TiNiPd高温形状记忆薄膜研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
TiNiPd高温形状记忆薄膜的研究对于工作温度处于100℃~200℃的微电子机械系统(MEMS)有着重要的意义。本文的工作着眼于TiNiPd形状记忆薄膜的应用基础性研究,使用差示扫描量热计(DSC)、动态热机械分析仪(DMA)、X射线衍射仪(XRD)、透射电子显微镜(TEM)以及磁控溅射仪,薄膜拉伸台、形状记忆应变弯曲装置等设备,从薄膜的制备、处理加工、晶化和氧化特性、形状记忆特性、相变组织、拉伸及内耗性能等诸方面对TiNiPd高温形状记忆薄膜进行了系统深入的研究。
     利用合金靶磁控溅射技术辅助加补小Ti片成功制备了具有预定成分的大片TiNiPd自由薄膜。研究表明,TiNiPd薄膜的成分控制规律与TiNi薄膜的有很大区别,相比靶材的成分,薄膜中Pd量明显减少而Ni量大大增加,Ti量的变化不大。添加Ti片可增加薄膜中的Ti量,但同时Ni量下降,而Pd量变化不大。
     研究发现溅射功率影响薄膜中三组元的比例。溅射薄膜中的Ti含量随溅射功率增大明显减小,但Ni和Pd的含量略有上升。基片类型也影响溅射薄膜的成分。TiNiPd薄膜的溅射态为非晶态结构,其原子排列比TiNi的要松散。
     晶化温度的研究表明自由薄膜的晶化温度与基片类型关系不大,但与成分有关,Ti含量增加或Pd含量减少都使晶化温度升高。Ti的作用比Pd的更强。自由薄膜的晶化温度基本在480℃~510℃,粘附于基片的薄膜则要高30℃~50℃。晶化前低于晶化温度的预处理对晶化温度影响不大。
     实验发现TiNiPd薄膜相比TiNi薄膜更易氧化,其短时氧化特性符合线性-抛物线规律。非晶态薄膜的氧化激活能比TiO2的略低,晶态薄膜的则不到其半值,这是TiNiPd薄膜易氧化的一个原因。研究表明TiNiPd薄膜中的Pd原子促进O原子和Ti原子结合,排斥氧化界面处氧化物中的Ti原子,导致薄膜中的Ti原子通过氧化界面向外扩散。这是TiNiPd薄膜易氧化的主要原因。
     着重研究考察了Ti51.5Ni26.0Pd22.5薄膜的相变,经550℃1h或750℃1h或750℃1h+450℃1h处理的薄膜试样在室温以上温度有马氏体相变和逆相变。经750℃1h晶化处理的薄膜相变温度较高,在冷却过程中显现B2→B19一步相变。经550℃1h晶化处理的薄膜相变温度低,且有多次转变,但都是B2→B19一步相变。
The research of TiNiPd high temperature shape memory films is important for Micro-Electro-Mechanical Systems (MEMS) working at 100oC~200oC. As an applying fundamental research, in this paper the TiNiPd shape memory films were studied with the emphases on the fabrication and treating technology, crystallizing and oxidizing characteristic, shape memory effect, phase transformation and microstructure, tensile performance and internal friction etc. using DSC, DMA, XRD, TEM, magnetron sputtering, film tensile test, curvature strain measuring and so on.
     Firstly, TiNiPd films’fabrication and their component control were investigated. Large pieces TiNiPd films with preconcert composition were made by the magnetron sputtering using alloy target with Ti foils. The results show that comparing with the composition of the target, in the film the Pd content decreases and Ni content increases distinctly but Ti content changes not so. With Ti foils on the alloy target Ti content increases at the correspond area on film while Ni content decreases but Pd content changes little.
     It was found that the substrate property and sputtering power affected the composition of films. There is variant composition on deferent substrate at same sputtering condition. When increasing sputtering power the Ti content in sputtering films decreases markedly while Ni and Pd content increases a little. The sputtering TiNiPd films are amorphous structure and the atom arrangement in it is looser than that in TiNi films.
     The study about crystallizing point of TiNiPd sputtering films shows that the crystallizing point of free films is more relate to composition of the films but a little to the type of substrate. The increase of Ti content and the decrease of Pd content in TiNiPd films would lead to high crystallizing point of the films, in which the effect of Ti is larger than that of Pd. The crystallizing point of free TiNiPd films is at about 480oC ~510oC and lower 30oC~50oC than that of the films adhering to substrate. The
引文
1 Fu Y, Du H, Huang W, et al. TiNi-based thin films in MEMS applications: a review [J]. Sensors and Actuators A, 2004, 112: 395-408
    2 贺志荣, 周敬恩. TiNi 形状记忆合金的研究动向[J]. 钛工业进展, 2002(3): 1-4
    3 吴建生, 吴晓东, 王征. 形状记忆合金薄膜的研究与发展[J]. 材料研究学报, 1997, 11:449-455
    4 Goldberg F, Knystautas E J. Effects of ion irradiation on NiTi shape memory alloy thin films [J]. Thin Solid Films, 1999, 342:67-73
    5 Bhattacharya K, James R D. Theory of thin films of martensitic materials with applications [J]. Journal of the Mechanics and Physics of Solids, 1999, 47:531-576
    6 Gu H D, Leung K M, Chung C Y, et al. Pulsed lased deposition of NiTi shape memory alloy thin films with optimum parameters [J]. Thin Solid Films, 2000, 330:196-201
    7 Qi X, Guo L, Jiang B, et al. Influence of crystallization temperature on phase transformation in Ti rich NiTi thin film [J]. Transactions of Nonferrous Metals Society of China, 1998, (8):283-288
    8 Bendahan M, Seguin J L, Canet P, et al. NiTi shape memory alloy thin films composition control using optical emission spectroscopy [J]. Thin Solid Films, 1996, 283:61-66
    9 Gong F F, Shen H M, Wang Y N. Structures and defect induced during annealing of sputtered near equiatomic NiTi shape memory alloy thin films [J]. Applied Physics Letters, 1996, 69:2656-2658
    10 Moine P, Delage J, Pelton A R et al. Structural determination of amorphous NiTi thin films using electron diffraction analysis [J]. Acta Metallurgica et Materialia, 1992, 40:1855-1863
    11 Shen G J, Gong F F, Shen H M, et al. Transmission electron microscopy study of domain structure in NiTi thin film [J]. Journal of Materials Science Letters, 1995, 14:1306-1309
    12 Yang Y Q, Jia H S, Zhang Z F et al. Transformations in sputter-deposited thin films of NiTi shape memory alloy [J]. Materials Letters, 1995, 22:137-140
    13 Isalgue A, Torra V, Seguin J L, et al. Shape memory NiTi thin films deposited at low temperature [J]. Materials Science and Engineering A, 1998, 273:717-721
    14 Gu H D, You L, Leung K M, et al. Growth of TiNiHf shape memory alloy thin films by laser ablation of composite targets [J]. Applied Surface Science, 1998, 127-129:579-583
    15 Ishida A, Takei A, Stao M, et al. Stress-strain Curves of Sputtered Thin Film of Ti-Ni [J]. Thin solid films, 1996, 281-282:337-339
    16 Gong F F, Shen H M, Wang Y N. Fabrication and characterization of sputtered Ni-rich NiTi thin films [J]. Materials Letters, 1995, 25:13-16
    17 Ohta A, Bhansali S, Kishimoto I. Novel fabrication technique of TiNi shape memory alloy film using separate Ti and Ni targets [J]. Senors and Actuators, 2000, 86:165-170
    18 Lehnert T, Tixier S, Boni P, et al. A new fabrication process for Ni-Ti shape memory thin films. [J]. Materials Science and Engineering A, 1999, 273-275: 713-716
    19 Camposeo A, Puccini N, Fuso F, et al. Laser Deposition of Shape-Memory Alloy for MEMS Applications [J]. Applied Surface Science, 2003, 208-209:518-521
    20 Ho K K, Mohanchandra K P, Carman G P. Examination of the sputtering profile of NiTi under target heating conditions [J]. Thin Solid Films, 2002, 413:1-7
    21 Kahn H, Huff M A, Heuer A H. The TiNi shape-memory alloy and its applications for MEMS [J]. J Micromech Microeng, 1998, (8):213-221
    22 Jarrige I, Holliger P, Jonnard P. Diffusion Processes in NiTi /Si, NiTi /SiO2 and NiTi /Si3N4 Systems under Annealing [J]. Thin Solid Films, 2004, 458:314-321
    23 Huang X, Liu Y, Ling S F, et al. Effect of SiO2 buffer layer on properties of sputter-deposited NiTi shape memory alloy thin films [J]. Surface and Coatings Technology, 2003, 167(2-3):148-153
    24 WEN S L. Microstructure and Mechanical Properties of TiNi SME Thin Film [J]. Journal of Chinese Electron Microscopy Society, 2002, 21(3):295-300
    25 单凤兰, 霍艳玲, 滕凤恩, 等. TiNi 形状记忆合金薄膜的位借与相变[J]. 稀有金属工程, 1998, 27(4):199-201
    26 霍艳玲, 单凤兰, 罗浩斌. 富 Ti-TiNi 薄膜的热循环效应[J]. 吉林大学自然科学学报, 1998, 4:41-42
    27 张春才, 苏佳灿主译. 形状记忆材料[M]. 上海:第二军医大学出版社, 2003, 9: 48-50
    28 Quandt E, Halene C, Holleck H, et al. Sputter deposition of TiNi, TiNiPd and TiPd films displaying the two-way shape-memory effect [J]. Sensors and Actuators A, 1996, 53:434-439
    29 刘晓鹏, 曹名洲, 孟长功, 等. 预应变对 TiNi 薄膜相变温度及热滞的影响[J]. 材料研究学报, 2001, 15(5):549-552
    30 Vestel M J, Grummon D S, Gronsky R, et al. Effect of temperature on the devitrification kinetics of NiTi films [J]. Acta Materialia, 2003, 51:5309-5318
    31 Gyobu A, Kawamura Y, Saburi T, et al. Two-way shape memory effect of sputter-deposited Ti-rich Ti–Ni alloy films [J]. Materials Science and Engineering A, 2001, 312:227-231
    32 Sato M, Ishida A, Miyazaki S. Two-way shape memory effect of sputter- deposited thin films of Ti 51 3 at % Ni, Thin Solid Films [J]. 1998, 315:305-309
    33 Huang X, Liu Y. Substrate-induced stress and the transformation behavior of sputterdeposited NiTi thin films [J]. Materials Science and Engineering A, 2003, 352:314-317
    34 Craciunescu CM, Li J, Wuttig M. Thermoelastic stress-induced thin film martensites [J]. Scripta Materialia, 2003, 48:65-70
    35 张春才, 苏佳灿主译. 形状记忆材料[M]. 上海:第二军医大学出版社, 2003, 9: 46-48
    36 Wang Z G, Zu X T, Fu Y Q. Study of incomplete transformations of near equiatomic TiNi shape memory alloys by DSC methods [J]. Materials Science and Engineering A, 2005, 390:400-403
    37 单凤兰, 霍艳玲, 罗浩斌, 等. 溅射富 Ti-TiNi 形状记忆合金薄膜[J]. 稀有金属材料与工程, 1999, 28(2):89-92
    38 张春才, 苏佳灿主译. 形状记忆材料[M]. 上海:第二军医大学出版社, 2003, 9: 95-99
    39 Miyazaki S, Ishida A. Martensitic transformation and shape memory behavior in sputter-deposited TiNi-base thin films [J]. Materials Science and Engineering A, 1999, 273-275:106-133
    40 张春才, 苏佳灿主译. 形状记忆材料[M]. 上海:第二军医大学出版社, 2003, 9:29
    41 Ishida A, Sato M, Miyazaki S. Mechanical Properties of Ti-Ni Shape Memory Thin Films Formed by Sputting [J]. Materials Science and Engineering A, 1999, 273-275:754-757
    42 Grummon D S, Zhang J P, Pence T J. Relaxation and recovery of extrinsic stress in sputtered titanium–nickel thin films on (100)-Si [J]. Mater Sci Eng A, 1999, 273–275: 722-726
    43 Fu Y Q, Du H J. Effects of film composition and annealing on residual stress evolution for shape memory TiNi film [J]. Mater Sci Eng A 2003, 342:236-244
    44 Fu Y Q, Du H J, Zhang S. Sputtering deposited TiNi films: relationship among processing [J]. Surf Coat Technol 2003, 167:120-128
    45 Grummon D S, Zhang J P. Stress in sputtered films of near-equiatomic TiNiX on (10 0) Si: intrinsic and extrinsic stresses and their modification by thermally activated mechanisms [J]. Physica Status Solidi A 2001, 186:17-39
    46 Winzek B, Quandt E. Shape-memory Ti-Ni-X-films (X = Cu, Pd) under constraint [J]. Z Metallkd 1999, 90:796-802
    47 Shin D D, Mohanchandra K P, Carman G P. High frequency actuation of thin film NiTi [J]. Sensors and Actuators A, 2004, 111:166-171
    48 徐祖耀, 江伯鸿, 杨大智, 等. 形状记忆材料[M]. 上海:上海交通大学出版社, 2000: 47-49
    49 Hsieh S F, Wu S K. A Study on Ternary Ti-rich TiNiZr Shape Memory Alloys [J]. Materials Characteriaztion, 1998, 41:151-162
    50 Araujo C J De, Morin M, Gue′nin G. Electro-thermomechanical behaviour of a Ti-45.0Ni-5.0Cu (at %) alloy during shape memory cycling [J]. Materials Science and Engineering A, 1999, 273-275:305-309
    51 Craciunescu CM, Li J, Wuttig M. Constrained martensitic transformations in TiNiCu films [J]. Thin Solid Films, 2003, 434:271-275
    52 Du H, Fu Y. Deposition and characterization of Ti1-x(Ni, Cu)x shape memory alloy thin films [J]. Surface and Coatings Technology, 2004, 176:182-187
    53 Hsu P Y, Ting J M. Growth and characteristics of TiNiCu thin films [J]. Thin Solid Films, 2002, 420-421:524-529
    54 Gong F F, Wen X L, Shen H M, et al. Microstructures and thermomechanical properties of sputter-deposited NiTi(Fe) shape memory alloy films [J]. Materials Letter, 1998, 34:312-317
    55 Donkersloot H C and Vucht JHN van. J Less-Common Met, 1970, 20:83
    56 Khachin V N, Matveeva N A, Sivokha V P, et al. Acad Nauk SSSR 1981, 257: 167
    57 Enami K, Hoshiya T. Proc Mat Tech, 1990, 90:1
    58 Raub E and Roschel E. Z Metallkd, 1968, 59:112
    59 Krautwasser P, Bhan S and Schubert K, Z Metallkd, 1968, 59:724
    60 Shugo Y and Honma T. Bulletin of Research Inst Mineral Dressing and Metallurgy (Tohoku Univ ), 1987, 43:128
    61 Matveeva N M, Kovneristyi Y K, Savinov A S, et al. Martensitic transformations in the TiPd-TiNi system [J] Journal de physique, 1982, 43(C4): 249-253
    62 Matveeva N M, Khachin V N and Shivokha V P. in:Stable and Metastable Phase Equilibrium in Metallic Systems, ed M E Drits, (Nauka, Moscow, 1985):25 (in Rnsian)
    63 Lindquist P G, Wayman C M. Proc MRS Int Meetings On Advaced Materials, MRS Pittsburgh, 1989, 9:123-128
    64 Wu S K, Lo Y C. Mater Sci Forum, 1990, 56-58:619
    65 王莉, 徐东, 蔡炳初. Ti50Ni50-xPdx 合金的高温形状记忆特性功能材料[J]. 1999, 30: 340-34
    66 Otsuka K, Ren X. Recent developments in the research of shape memory alloys [J]. Intermetallics 1999, 7:511-528
    67 Golberg D, Xu Y, Murakami Y, et al. Improvement of A Ti50Pd30Ni20 high temperature shape memory alloy by thermomechanical treatments, Script. Metallurgica. Et. materialia, 1994, 30(10):1349-1354
    68 Khachin V N, etc. Matrtensitic transformations and the shape memory effect in Ti0.5Ni0.5-x Pdx alloys [J]. Phys Met Metall, 1983, 56(3):112-116
    69 Khachin V N, etc. Structure and propertiesof B2 titantium compounds:III Matrtensitic transformations [J]. Phys Met Metall, 1989, 67(4):125-135
    70 Lingquist P G, Wayman C M. Structure and transformation behavior of martensitic titanium–(nickel, palladium) and titanium–(nickel, palladium) alloys, In T W Dueig, etc eds Proceedingof the International Conference on Engineering Aspects of Shape Memory Alloys, London:Ibutterworth Heinemann, 1990, 58-68
    71 Wu S K, Lin H C. Recent development of TiNi-based shape memory alloys in Taiwan [J]. Mater Chem Phys 2000, 64:81-92
    72 李永森, 金永柏, 于荣海. Ti-13at%Ni-37at%Pd 记忆合金预形变与高温形状记忆效应[J]. 金属学报, 1990, 26(2):A113-116
    73 Golberg D, Xu Y, Murakami Y, et al. High temperature shape memory effect in Ti50Ni50-xPdx (x=10, 15, 20)alloys, Materials letters, 22, 241-248, 1995
    74 Tuominen S M, Biermann R J. Shape-memory wires [J]. Journal of Matals, 1988, 2:32-35
    75 Schlossmacher P. Microstructrual investigation of a TiNiPd shape memory thin film [J]. Materials letters, 1997, 31:119-125
    76 杨邦朝, 王文生. 薄膜物理与技术[M]. 成都:电子科技大学出版社, 1994:69
    77 Miyazaki S Hashinaga T, Yumikura K, et al. Shape memory characteristics of sputter-deposited Ti-Ni-base thin films[J]. Smart Materials, SPIE Proc. Series, 1995, 2441:156-164
    78 Quandt E, Holleck H. Shape-memory thin films of the system Ti-(Ni-Pd-Cu) [J]. Mat. Res. Soc. Symp. Proc. , 1997, 465-470
    79 Mathews S, Li J, Su Q, et al. Martensitic transformation in thin-film (TiPd)50(TiNi)50 [J]. Philosophical Magazine Letters, 1999, 79:265-272
    80 Lee A P, Ramsey Ph B, Trevino J C, et al. Thin film shape memory alloy microactuators [J]. Journal of Microelctromechanical System, 1996, 5(4):270-282
    81 Kohl M, Dittmann D, Quandt E, et al. Shape memory microvalves based on thin films or rolled sheets [J]. Materials Science and Engineering A, 1999, 273-275: 784-788
    82 Kohl M, Dittmann D, Quandt E, et al. Thin film shape memory microvalves with adjustable operation temperature [J]. Sensors and Actuators, 2000, 83:214-219
    83 Liu Y, Kohl M, Okutsu K. A TiNiPd thin film microvalve for high temperature applications [J]. Materials Science and Engineering A, 2004, 378:205-209
    84 Sawaguchi T, Sato M, Ishida A. Microstructure and shape memory behavior of Ti51.2(Pd27.0Ni21.8)and Ti49.5(Pd28.5Ni22.0) thin films [J]. Materials Science and Engineering A, 2002, 332:47-55
    85 Chu J P, Lai Y W, Lin T N, et al. Deposition and characterization of TiNi-base thin films by sputtering [J]. Materials Science and Engineering A, 2000, 277:11-17
    86 Eckert J, Schultz L. Synthesis of Ni-Ti and Fe-Ti alloys by mechanical alloying: formation of amorphous phases and extended solid solutions [J]. Journal of Non-Crystalline Solids, 1991, 127:90-96
    87 Chen J Z, Wu S K. Crystallization temperature and activation energy of rf-sputtered near-equiatomic TiNi and Ti50Ni40Cu10 thin films [J]. Journal of Non-Crystalline Solids, 2001, 288:159-165
    88 Buschow K H J. Stability and electrical transport properties of amorphous Ti1-xNix alloys [J]. J. Phys. F. Met. Phys. , 1983, 13:563-571
    89 Seeger C, Ryder P L. Kinetics of the crystallization of amorphous Ti-Ni and Ti-Ni-Si alloys [J]. Materials Science and Engineering A, 1994, 179-180:641-644
    90 Unnam J, Shenoy R N, Clark R K. Oxidation of Commercial Purity Titanium [J]. Oxid of Metals, 1986, 26:231-52
    91 Lo Y C, Wu S K. compositional dependence of martensitic transformation sequence in Ti50Ni50-xPdx alloys with x≤15at% [J]. Scripta Metallurgica et Materialia, 1992, 27:1097-1102
    92 徐祖耀, 江伯鸿, 杨大智, 等. 形状记忆材料[M]. 上海:上海交通大学出版社, 2000:18-34
    93 郭亮, 漆璇, 江伯鸿, 等. 富钛的镍钛形状记忆薄膜的相变行为及影响因素[J]. 包钢科技, 2002, 6(1):62-65
    94 张春才, 苏佳灿主译. 形状记忆材料[M]. 上海: 第二军医大学出版社, 2003, 9: 58-60
    95 Yoshida I, Ono T, Asai M, et al. Internal friction of Ti–Ni alloys [J], Journal of Alloys and Compounds, 310 (2000) 339-343
    96 Yoshida I, Monma D, Iino K, et al. Damping properties of Ti50Ni50-xCux alloys utilizing martensitic transformation [J]. Journal of Alloys and Compounds, 2003, 355:79-84
    97 Onda T, Bando Y, Ohba T, et al. Electron Microscopy Study of Twins in Martensite in a Ti-50.0 at% Ni Alloy [J] Mater. Trans. JIM, 1992, 33:354-359
    98 Nishida M, Ohgi H, Itai I, et al. Electron-Microscopy Studies of Twin Morphologies in B19' Martensite in the Ti-Ni Shape-Memory Alloy [J]. Acta Metall. Mater, 1995, 43:1219-1227
    99 Watanabe Y, Saburi T, Nakagawa Y, et al. J. Jpn. Inst. Metals 1990, 54:861, (in Japanese)