Panda D, Miller H P, Wilson L. Rapid treadmilling of brain microtubules free of microtubule-associated proteins in vitro and its suppression by tau. Proc Natl Acad Sci USA, 1999, 96(22): 12459-12464.
    83. Correia J J, Lobert S. Physiochemical aspects of tubulin-interacting antimitotic drugs. Curr. Pharm. Des., 2001,13:1213-1228.
    84. Rowinsky E K. The development and clinical utility of the taxane class of antimicrotubule chemotherapy agents. Annu. Rev. Med., 1997,48: 353-374.
    85. Nogales E. High-resolution model of the microtubule. Cell. 1999, 96: 79-88.
    86. Snyder J P. et al. The binding conformation of Taxol in betatubulin:a model based on electron crystallographic density. Proc. Natl. Acad. Sci. U. S. A., 2001, 98: 5312-5316.
    87. 徐叔云,卞如濂. 药理实验方法学. 人民卫生出版社, 2004,1798-1802.
    88. Barron D M, Chatterjee S K, Ravindra R, Roof R, Baloglu E, David G I. A, fluorescence-based high-throughput assay for antimicrotubule drugs. Analytical Biochemistry, 2003, 315: 49-56.
    89. Schumacher G, Neuhaus P. The physiological estrogen metabolite 2-methoxyestradiol reduces tumor growth and induces apoptosis in human solid tumors. J. Cancer Res. Clin. Oncol, 2001, 127: 405-410.
    90. Tahir S K, Han E K-H, Credo B, Jae H S, Pietenpol J A. A-204197, a new tubulin-binding agent with antimitotic activity in tumor cell lines resistant to known microtubule inhibitors. Cancer Res., 2001,61: 5480-5485.
    91. Beckers T, Reissmann T, Schmidt M, Burger AM. 2-Aroylindoles, a novel class of potent, orally active small molecule tubulin inhibitors. Cancer Res., 2002, 62: 3113-3119.
    92. Panda D. et al. Stabilization of microtubule dynamics by estramustine by binding to a novel site in tubulin: a possible mechanistic basis for its antitumor action. Proc. Natl. Acad. Sci. U. S. A, 1997,94: 10560-10564.
    93. Lillo M P. Location and properties of the taxol binding center in microtubules: a picosecond laser study with fluorescent taxoids. Biochemstry, 2002, 41: 12436-12449.
    94. He L. Novel molecules that interact with microtubules and have functional activity similar to Taxole. Drug Discov Today, 2001,6: 1153-1164.
    95. Madari H, Panda D, Wilson L, Jacobs R S. Dicoumarol: a unique microtubule stabilizing natural product that is synergistic with Taxol. Cancer Res., 2003, 63: 1214-1220.
    96. Pryor D E, O'Brate A, Bilcer G, Diaz J F, Wang Y. The microtubule stabilizing agent laulimalide does not bind in the taxoid site, kills cells resistant to paclitaxel and epothilones, and may not require its epoxide moeity for activity. Biochemstey, 2002.41:9109-9115.
    97.Sambrook J,Ffitsch E F,Maniatis T.著 金冬雁,黎孟枫译,分子克隆实验指南(第二版),科学出版社,北京,1995,880
    98.Ausubel F M,Brent R,Kingston R E.Short Protocols In Molecular Biology,3rd ed.,John Wiley & Sons,New York,1995,10.
    99.Jordan M A.Mechanism of action of antitumor drugs that interact with microtubules and tubulin.Curt Med Chem Anti-Cane Agents.,2002,2(1):1-17.
    100.Slichenmyer W J,Von Hoff D D.Taxol:A new and effective anticancer drug.Anti-Caner Drug,1991,2(6):519.
    101.Kelling J,Sullivan K,Wilson L.Suppression of centromere dynamics by Taxol in living osteosarcoma cells.Cancer Res.,2003,63(11):2794-2801.
    102.Buritova J,Honore P,Besson J M.Ketoprofen produces profound inhibition of spinal c-Fos protein expression resulting from an inflammatory stimulus but not from noxious heat.Pain,1996,67:379.
    103.Gorham J.The Biochemistry of Stilbenoids.Chapman and Hall:London,1995.
    104.Orsini F,Verotta L.Stilbenes and bibenzyls with potential anticancer or chemopreventive activity.Advances in Nutrition and Cancer Ⅱ.Plenum Press:London,UK,1999,169-186.
    105.Jang J H,Surh Y J.Protective effect of resveratrol on β-amyloid-induced oxidative PC12 cell death.Free Radical Biol.Med.,2003,34:1100-1110.
    106.Frankel E N,Waterhouse A L,Kinsella J E.Inhibition of human LDL oxidation by resveratrol.Lancet,1998,341:1103-1104.
    107.Sun N J,Woo S H,Snapka R M.DNA polymerase and topoisomerase Ⅱinhibitors from Psoralea corylifolia.J.Nat.Prod.,1998,61:362-366.
    108.Lemeshow S,Letenneur L,Dartigues J F,Lafont S,Orgozo J M.Commenges D.Illustration of analysis taking into account complex survey considerations:the association between wine consumption and dementia in the PAQUID study.Personnes Ages Quid.Am.J.Epidem.,1998,148:298-306.
    109.Virgili M,Contestabile A.Partial neuroprotection of in vivo excitotoxic brain damage by chronic administration of the red wine antioxidant agent, trans-resveratrol in rats. Neuroscience, 2000, 281: 123-126.
    110. Orsini F, Pelizzoni F, Verotta L, Aburjai T, Rogers C B. Isolation, Synthesis, and Antiplatelet Aggregation Activity of Resveratrol 3-O-D-glucopyranoside and Related Compounds. J. Nat. Prod., 1997, 60:1082-1087.
    111. Kimura Y, Okuda H, Arichi S. Biochim. Effects of stilbenes on arachidonate metabolism in leukocytes. Biophys. Acta, 1985, 834: 275-278.
    112. Fauconneau B, Huguet F, Barrier L, Merillon JM. Comparative study of radical scavenger and antioxidant properties of phenolic compounds from Vitis vinifera cell cultures using in vitro tests. Life Sci., 1997,61: 2103-10.
    113. Pace-Asciak C R, Hahn S, Diamandis E P, Soleas G, Goldberg D M. The red wine phenolics trans-resveratrol and quercetin block human platelet aggregation and eicosanoid synthesis: implications for protection against coronary heart disease. Clin Chim Acta., 1995, 235: 207-14.
    114. Jang M, Pezxuto J M. Cancer chemopreventive activity of resveratrol. Drugs Exptl Clin Res., 1999,25: 65-77.
    115. Mubouyebi O P, Russo T, Russo L H. Antiliferative effect of synthetic resveratrol on human breast epithelial cells. Ine J. oral, 1998, 12: 865-869.
    116. Wang D, Shi J Q, Liu F X. Immunohistochemical detection of proliferating cell nuclear antigen in heptocellular carcinoma. Chim Natl J New Gestroentrol, 1997,101-103.
    117. Fremont L. Biological effects of resveratrol. Life Sci. 2000, 66: 663-73.
    118. Jang M, Cai L, Udeani G O, Slowing K V, Thomas C F, Beecher C W, Fong H H, Farnsworth N R, Kinghorn A D, Mehta R G, Moon R C, Pezzuto J M. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science (New York, N.Y.), 1997,275(5297): 218-20.
    119. Kim H J, Saleem M, Seo S H, Jin C, Lee Y S. Two new antioxidant stilbene dimers, parthenostilbenins A and B from Parthenocissus tricuspidata. Planta Med., 2005, 71: 973-976.
    120. Tanaka T, Ohyama M, Morimoto K, Asai F, Iinuma M. A resveratrol dimer from Parthenocissus tricuspidata. Phytochemistry, 1998,48:1241-1243.
    121. Lins A P, Felicio J D, Braggio M M, Roque L C. A resveratrol dimer from parthenocissus tricuspidata. Phytochemistry, 1991,30: 3144-3146.
    122. Kang J G, Hick L A, Price W E.A fragmentation study of isoflavones in negative electrospray ionization by MSn ion trap mass spectrometry and trip quadrupole mass spectrometry. Rapid Commun. Mass Spectrom., 2007, 21: 857-868
    123. Imbert T F. Discovery of podophyIlotoxins. Biochimie, 1998, 80 (3): 207-222
    124. Haim N, Roman J, Nemec J, Sinha B K. Peroxidative free radical formation and O-demethylation of etoposide(VP-16) and teniposide (VM-26). Biochemical and Biophysical Research Communications, 1986,135:215-220.
    125. Palumbo M, Gatto B, Moro S, Sissi C, Zagotto G Sequence-specific interactions of drugs interfering with the topoisomerase-DNA cleavage complex. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 2002, 1587: 145-154
    126. Sehested M and Jensen P B. Mapping of DNA topoisomerase II poisons (etoposide, clerocidin) and catalytic inhibitors (aclarubicin, ICRF-187) to four distinct steps in the topoisomerase II catalytic cycle. Biochemical Pharmacology, 1996,51:879-886.
    127. Allevi P, Anastasia A, Ciuffreda P. A short and simple synthesis of the thioglucose analog of the antitumor agent etoposide. Tetrahedron Letters, 1991,32:6927-6930.
    128. Kadow J F, Tun M M, Crosswell A R, Rose W C, Vyas D M, Doyle T W. Synthesis and antileukemic activity of etoposide a-ring analogs. Bioorganic & Medicinal Chemistry, 1992,2:17-22.
    129. Utsugi T, Shibata J, Sugimoto Y. Antitumor activity of a novel podophyllotoxin derivative (TOP-53) against lung cancer and lung metastatic cancer. Cancer Res., 1996,56:2809-2814
    130. Gordaliza M, Garcia P A, Corral J M M. Podophyl Iotoxin: distribution, sources, applications and new cytotoxic derivatives. Toxicon, 2004,44(4): 441-459
    131. Majumder P L, Joardar M. Structure of erianin, a new bibenzyl derivative from the orchid Eria carinata.Indian Journal of Chemistry,Section B:Organic Chemistry Including Medicinal Chemistry,1984,23B(11):1040-1042.
    132.Gong Y Q,Fan Y,Wu D Z,Yang H,Hu Z B,Wang Z T.In vivo and in vitro,evaluation of erianin,a novel anti-angiogenic agent.European Journal of Cancer,2004,40:1554-1565.
    133.Getahun Z,Jurd L,Ping S.Synthesis of alkoxy-substituted diaryl compounds and correlation of ring separation with inhibition of tubulin polymerization:differential enhancement of inhibitory effects under suboptimal polymerization reaction conditions.J.Med.Chem.,1992,35:1058-1067.
    134.Wang Y G,Pan J L,Shi J F,Chen Y Z.New spin labeled analogs of podophyllotoxin as potential antitumor agents.Life Sci.,1997,61:537-542.
    135.梁亚玲,尹少甫,赵进昌,田塇 自旋标记鬼臼毒素衍生物GP-14诱导K562细胞凋亡研究.中华实用中西医杂志.2002,2(15):6-7.
    136.Jin Y,Chen S W,Tian X.Synthesis and biological evaluation of new spin-labeled derivatives ofpodophyllotoxin.Bioorganic & Medicinal Chemistry,2006,14:3062-3068.
    137.Lee K H,Imakura Y,Haruna M,Scott H,Thurston B L S,Dai H J,Chen C H.Antitumor Agents,107.New Cytotoxin 4-Alkylamino Analogues of 4'-Demethyl-epipodophyllotoxin as Inhibitors of Human DNA Topoisomerase Ⅱ.J.Nat.Prod.,1989,52:606-613.
    138.吴斌.浙江大学理学博士论文.2007.
    139.熊轶.浙江大学理学博士论文.2006.
    140.Romani L,Baldi A,Mulinacci N.Extraction and identification procedures of polyphenolic compounds and carbohydrates in phillyrea(Phillyrea angustifolia L.)leaves.Chromatographia,1996,42(9/10):571-577.
    141.Cao X J,Tai Y P Pan Y J.Screening for pregnane glycosides with immunological activities from the stems of Stephanotis mucronata by high-performance liquid chromatography /tandem mass spectrometry.Rapid Commun.Mass Spectrom.,2006,20(3):403-411
    142.乌勒彩拉,松林等.荜茇不皂化物降血脂作用的实验研究.中国民族医药杂志.2003,10:28.
    143.Prasad A K,Kumar V,Arya P,Kumar S,Dabur R,Singh N,Chhillar A K,Sharma G L,Ghosh B,Wengel J,Olsen C E,Parmar V S.Investigations toward new lead compounds from medicinally important plants.Pure.Appl.Chem.,2005,77:25-40.
    144.Park I K,Lee S G,Shin S C,Park J D,Ahn Y J.Larvicidal activity of isobutylamides identified in piper nigrum fruits against three mosquito species.J.Agric.Food Chem.,2002,50:1866-1870.
    145.陈显慧,王海梅等.荜茇油不皂化物对大鼠血清高密度脂蛋白胆固醇的影响,中国民族医药杂志.1997;3:2-4
    146.Stohr J R,Xiao P G,Bauer R.Constituents of Chinese Piper species and their inhibitory activity on prostaglandin and leukotriene biosynthesis in vitro:J.Ethnopharmacology.,2001,75:133-139.
    147.Das B,Kashinatham A,Madhusudhan P.Studies on phytochemicals.ⅩⅪ.Natural Product Sciences,1998,4:23.
    148.Wu S H,Sun C R,Pan Y J."Preparative isolation and purification of amides from the fruits of piper longum L by upright countercurrent chromatography and reversed-phase liquid chromatrography".J.Chromatogr.A.,2004,1040:193-204
    149.裴赛峰.浙江大学理学硕士论文.2006.
    150.Tabuneng W,Bando H,Amiya T.Studies on the constituents of the crude drug "Piperis Longi Fructus." on the alkaloids of fruits of Piper longum L.Chem.Pharm.Bull,1983,31:3562-5.
    151.Shoji N,Umeyama A,Saito N,Takemoto T,Kajiwara A,Ohizumi Y.Dehydropipemonaline,an amide possessing coronary vasodilating activity,isolated from Piper longum L.J.Pharm.Sci.,1986,75:1188-9.
    152.Morikawa T,Matsuda H,Yamaguchi I,Pongpiriyadacha Y,Yoshikawa M.New amides and gastroprotective constituents from the fruit of Piper chaba.Planta Med.,2004,70:152-159.
    153.Siddiqui B S,Gulzar T,Begum S,Afshan F A.Piptigrine,a new insecticidal amide from Piper nigrum Linn. Nat. Prod. Res., 2004, 18: 473-477.
    154. Das B, Kashinatham A, Madhusudhan P. Studies on phytochemicals. XXI. One new and two rare alkamides from two samples of the fruits of Piper longum. Nat. Prod. Res. 1998,4:23-25.
    155. Trinnaman L, Da Costa N C, Dewis M L, John T V. The volatile components of Indian long pepper, Piper longum Linn. Special Publication - Royal Society of Chemistry, 2005, 300: 93-103.
    156. Miyakado M, Nakayama I, Ohno N, Yoshioka H. Structure, chemistry and actions of the Piperaceae amides: new insecticidal constituents isolated from the pepper plant. Current Themes in Tropical Science, 1983,2: 369-82.
    157. Wu S H, Sun C R, Pei S F, Lu Y B, Pan Y J. Preparative isolation and purification of amides from the fruits of Piper longum L by upright counter-current chromatography and reversed-phase liquid chromatography. J. Chromatogr. A., 2004,1040: 193-204.
    158. Christodoulopoulou L, Tsoukatou M, Tziveleka L A, Vagias C, Petrakis P V, Roussis V. Piperidinyl amides with insecticidal activity from the maritime plant Otanthus maritimus. J. Agric. Food Chem., 2005, 53: 1435-1439.
    159. Adesoma S K, Adebayo A S, Adesina S K O, Groening R. GC/MS investigations of the minor constituents of Piper guineense stem. Pharmazie, 2002,57: 622-627.
    160. Adesina S K, Adebayo A S, Adesina S K O, Groening R. New constituents of Piper guineense fruit and leaf. Pharmazie, 2003, 58: 423-425.
    161. Kikuzaki H, Kawabata M, Ishida E, Akazawa Y, Takei Y, Nakatani N. Constituents of Piperaceae. Part V. LC-MS analysis and structural determination of new amides from Javanese long pepper (Piper retrofractum). Biosci. Biotech. Biochem., 1993,57:1329-33.
    162. Kollmannsberger H, Nitz S. Amides from supercritical fluid extracts of muntok pepper. Technologie der Lebensmittel, 1992,14: 87-94.
    163. Siddiqui B S, Gulzar T, Mahmood A, Begum S, Khan B, Afshan F. New insecticidal amides from petroleum ether extract of dried Piper nigrum L. whole fruits. Chem. Pharm. Bull., 2004, 52:1349-52.
    164. De Abreu A M, Brighente I M C, Volatile constituents of Piperaceae from Santa Catarina, Brazil - essential oil composition of Piper cernuum Vell, and Peperomia emarginella (Sw.) C. DC. J. Essential Oil Res., 2005,17: 286.
    165. Scott I M, Puniani E, Jensen, H. Analysis of piperaceae Germplasm by HPLC and LC-MS: a method for isolating and identifying unsaturated amides from piper spp extracts. J. Agric. Food Chem., 2005,53: 1907.
    166. Bobeldijk I, Boonzaaijer G, Spies-Faber E J, Vaes W H J. Determination of kava lactones in food supplements by liquid chromatography-atmospheric pressure chemical ionisation tandem mass spectrometry. J. Chromatogr. A., 2005, 1067: 107-114.
    167. Loder W J, Moorhouse A, Russell G B. Tumor inhibitory plants; amides of Piper novae-hollandiae. Aust. J. Chem., 1969, 22:1531-8.
    168. Wang B, Sun G, Anderson D R, Jia M, Previs S, Anderson V E. Isotopologue distributions of peptide product ions by tandem mass spectrometry: Quantitation of low levels of deuterium incorporation. Analytical Biochemistry, 2007, 367: 40-48.
    169. Kumar Y R, Babur J M, Sarma M S P, Seshidhar B, Reddy S S, Reddy G S, Vyas K J. Structural identification and characterization of impurities in moxifloxacin. Pharm. Biomed. Anal., 2004,34:1125-29
    170. U.S. Pharmacopeia /National Formulary.USP29-NF24,2005.
    171. European Pharmacopoeia. EP5.0, 2005.
    172. Pendela M, Govaerts C, Diana J, Hoogmartens J, Schepdael A V. Characterization of impurities in spiramycin by liquid chromatography/ion trap mass spectrometry. Rapid Commun. Mass Spectrom., 2007,21: 599-613
    173. Kumar Y R, Moses B J, Sarma M S P, Seshidhar B, Reddy S. Application of LC-MS/MS for the identification of a polar impurity in mosapride, a gastroprokinetic drug. Pharm Biomed. Anal., 2003, 32: 361-368.
    174. Fiori J, Bragieri M, Zanotti M C, Liverani A, Borzatta V, Mancini F, Cavrini V, Andrisano V. Liquid chromatography-tandem mass spectrometry for the identification of impurities in d-allethrin samples. J. Chromatogr. A., 2005, 1099: 149.
    175. Pei S F, Wang D H, Sun CR, Pan Y J. Characterization of a novel trace-level impurity in lisinopril using multi-stage mass spectrometry. Eur. J. Mass Spectrom., 2006,12: 121-127.
    176. Frazer A. Serotonergic and noradrenergic reuptake inhibitors: prediction of clinical effects from in vitro potencies. J. Clin. Psychiatry, 2001, 62: 16
    177. He J, Zhou Z L, Li H D. Simultaneous determination of fluoxetine, citalopram, paroxetine, venlafaxine in plasma by high performance liquid chromatography-electrospray ionization mass spectrometry. J. Chromatogr. B., 2005, 820: 33
    178. Wille S M, Maudens K E, van Peteghem C H, Lambert W E. Development of a solid phase extraction for 13 'new' generation antidepressants and their active metabolites for gas chromatographic-mass spectrometric analysis. J. Chromatogr. A., 2005,1098: 19.
    179. Schaller D, Hilder E F, Haddad P R, Separation of antidepressants by capillary electrophoresis with in-line solid-phase extraction using a novel monolithic adsorbent. Anal. Chimica. Acta, 2006, 556: 104
    180. Smyth W F, Leslie J C, McClean S. the characterization of selected antidepressant drugs using electrospray ionization with quadrupole time-of-flight mass spectrometry and their determination by high-performance liquid chromatography/electrospray ionization tandem mass spectrometry. Rapid Commun. Mass spectrom., 2006,20: 1637.
    181. Edwards J R. Meropenem: a microbiological overview. J. Antimicmb Chemother, 1995,36(Suppl A):1-17.
    182. Joyce C, Smyth W F, Ramachandran V N, O'Kane E, Coulter D J. The characterisation of selected drugs with amine-containing side chains using electrospray ionisation and ion trap mass spectrometry and their determination by HPLC-ESI-MS. J. Pharm. Biomed. Anal., 2004, 36:465.
    183. Coll M, Frau J, Donoso J, Muiioz F. Ab initio study of P-lactam compounds: acidic hydrolysis. Journal of Molecular Structure (Theochem), 1998, 426: 323-329.
    184. White E H, Scherrer H, Johns H U, Baltimore M D. Triazene method for deamination of aliphatic amines. Tetrahedron Lett. 1961,758-62.