中低碳钢贝氏体形核长大动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢中贝氏体相变的温度范围较宽,可形成广泛形貌的贝氏体组织。深入了解贝氏体相变机制对钢种研制有指导性意义。本文采用了具有较广泛适用性的微观组织定义,研究符合该定义的微观组织的形成机制。
     基于Boltzmann分布,应用Cottrell基本位错理论,推导出更为精确的计算刃型位错处可富集碳原子个数的公式。计算了奥氏体中单个和多个刃型位错处富集的碳原子个数,其随等温温度降低和奥氏体中碳浓度增加而增加。
     建立了描述刃型位错处富集碳原子个数及其周围贫碳区半径随时间变化关系的模型。计算了贝氏体预相变期间,碳原子向位错处富集过程和贝氏体的孕育期,理论值与实验值吻合较好。通过比较刃型位错附近的贫碳区半径和切变形核的临界半径,并分析了等温温度、界面能、位错形态、应变能等影响因素,发现温度较低时,下贝氏体可能切变形核,温度较高时,切变形核几乎不可能。
     分析了热力学和动力学参数,用Zener-Hillert和Bosze-Trivedi公式,计算了合金含量不同的钢的贝氏体铁素体长大速度。Fe-C合金的贝氏体铁素体长大速度符合Zener-Hillert公式,合金含量较低的钢的实验值略低于理论值,Fe-C-8.7Ni wt.%的贝氏体铁素体长大速度比理论值约慢2个数量级。扩散控制动力学方程可描述部分而非全部钢种的贝氏体铁素体长大速度。通过对界面条件和溶质拖曳效应等因素的分析,提出贝氏体相变机制可能与成分相关。
     基于贝氏体相变的切变机制,改进了最大形核驱动力和自催化因子的计算方法,建立了描述贝氏体体积分数随时间变化的模型。理论值和实验结果吻合较好。根据切变理论获得的最大贝氏体体积分数在较高温度时与实验值有较大偏差。提出贝氏体相变可能与温度相关。
     研究了Nb含量不同对贝氏体相变的影响。在30℃/s和20℃/s冷却时,Nb含量从0.01 wt.%增加到0.2 wt.%,会使Bs点升高约20℃,但是对B f的影响不明显;连续冷却过程中,先形成粗大的贝氏体铁素体片层,后继形成的贝氏体铁素体片层逐渐变细;Nb的碳化物的形成可能与Nb的扩散相关。实验用钢在30℃/s和20℃/s连续冷却时,贝氏体的形成可用扩散机制较好地解释。
     通过分析成分和温度对贝氏体相变的影响,提出一个可能的相变机制:如果钢中的合金元素含量较低,在较高温度等温,贝氏体可能以扩散方式形成,随着温度的降低,贝氏体以切变方式形成;如果钢中的合金元素含量很高,温度较高时,由于合金元素的溶质拖曳效应,可能难以通过扩散方式形成贝氏体组织,等温温度较低时,贝氏体可能以切变方式形成。
Bainite can be formed at wide range of temperature in steels with various microstructures. A deep understanding of the bainite transformation mechanism is necessary for the development of novel steels. Based on the analysis of the existed definition about bainite, the paper focuses on the transformation mechanism of the products according with the general microstructure definition of bainite.
     Based on Boltzmann distribution and dislocation theory proposed by Cottrell, an exact formula was derived for calculating the carbon atoms number aggregating at edge dislocations, which increases with decreasing isothermal temperature and increasing carbon concentration.
     A model was developed to describe the relationship between carbon atoms drifting to edge dislocations and isothermal holding time. Furthermore, the radius of carbon depleted zone around edge dislocation was obtained. The theoretical results of aggregation process of carbon atoms to edge dislocations and bainite incubation time are consistent with the experimental data. By comparing the radius of carbon depleted zone with critical radius of displacive nucleus and considering the isothermal holding temperature, interfacial energy, dislocation morphology and stored energy etc., it is found that lower bainite displacive nucleation probably occurs at lower temperature rather than at higher temperature.
     The growth rates of bainitic ferrite in steels with varying alloy concentration were calculated by Zener-Hillert and Bosze-Trivedi equations after reevaluating the thermodynamic and kinetic parameters. A good agreement between experimental and theoretical results was found in Fe-C alloy. A slight overestimate of the theoretical results was observed in medium alloyed steels. However, the experimental data are two orders lower than theoretical ones in Fe-C-8.7Ni wt.% alloys. Taking the interface condition, supersaturation and solute drag effect into account, it is suggested that the bainite transformation mechanism may be related to steel composition.
     A kinetic model based on displacive mechanism was proposed after modifying the maximum nucleation driving force and autocatalysis nucleation factor. A satisfactory agreement with experimental data indicates that the model is capable of representing the relationship between the formation of bainite and isothermal holding time. It was found that the deviation of the theoretical maximum bainite fraction and the experimental ones is large at higher temperature. It is implied that the bainite transformation mechanism may be associated with transformation temperature.
     The effects of Nb content on the bainite transformation were studied. It is shown that Bs is increased about 20℃with cooling rates of 30℃/s and 20℃/s when the Nb content is raised from 0.01 to 0.2 wt.%. No significant effect of Nb content on Bf was observed. Upon continuous cooling the coarser bainitic ferrite plates are formed, followed by the formation of thinned bainitic ferrite plates. The process of the formation of NbC may concern with the diffusional process of Nb. The experimental results indicate the bainite formation is concerned with diffusional process.
     Coupling the obtained results, a possible mechanism of bainite transformation was suggested. If the carbon and alloy content are low, bainite may be transformed by diffusional processes at higher temperature. With decreasing the temperature, bainite transformation may proceed by displacive mechanism. In the case of higher carbon and alloy concentration, bainite transformation would not be expected by diffusional process due to the solute drag. However, bainite may be transformed displacively at lower temperature resulting from sufficient driving force.
引文
[1] 周光召等, 21 世纪学科发展丛书-钢铁冶金, 济南, 山东科学技术出版社, 2001, 1-260
    [2] 徐祖耀, 相变原理, 北京, 科学出版社, 2000, 1-594
    [3] 康沫狂, 钢中贝氏体, 上海, 科学技术出版社, 1990, 1-434
    [4] 方鸿生, 王家军, 杨志钢等, 贝氏体相变与贝氏体, 北京, 科学出版社, 1999, 1-589
    [5] Caballero F.G., Bhadeshia H.K.D.H., Mawella K.J.A., et al., Design of novel high-strength bainitic steels: Part I, Materials Science and Technology, 2001, 17, 512-516
    [6] Caballero F.G., Bhadeshia H.K.D.H., Mawella K.J.A., et al., Design of novel high-strength bainitic steels: Part II, Materials Science and Technology, 2001, 17, 517-522
    [7] Caballero F.G., Bhadeshia H.K.D.H., Very strong low temperature bainite, Materials Science and Technology, 2002, 18, 279-284
    [8] Garcia-Mateo C., Caballero F.G., Bhadeshia H.K.D.H., Development of hard bainite, ISIJ International, 2003, 43, 1238-1243
    [9] Garcia-Mateo C., Caballero F.G., Bhadeshia H.K.D.H., Low temperature bainite, Journal De Physique IV, 2003, 112, 285-288
    [10] 徐祖耀, 刘世楷, 贝氏体相变与贝氏体, 北京, 科学出版社, 1991, 1-304
    [11] 俞德刚, 李世道, 贝氏体相变理论, 上海交通大学出版社, 1998, 1-429
    [12] 俞德刚, 贝氏体相变理论进展近况, 金属热处理学报增刊, 1996, 17, 47-55
    [13] Ko T., Cottrell S.A., The formation of bainite, Journal of the Iron and Steel Institute, 1952, 30, 307-313
    [14] 刘宗昌, 材料组织结构转变原理, 北京, 冶金工业出版社, 2006, 1-308
    [15] 刘宗昌, 贝氏体相变的过渡性, 材料热处理学报, 2003, 24, 36-40
    [16] 刘宗昌, 钢中贝氏体相变的论争及前景, 包头钢铁学院学报, 2003, 22, 1-4
    [17] Kang M.K., Zhang M.X., Zhu M., In situ observation of bainite growth duringisothermal holding, Acta Materialia, 2006, 54, 2121-2129
    [18] 贾虎生, 杨延清, 武晓雷等, Fe-C 合金贝氏体在奥氏体贫碳区切变相变机制的价电子理论分析, 材料科学与工艺, 1995, 3, 22-27
    [19] Wu X.L., Zhang X.Y., Meng X.K., et al., Formation of carbon-poor regions during pre-bainitic transformation, Materials Letters, 1995, 22, 141-144
    [20] 武晓雷, Fe-c 合金贝氏体相变机制, 西北工业大学学报, 1995, 13, 205-208
    [21] 李承基, 贝氏体相变理论, 机械工业出版社, 1995, 1-109
    [22] Liu S.K., Zhang J., The influence of the Si and Mn concentration on the kinetics of the bainite transformation in Fe-C-Si-Mn alloys, Metallurgical Transactions A, 1990, 21A, 1517-1525
    [23] Hultgren A., Isothermal transformation of austenite, Transactions of the A.S.M., 1947, 39, 915-1005
    [24] Aaronson H.I., Reynolds W.T.J., Shiflet G.J., et al., Bainite viewed three different ways, Metallurgical Transactions A, 1990, 21A, 1343-1380
    [25] Purdy G.R., Hillert M., On the nature of the bainite transformation in steels, Acta Metallurgica, 1984, 32, 823-828
    [26] Christian J.W., The theory of transformations in metals and alloys part I, New York, 1975, 1-568
    [27] Bhadeshia H.K.D.H., Bainite in steels, London, 2001, 1-454
    [28] Hsu T.Y., Chen W.Z., Effect of austenite strengthening on martensitic and bainite transformation, Scripta Metallurgica, 1987, 21, 1289-1294
    [29] Zhang J., Chen S., Hsu T.Y., An investigation of internal friction within the incubation period of the bainite transformation, Acta Metallurgica, 1989, 37, 241-246
    [30] Fang H.S., Wang J.J., Zheng Y.K., Formation mechanism of bainitic ferrite and carbide, Metallurgical and Materials Transactions A, 2001, 25A, 2001-2007
    [31] Bhadeshia H.K.D.H., Edmonds D.V., The mechanism of bainite formation in steels, Acta Metallurgica, 1980, 28, 1265-1273
    [32] Bhadeshia H.K.D.H., Waugh A.R., Bainite: An atom-probe study of the incomplete reaction phenomenon, Acta Metallurgica, 1982, 30, 775-784
    [33] Zwaag S.V.D., Wang J., A discussion on the atomic mechanism of the bainitic reaction in trip steels, Scripta Materialia, 2002, 47, 169-173
    [34] Purdy G.R., Bainite: Defect signatures, Scripta Materialia, 2002, 47, 181-185
    [35] Moritani T., Miyajima N., Furuhara T., et al., Comparison of interphase boundary structure between bainite and martensite in steel, Scripta Materialia, 2002, 47, 193-199
    [36] Ohmori Y., Crystallographic aspects of bainite transformation in steels, Scripta Materialia, 2002, 47, 201-206
    [37] Muddle B.C., Nie J.F., Formation of bainite as a diffusional-displacive phase transformation, Scripta Materialia, 2002, 47, 187-192
    [38] Hillert M., Paradigm shift for bainite, Scripta Materialia, 2002, 47, 175-180
    [39] Enomoto M., Partition of carbon and alloying elements during the growth of ferrous bainite, Scripta Materialia, 2002, 47, 145-149
    [40] Fang H.S., Yang J.B., Yang Z.G., et al., The mechanism of bainite transformation in steels, Scripta Materialia, 2002, 47, 157-162
    [41] Quidort D., Brechet Y., The role of carbon on the kinetics of bainite transformation in steels, Scripta Materialia, 2002, 47, 151-156
    [42] Shiflet G.J., Hackenberg R.E., Partitioning and the growth of bainite, Scripta Materialia, 2002, 47, 163-167
    [43] Aaronson H.I., Spanos G., W.T.R. Jr, A progress report on the definitions of bainite, Scripta Materialia, 2002, 47, 139-144
    [44] Hehemann R.F., Kinsman K.R., Aaronson H.I., A debate on the bainite reaction, Metallurgical Transactions, 1972, 3, 1077-1094
    [45] Hillert M., Purdy G.R., On the misuse of the term bainite, Scripta Materialia, 2000, 43, 831-833
    [46] Bhadeshia H.K.D.H., The lower bainite transformation and the significance of carbide precipitation, Acta Metallurgica, 1980, 28, 1103-1114
    [47] Chang L.C., Bhadeshia H.K.D.H., Microstructure of lower bainite formed at large undercoolings below bainite start temperature, Materials Science and Technology, 1996, 12, 233-236
    [48] Bhadeshia H.K.D.H., Edmonds D.V., Bainite in silicon steels: New composition-property approach part I, Metal Science, 1983, 17, 411-419
    [49] Bhadeshia H.K.D.H., Edmonds D.V., Bainite in silicon steels: New composition-property approach part II, Metal Science, 1983, 17, 420-425
    [50] Swallow E., Bhadeshia H.K.D.H., High resolution observations of displacements caused by bainite transformation, Materials Science and Technology, 1996, 12, 121-125
    [51] Yang Z.G., Zhang C., Bai B.Z., et al., Observation of bainite surface relief in Fe-C alloy by atomic force microscopy, Materials Letters, 2001, 48, 292-298
    [52] Christian J.W., Lattice correspondence, atomic site correspondence and shape change in "diffusional-displacive" phase transformations, Progress in Materials Science, 1997, 42, 101-108
    [53] Aaronson H.I., Spanos G., Masamura R.A., et al., Sympathetic nucleation: an overview, Materials Science and Engineering, 1995, B32, 107-123
    [54] Wang J.J., Fang H.S., Yang Z.G., et al., Fine structure and formation mechanism of bainite in steels, ISIJ International, 1995, 35, 992-1000
    [55] Purdy G.R., Hillert M., A solute drag treatment of the effect of alloying elements on the rate of the proeutectoid ferrite transformation in steels, Acta Metallurgica et Materialia, 1995, 43, 3763-3774
    [56] Enomoto M., Influence of solute drag on the growth of proeutectoid ferrite in Fe-C-Mn alloy, Acta Materialia, 1999, 47, 3533-3540
    [57] Garcia-Mateo C., Sourmail T., Caballero F.G., et al., New approach for the bainite start temperature calculation in steels, Materials Science and Technology, 2005, 21, 934-940
    [58] Christian J.W., Simple geometry and crystallography applied to ferrous bainites, Metallurgical Transactions A, 1990, 21A, 799-803
    [59] 徐祖耀, 贝氏体相变简介, 热处理, 2006, 21, 1-20
    [60] Lambert-Perlade A., Gourgues A.F., Pineau A., Austenite to bainite phase transformation in the heat-affected zone of a high strength low alloy steel, Acta Materialia, 2004, 52, 2337-2348
    [61] Ohmori Y., Jung Y.C., Nakai K., et al., Bainite transformation and the diffusional migration of bainite/austenite broad interface in Fe-9%Ni-C alloys, Acta Materialia, 2001, 49, 3149-3162
    [62] Ohtani H., Okaguchi S., Fujishiro Y., et al., Morphology and properties of low-carbon bainite, Metallurgical Transactions A, 1990, 21A, 877-888
    [63] Kinsman K.R., Aaronson H.I., The inverse bainite reaction in hypereutectoid Fe-C alloys, Metallurgical Transactions, 1970, 1, 1485-1488
    [64] Christian J.W., The origin of surface relief effects in phase transformation, In Decomposition of austenite by diffusional process, Interscience, 1962, 371-386
    [65] Olson G.B., Cohen M., A general nucleation mechanism of martensitic nucleation: Part II. FCC->BCC and other martensitic transformations, Metallurgical Transactions A, 1976, 7A, 1905-1914
    [66] Olson G.B., Cohen M., A general nucleation mechanism of martensitic nucleation: Part I general concept and the FCC->HCP transformation, Metallurgical Transactions A, 1976, 7A, 1897-1904
    [67] Olson G.B., Cohen M., A general nucleation mechanism of martensitic nucleation: Part III. Kinetics of martensitic nucleation, Metallurgical Transactions A, 1976, 7A, 1915-1923
    [68] Aaronson H.I., Domain H.A., Pound G.M., Thermodynamics of the austenite proeutectoid ferrite transformation I, Fe-C alloys, Transactions of The Metallurgical Society AIME, 1966, 236, 753-767
    [69] Quidort D., Brechet Y.J.M., A model of isothermal and non isothermal transformation kinetics of bainite in 0.5%C steels, ISIJ International, 2002, 42, 1010-1017
    [70] Zhang X., Jin X.J., Hsu T.Y., Nucleation mechanism for bainite, Journal of Materials Science and Technology, 2002, 18, 1-3
    [71] Kang M.K., Zhu M., Mechanism of bainitic nucleation and ledge growth-discussion with professor Hsu T.Y., Trans. Mater. Heat Treat., 2005, 26, 1-5
    [72] Garcia-Mateo C., Bhadeshia H.K.D.H., Nucleation theory for high-carbonbainite, Materials Science and Engineering A, 2004, 378A, 289-292
    [73] Ali A., Bhadeshia H.K.D.H., Nucleation of Widmanstatten ferrite, Materials Science and Technology, 1990, 6, 781-784
    [74] Hillert M., Diffusion and interface control of reactions in alloys, Metallurgical Transactions A, 1975, 6A, 5-19
    [75] Bosze W.P., Trivedi R., On the kinetic expression for the growth of precipitate plates, Metallurgical Transactions, 1974, 5, 511-512
    [76] Quidort D., Brechet Y.J.M., Isothermal growth kinetics of bainite in 0.5%C steels, Acta Materialia, 2001, 49, 4161-4170
    [77] Bhadeshia H.K.D.H., Bainite: Overall transformation kinetics, Journal De Physique, 1982, C4, 443-448
    [78] Rees G.I., Bhadeshia H.K.D.H., Bainite transformation kinetics part 1 modified model, Materials Science and Technology, 1992, 8, 985-993
    [79] Rees G.I., Bhadeshia H.K.D.H., Bainite transformation kinetics part 2 non-uniform distribution of carbon, Materials Science and Technology, 1992, 8, 994-996
    [80] Matsuda H., Bhadeshia H.K.D.H., Kinetics of the bainite transformation, Proceedings of the Royal Society of London, 2004, A460, 1710-1722
    [81] Hackenberg R.E., Shiflet G.J., A microanalysis study of the bainite reaction at the bay in Fe-C-Mo, Acta Materialia, 2003, 51, 2131-2147
    [82] Hsu T.Y., On bainite formation, Metallurgical Transactions A, 1990, 21A, 811-816
    [83] Fourlaris G., Baker A.J., Papadimitriou G.D., Effect of copper additions on the isothermal bainitic transformation in hypereutectoid copper and copper-nickel steels, Acta Materialia, 1996, 44, 4791-4805
    [84] Jacques P., Girault E., Catlin T., et al., Bainite transformation of low carbon Mn-Si trip-assisted multiphase steels: Influence of silicon content on cementite precipitation and austenite retention, Materials Science and Engineering A, 1999, A273-275, 475-479
    [85] Mou Y., Hsu T.Y., Bainite formation in low carbon cr-ni steels, MetallurgicalTransactions A, 1988, 19A, 1695-1701
    [86] Sandvik B.P.J., The bainite reaction in Fe-Si-C alloys: The primary stage, Metallurgical Transactions A, 1982, 13A, 777-787
    [87] Sandvik B.P.J., The bainite reaction in Fe-Si-C alloys: The secondary stage, Metallurgical Transactions A, 1982, 13A, 789-800
    [88] Oka M., Okamoto H., Ishida K., Transformation of lower bainite in hypereutectoid steels, Metallurgical Transactions A, 1990, 21A, 845-851
    [89] Umemoto M., Furuhara T., Tamura I., Effects of austenitizing temperature on the kinetics of bainite at constant austenite grain size in Fe-C and Fe-Ni-C alloys, Acta Metallurgica, 1986, 34, 2235-2245
    [90] Yokota T., Garcia-Mateo C., H.K.D.H. Bhadeshia, Formation of nanostructured steels by phase transformation, Scripta Materialia, 2004, 51, 767-770
    [91] Mateo C.G., Caballero F.G., Bhadeshia H.K.D.H., Development of hard bainite, ISIJ International, 2003, 43, 1238-1243
    [92] Jin X.J., Min N., Zheng K.Y., et al., Material Science and Engineering A, 2006, in press
    [93] Rudolf K.C., Bainite transformation in deformed austenite, Metallurgical and Materials Transactions A, 1976, 7, 1091-1103
    [94] Larn R.H., Yang J.R., The effect of compressive deformation of austenite on the bainitic ferrite transformation in Fe-Mn-Si-C steels, Materials Science and Engineering A, 2000, A278, 278-291
    [95] Singh S.B., Bhadeshia H.K.D.H., Quantitative evidence for mechanical stabilization of bainite, Materials Science and Technology, 1996, 12, 610-612
    [96] Shipway P.H., Bhadeshia H.K.D.H., The effect of small stress on the kinetics of the bainite transformation, Materials Science and Engineering A, 1995, A201, 143-149
    [97] Hase K., Garcia-Mateo C., Bhadeshia H.K.D.H., Bainite formation influenced by large stress, Materials Science and Technology, 2004, 20, 1499-1505
    [98] Wang J.P., Yang Z.G., Bai B.Z., et al., Grain refinement and microstructural evolution of grain boundary allotriomorphic ferrite/granular bainite steel afterprior austenite deformation, Materials Science and Engineering A, 2004, A369, 112-118
    [99] Bhadeshia H.K.D.H., Stress-induced transformation to bainite in a Fe-Cr-Mo-C pressure vessel steel, Materials Science and Technology, 1991, 7, 686-698
    [100] Rees G.I., Shipway P.H., Modeling transformation plasticity during the growth of bainite under stress, Materials Science and Engineering A, 1997, A223, 168-178
    [101] Han H.N., Suh D.W., A model for transformation plasticity during bainite transformation of steel under external stress, Acta Materialia, 2003, 51, 4907-4917
    [102] Jaramillo R.A., Babu S.S., Ludtka G.M., et al., Effect of 30 tesla magnetic field on transformations in a novel bainitic steel, Scripta Materialia, 2004, 52, 461-466
    [103] Garcia-Mateo C., Peet M., Caballero F.G., et al., Tempering of hard mixture of bainitic ferrite and austenite, Materials Science and Technology, 2004, 20, 814-818
    [104] Liu D., Bai B.Z., Fang H.S., et al., Effect of tempering temperature and carbide free bainite on the mechanical characteristics of a high strength low alloy steel, Materials Science and Engineering A, 2004, A371, 40-44
    [105] Chen W.Z., Hsu T.Y., Chen S., et al., The internal friction of the pearlitic, bainite and martensitic transformations in Fe-Ni-C alloys, Acta Metallurgica et Materialia, 1990, 38, 2337-2342
    [1] 康沫狂, 朱明, 关于贝氏体形核和台阶机制的讨论-与徐祖耀院士等商榷, 材料热处理学报, 2005, 26, 1-5
    [2] 徐祖耀, 金学军, 简论贝氏体相变的形核与长大——复康沫狂教授等, 材料热处理学报, 2005, 26, 1-4
    [3] Bhadeshia H.K.D.H., A rationalisation of shear transformations in steels, Acta Metallurgica, 1981, 29, 1117-1130
    [4] Wu X.L., Zhang X.Y., Meng X.K., et al., Formation of carbon-poor regions during pre-bainitic transformation, Materials Letters, 1995, 22, 141-144
    [5] Ainslie N.G., Hoffman R.E., Seybolt A.U., Sulfur segregation at iron grain boundaries I, Acta Metallurgica, 1960, 8, 523-527
    [6] Ainslie N.G., Hoffman R.E., Seybolt A.U., Sulfur segregation at iron grain boundaries II, Acta Metallurgica, 1960, 8, 528-538
    [7] Colas D., Massardier V., Merlin J., Influence of manganese and chromium on the segregation kinetics of carbon and nitrogen to the dislocations in heavily deformed ferritic steel, Metallurgical and Materials Transactions, 2006, 37A, 1117-1123
    [8] Sakurai T., Kuk Y., Birchenall A.K., et al., Atom probe study of phosphorus segregation and of other elements in grain boundaries of iron, Scripta Metallurgica, 1981, 15, 535-538
    [9] Karlsson L., Norden H., Odelius H., Non equilibrium grain boundary segregation of boron in austenitic stainless steel I large scale segregation behaviour, Acta Metallurgica, 1988, 36, 1-12
    [10] Karlsson L., Norden H., Odelius H., Non equilibrium grain boundary segregation of boron in austenitic stainless steel II fine scale segregation behaviour, Acta Metallurgica, 1988, 36, 13-24
    [11] Karlsson L., Norden H., Odelius H., Non equilibrium grain boundary segregation of boron in austenitic stainless steel III computer simulations, ActaMetallurgica, 1988, 36, 25-34
    [12] Karlsson L., Norden H., Odelius H., On equilibrium grain boundary segregation of boron in austenitic stainless steel IV precipitation behaviour and distribution of elements at grain boundaries, Acta Metallurgica, 1988, 36, 35-48
    [13] Chen W., Charurvedi M.C., Richards N.L., Effect of boron segregation at grain boundaries on heat affected zone cracking in wrought inconel 718, Metallurgical and Materials Transactions, 2001, 32A, 931-939
    [14] Bugayev V.N., Gavrilyuk V.G., Nadutov V.M., et al., Mossbauer study of carbon distribution in Fe-Ni-C austenite, Acta Metallurgica, 1983, 31, 407-418
    [15] Thomas W.R., Chalmers B., The segregation of impurities to grain boundaries, Acta Metallurgica, 1955, 3, 17-21
    [16] Cottrell A.H., Bilby B.A., Dislocation theory of yielding and strain ageing of iron, Proceeding of Physical Society, 1949, A62, 49-62
    [17] Cottrell A.H., Dislocation and plastic flow in crystals, Great Britain, 1956, 1-223
    [18] Cottrell A.H., Theory of dislocations, Progress in Metal Physics, 1949, 1, 1-262
    [19] Beshers D.N., On the distribution of impurity atoms in the stress field of a dislocation, Acta Metallurgica, 1958, 6, 521-523
    [20] Bullough R., Newman R.C., The flow of impurity to an edge dislocation, Proceeding of the Royal Society of London, 1959, 249, 427-440
    [21] Bullough R., Newman R.C., The growth of impurity atmospheres round dislocations, Proceeding of the Royal Society of London, 1962, 266, 198-208
    [22] Hirth J.P., Carnahan B., Hydrogen adsorption at dislocations and cracks in Fe, Acta Metallurgica, 1978, 26, 1795-1803
    [23] Nandedkar A.S., Johnson R.A., Carbon atmosphere near an edge dislocation in iron, Acta Metallurgica, 1982, 30, 2055-2059
    [24] 汪存信, 宋昭华, 屈松生, 物理化学, 武汉大学出版社, 1997, 330-403
    [25] 冯端, 金属物理学第二卷, 北京, 科学出版社, 2000, 1-542
    [26] 胡赓祥, 蔡珣, 材料科学基础, 上海, 上海交通大学出版社, 2000, 1-356
    [27] Bhadeshia H.K.D.H., The theory and significance of retained austenite in steels,PHD dissertation, London, Cambridge, 1979, 1-127.
    [28] Cheng L., Bottger A., Keijser T.H.D., et al., Lattice parameters of iron-carbon and iron-nitrogen, Scripta Metallurgica, 1990, 24, 509-514
    [29] Root J.H., Konyer N.B., The lattice parameters of austenite and ferrite Fe-C alloys as functions of carbon concentration and temperature, Scripta Metallurgica, 1993, 29, 1011-1016
    [30] Liu W.J., A new theory and kinetic modeling of strain-induced precipitation of Nb(CN) in microalloyed austenite, Metallurgical and Materials Transactions A, 1995, 26A, 1641-1657
    [31] Okamoto R., Suehiro M., A mathematical model for Nb(C,N) precipitation kinetics in austenite controlled both by chemical and interfacial energy, Iron and steel, 1998, 85, 42-49
    [32] Doherty R.D., Hughes D.A., Humphreys F.J., et al., Current issues in recrystallization: a review, Materials Science and Engineering, 1997, A238, 219-274
    [1] 徐祖耀, 相变原理, 北京, 科学出版社, 2000, 1-594
    [2] Olson G.B., Cohen M., A general nucleation mechanism of martensitic nucleation: Part I general concept and the FCC->HCP transformation, Metallurgical Transactions A, 1976, 7A, 1897-1904
    [3] Olson G.B., Cohen M., A general nucleation mechanism of martensitic nucleation: Part II. FCC->BCC and other martensitic transformations, Metallurgical Transactions A, 1976, 7A, 1905-1914
    [4] Olson G.B., Cohen M., A general nucleation mechanism of martensitic nucleation: Part III. Kinetics of martensitic nucleation, Metallurgical Transactions A, 1976, 7A, 1915-1923
    [5] Olson G.B., Cohen M., Kinetics of strain-induced martensitic nucleation, Metallurgical Transactions A, 1975, 6A, 791-795
    [6] Aaronson H.I., Reynolds W.T.J., Shiflet G.J., et al., Bainite viewed three different ways, Metallurgical Transactions A, 1990, 21A, 1343-1380
    [7] Aaronson H.I., Spanos G., Jr W.T.R., A progress report on the definitions of bainite, Scripta Materialia, 2002, 47, 139-144
    [8] Bhadeshia H.K.D.H., The theory and significance of retained austenite in steels, PHD dissertation, London, Cambridge, 1979, 1-127
    [9] Zhao J.C., Notis M.R., Continuous cooling transformation kinetics versus isothermal transformation kinetics of steels: A phenomenological rationalization of experimental observations, Materials Science and Engineering A, 1995, R15, 135-208
    [10] Aaronson H.I., Domain H.A., Pound G.M., Thermodynamics of the austenite proeutectoid ferrite transformation I, Fe-C alloys, Transactions of The Metallurgical Society AIME, 1966, 236, 753-767
    [11] Hsu T.Y., Mou Y.W., Thermodynamics of the bainitic transformation, Acta Metallurgica, 1984, 32, 1469-1481
    [12] Hsu T.Y., Chen W.Z., Effect of austenite strengthening on martensitic and bainite transformation, Scripta Metallurgica, 1987, 21, 1289-1294
    [13] 徐祖耀, 贝氏体相变简介, 热处理, 2006, 21, 1-20
    [14] Hsu T.Y., On bainite formation, Metallurgical Transactions A, 1990, 21A, 811-816
    [15] Yang Z.G., Zhang C., Bai B.Z., et al., Observation of bainite surface relief in Fe-C alloy by atomic force microscopy, Materials Letters, 2001, 48, 292-298
    [16] Zhang X., Jin X.J., Hsu T.Y., Nucleation mechanism for bainite, Journal of Materials Science and Technology, 2002, 18, 1-3
    [17] Quidort D., Brechet Y.J.M., A model of isothermal and non isothermal transformation kinetics of bainite in 0.5%C steels, ISIJ International, 2002, 42, 1010-1017
    [18] Quidort D., Brechet Y., The role of carbon on the kinetics of bainite transformation in steels, Scripta Materialia, 2002, 47, 151-156
    [19] 徐祖耀, 金学军, 简论贝氏体相变的形核与长大——复康沫狂教授等, 材料热处理学报, 2005, 26, 1-4
    [20] Lim C., Wutting M., Prebainitic phenomena in aisi 86b80 and 0.8C-5.3Ni steel, Acta Metallurgica, 1974, 22, 1215-1222
    [21] Bhadeshia H.K.D.H., A rationalisation of shear transformations in steels, Acta Metallurgica, 1981, 29, 1117-1130
    [22] Bhadeshia H.K.D.H., Thermodynamic analysis of isothermal transformation diagrams, Metal Science, 1982, 16, 159-165
    [23] Ali A., Bhadeshia H.K.D.H., Nucleation of widmanstatten ferrite, Materials Science and Technology, 1990, 6, 781-784
    [24] Wu X.L., Zhang X.Y., Meng X.K., et al., Formation of carbon-poor regions during pre-bainitic transformation, Materials Letters, 1995, 22, 141-144
    [25] Wu X.L., Jia H.S., Zhang X.Y., et al., Study of carbon regions of austenite during bainitic incubation period by SAM, Journal of Materials Science and Technology, 1995, 11, 353
    [26] Garcia-Mateo C., Bhadeshia H.K.D.H., Nucleation theory for high-carbonbainite, Materials Science and Engineering A, 2004, 378A, 289-292
    [27] 康沫狂, 朱明, 关于贝氏体形核和台阶机制的讨论-与徐祖耀院士等商榷, 材料热处理学报, 2005, 26, 1-5
    [28] 崔忠圻, 金属学与热处理, 机械工业出版社, 1988, 1-439
    [29] Cottrell A.H., Dislocation and plastic flow in crystals, Great Britain, 1956, 1-223
    [30] Trivedi R., Pound G.M., Effect of concentration-dependent diffusion coefficient on the migration of interphase boundaries, Journal of Applied Physics, 1967, 38, 3569-3576
    [31] Bhadeshia H.K.D.H., Diffusion controlled growth of ferrite plates in plain carbon steels, Materials Science and Technology, 1985, 1, 497-504
    [32] ?gren J., A simplified treatment of the transition from diffusion controlled to diffusionless growth, Acta Metallurgica, 1989, 37, 181-189
    [33] Liu Z.K., ?gren J., On the transition from local equilibrium to paraequilibrium during the growth of ferrite in Fe-Mn-C austenite, Acta Metallurgica, 1989, 37, 3157-3163
    [34] Liu Z.K., Theoretic calculation of ferrite growth in supersaturated austenite in Fe-C alloy, Acta Materialia, 1996, 44, 3855-3867
    [35] Kaufman L., Radcliffe S.V., Cohen M., Thermodynamics of the bainite reaction, In decomposition of Austenite by Diffusional Processes, 1962, 313-352
    [36] Siller R.H., Mclellan R.B., The variation with composition of the diffusivity of carbon in austenite, Transactions of The Metallurgical Society AIME, 1969, 245, 697-700
    [37] Siller R.H., Mclellan R.B., The application of the first order mixing statistics to the variation of the diffusivity of carbon in austenite, Metallurgical Transactions, 1970, 1, 985-988
    [38] Bhadeshia H.K.D.H., Diffusion of carbon in austenite, Metal Science, 1981, 15, 477-479
    [39] ?gren J., A revised expression for the diffusivity of carbon in binary Fe-C austenite, Scripta Metallurgica, 1986, 20, 1507-1510
    [40] Kaufman L., Clougherty E.V., Weiss R.J., The lattice stability of metals-III. Iron, Acta Metallurgica, 1963, 11, 323-335
    [41] Aaronson H.I., Domian H.A., Pound G.M., Thermodynamics of the austenite proeutectoid ferrite transformation II, Fe-C-X alloys, Transactions of The Metallurgical Society AIME, 1966, 236, 768-781
    [42] Orr R.L., Chipman J., Thermodynamic functions of iron, Transactions of The Metallurgical Society AIME, 1967, 239, 630-633
    [43] Lobo J.A., Geiger G.H., Thermodynamics and solubility of carbon in ferrite and ferritic Fe-Mo alloys, Metallurgical Transactions A, 1976, 7A, 1347-1357
    [44] Hsu T.Y., HongBing C., Shoufu L., On calculation of Ms and on driving force for martensitic transformations in Fe-C, Journal of Materials Science, 1983, 18, 3206-3212
    [45] Christian J.W., The theory of transformations in metals and alloys part I, New York, 1975, 1-568
    [46] Cottrell A.H., Bilby B.A., Dislocation theory of yielding and strain ageing of iron, Proceeding of Physical Society, 1949, A62, 49-62
    [47] Garcia-Mateo C., Caballero F.G., H.K.D.H. Bhadeshia, Acceleration of low temperature bainite, ISIJ international, 2003, 43, 1821-1825
    [48] Zener C., Impact of magnetism upon metallurgy, Transactions of The Metallurgical Society AIME, 1955, 619-630
    [49] Babu S.S., Bhadeshia H.K.D.H., Diffusion of carbon in substitutionally alloyed austenite, Journal of materials science Letters, 1995, 14, 314-316
    [50] 周如松, 金属物理(下), 上海, 高等教育出版社, 1992, 1-20
    [51] 赖祖涵, 金属的晶体缺陷与力学性质, 北京, 冶金工业出版社, 1988, 62-78
    [52] Cahn R.W., Physical metallurgy, North-Holland, 1970, 1-1533
    [53] Kang M.K., M.X. Zhang, M. Zhu, In situ observation of bainite growth during isothermal holding, Acta Materialia, 2006, 54, 2121-2129
    [54] Bhadeshia H.K.D.H., Bainite: overall transformation kinetics, Journal De Physique, 1982, C4, 443-448
    [1] Ko T., Cottrell S.A., The formation of bainite, Journal of the Iron and Steel Institute, 1952, 30, 307-313
    [2] Purdy G.R., Hillert M., On the nature of the bainite transformation in steels, Acta Metallurgica, 1984, 32, 823-828
    [3] Purdy G.R., Bainite: Defect signatures, Scripta Materialia, 2002, 47, 181-185
    [4] Fang H.S., Yang J.B., Yang Z.G., et al., The mechanism of bainite transformation in steels, Scripta Materialia, 2002, 47, 157-162
    [5] Hsu T.Y., On bainite formation, Metallurgical Transactions A, 1990, 21A, 811-816
    [6] Mou Y.W., Hsu T.Y., Bainite formation in low carbon Cr-Ni steels, Metallurgical Transactions A, 1988, 19A, 1695-1701
    [7] Aaronson H.I., Reynolds W.T.J., Shiflet G.J., et al., Bainite viewed three different ways, Metallurgical Transactions A, 1990, 21A, 1343-1380
    [8] Hsu T.Y., Wenggui G., Yu X.J., Superledges and carbides in bainite, In International Conference on Solid-Solid Phase Transformation, 1982, 1029-1033
    [9] Quidort D., Brechet Y.J.M., Isothermal growth kinetics of bainite in 0.5%C steels, Acta Materialia, 2001, 49, 4161-4170
    [10] Rigsbee J.M., Aaronson H.I., The interfacial structure of the broad face of ferrite plates, Acta Metallurgica, 1978, 27, 365-376
    [11] 方鸿生, 王家军, 杨志钢, et al., 贝氏体相变与贝氏体, 北京, 科学出版社, 1999, 1-589
    [12] Quidort D., Brechet Y.J.M., A model of isothermal and non isothermal transformation kinetics of bainite in 0.5%C steels, ISIJ International, 2002, 42, 1010-1017
    [13] Quidort D., Brechet Y., The role of carbon on the kinetics of bainite transformation in steels, Scripta Materialia, 2002, 47, 151-156
    [14] Zener C., Kinetics of the decomposition of austenite, Transaction AIMME, 1946, 167, 550-595
    [15] Hillert M., Diffusion and interface control of reactions in alloys, Metallurgical Transactions A, 1975, 6A, 5-19
    [16] Kaufman L., Radcliffe S.V., Cohen M., Thermodynamics of the bainite reaction, In Decomposition of Austenite by Diffusional Processes, 1962, 313-352
    [17] Trivedi R., The role of interfacial free energy and interface kinetics during the growth of precipitate plates and needles, Metallurgical Transactions, 1970, 1, 921-927
    [18] Jones G.J., Trivedi R., Lateral growth in solid-solid transformations, Journal of Applied Physics, 1971, 42, 4299-4304
    [19] Jones G.J., Trivedi R., The kinetics of lateral growth, Journal of crystal growth, 1975, 29, 155-166
    [20] Bosze W.P., Trivedi R., On the kinetic expression for the growth of precipitate plates, Metallurgical Transactions, 1974, 5, 511-512
    [21] Lee H.J., Spanos G., Shiflet G.J., et al., Mechanisms of the bainite (non-lamellar eutectoid) reaction and a fundamental distinction between the bainite and pearlite (lamellar eutectoid) reactions, Acta Metallurgica, 1988, 36, 1129-1140
    [22] Rao M.M., Winchell P.G., Growth rate of bainite from low-carbon iron-nickel-carbon austenite, Transactions of The Metallurgical Society AIME, 1967, 239, 956-965
    [23] Bhadeshia H.K.D.H., Diffusion controlled growth of ferrite plates in plain carbon steels, Materials Science and Technology, 1985, 1, 497-504
    [24] Zener C., Theory of growth of spherical precipitates from solid solution, Journal of Applied Physics, 1949, 20, 950-953
    [25] Parker S.V., Modelling of phase transformation in hot rolled steels, PHD dissertation, London, Cambridge, 1997, 1-208
    [26] 戚正风, 金属中的扩散与相变, 科学出版社, 1995, 1-235
    [27] Trivedi R., Pound G.M., Effect of concentration-dependent diffusion coefficient on the migration of interphase boundaries, Journal of Applied Physics, 1967, 38,3569-3576
    [28] 徐祖耀, 李麟, 材料热力学, 科学出版社, 2005, 1-308
    [29] Aaronson H.I., Domain H.A., Pound G.M., Thermodynamics of the austenite proeutectoid ferrite transformation I, Fe-C alloys, Transactions of The Metallurgical Society AIME, 1966, 236, 753-767
    [30] Shiflet G.J., Bradley J.R., Aaronson H.I., A re-examination of the thermodynamics of the proeutectoid ferrite transformation in Fe-C alloys, Metallurgical Transactions A, 1978, 9A, 999-1008
    [31] Hsu T.Y., Mou Y.W., Thermodynamics of the bainitic transformation, Acta Metallurgica, 1984, 32, 1469-1481
    [32] Hillert M., Staffansson L.I., The regular solution model for stoichiometric phase and ironic melts, Acta Chemica Scandinavica, 1970, 24, 3618-3626
    [33] Kaufman L., Clougherty E.V., Weiss R.J., The lattice stability of metals-III. Iron, Acta Metallurgica, 1963, 11, 323-335
    [34] Orr R.L., Chipman J., Thermodynamic functions of iron, Transactions of The Metallurgical Society AIME, 1967, 239, 630-633
    [35] Hsu T.Y., HongBing C., Shoufu L., On calculation of ms and on driving force for martensitic transformations in Fe-C, Journal of Materials Science, 1983, 18, 3206-3212
    [36] Aaronson H.I., Domian H.A., Pound G.M., Thermodynamics of the austenite proeutectoid ferrite transformation II, Fe-C-X alloys, Transactions of The Metallurgical Society AIME, 1966, 236, 768-781
    [37] Lobo J.A., Geiger G.H., Thermodynamics and solubility of carbon in ferrite and ferritic Fe-Mo alloys, Metallurgical Transactions A, 1976, 7A, 1347-1357
    [38] Bhadeshia H.K.D.H., Carbon-carbon interactions in iron, Journal of Materials Science, 2004, 39, 3949-3955
    [39] Zener C., Impact of magnetism upon metallurgy, Transactions of The Metallurgical Society AIME, 1955, 619-630
    [40] Agren J., A revised expression for the diffusivity of carbon in binary Fe-C austenite, Scripta Metallurgica, 1986, 20, 1507-1510
    [41] Agren J., A simplified treatment of the transition from diffusion controlled to diffusionless growth, Acta Metallurgica, 1989, 37, 181-189
    [42] Bhadeshia H.K.D.H., Diffusion of carbon in austenite, Metal Science, 1981, 15, 477-479
    [43] Babu S.S., Bhadeshia, H.K.D.H. Diffusion of carbon in substitutionally alloyed austenite, Journal of materials science Letters, 1995, 14, 314-316
    [44] Siller R.H., Mclellan R.B., The variation with composition of the diffusivity of carbon in austenite, Transactions of The Metallurgical Society AIME, 1969, 245, 697-700
    [45] Siller R.H., Mclellan R.B., The application of the first order mixing statistics to the variation of the diffusivity of carbon in austenite, Metallurgical Transactions, 1970, 1, 985-988
    [46] Bhadeshia H.K.D.H., Stress-induced transformation to bainite in a Fe-Cr-Mo-C pressure vessel steel, Materials Science and Technology, 1991, 7, 686-698
    [47] Hillert M.. The growth of ferrite, bainite and martensite. 1960, Swedish institute for Metal Research
    [48] Goodenow R.H., Matas S.J., Hehemann R.F., Growth kinetics and the mechanism of the bainite reaction, Trans. AIMME, 1963, 651-658
    [49] Purdy G.R., Weichert D.H., Kirkaldy J.S., The growth of proeutectoid ferrite in tenary iron-carbon-manganese austenite, Transactions of The Metallurgical Society AIME, 1964, 230, 1025-1034
    [50] Purdy G.R., Hillert M., A solute drag treatment of the effect of alloying elements on the rate of the proeutectoid ferrite transformation in steels, Acta Metallurgica et Materialia, 1995, 43, 3763-3774
    [51] Hultgren A., Isothermal transformation of austenite, Transactions of the A.S.M., 1947, 39, 915-1005
    [52] Speer J.G., Matlock D.K., Cooman B.C.D., et al., Carbon partitioning into austenite after matensite transformation, Acta Materialia, 2003, 51, 2611-2622
    [53] Hillert M., Agren J., On the definitions of paraequilibrium and orthoequilibrium, Scripta Materialia, 2004, 50, 697-699
    [54] Zwaag S.V.D., Wang J., A discussion on the atomic mechanism of the bainitic reaction in trip steels, Scripta Materialia, 2002, 47, 169-173
    [55] Bhadeshia H.K.D.H., Thermodynamic analysis of isothermal transformation diagrams, Metal Science, 1982, 16, 159-165
    [56] Hillert M., Hoglund L., Agren J., Diffusion-controlled lengthening of widmanstatten plates, Acta Materialia, 2003, 51, 2089-2095
    [57] Bhadeshia H.K.D.H., Lord M., Svensson L.E., Silicon-rich bainitic steel welds, In Proceedings of International Conference: Joining and Welding Solutions to Industrial Problems, Osaka, 2003, 43-52
    [58] Garcia-Mateo C., Caballero F.G., Bhadeshia H.K.D.H., Development of hard bainite, ISIJ International, 2003, 43, 1238-1243
    [59] Garcia-Mateo C., Caballero F.G., Bhadeshia H.K.D.H., Low temperature bainite, Journal De Physique IV, 2003, 112, 285-288
    [60] Offerman S.E., Dijk N.H.V., Sietsma J., et al., Grain nucleation and growth during phase transformations, Science, 2002, 298, 1003-1005
    [61] Cahn J.W., The impurity-drag effect in grain boundary motion, Acta Metallurgica, 1962, 10, 780-798
    [62] Hillert M., Sundman B., A treatment of the solute drag on moving grain boundaries and phase interfaces in binary alloys, Acta Metallurgica, 1976, 24, 731-743
    [63] Hillert M., Solute drag in grain boundary migration and phase transformation, Acta Materialia, 2004, 52, 5289-5293
    [64] Brechet Y.J.M., Purdy G.R., On solute drag in the massive transformation, Scripta Metallurgica, 1992, 27, 1753-1757
    [65] Wu K.M., Kagayama M., Enomoto M., Kinetics of ferrite transformation in an Fe-0.28mass%C-3mass%Mo alloy, Materials Science and Engineering, 2003, A343, 143-150
    [66] Aaronson H.I., Reynolds W.T.J., Purdy G.R., Coupled solute drag effects on ferrite formation in Fe-C-X systems, Metallurgical and Materials Transactions A, 2004, 35, 1187-1210
    [67] Ma N., Dregia S.A., Wang Y., Solute segregation transition and drag force on grain boundaries, Acta Materialia, 2003, 51, 3687-3700
    [68] Hillert M., Schalin M., Modeling of solute drag in the massive phase transformation, Acta Materialia, 2000, 2000, 461-468
    [69] Hillert M., Odqvist J., Agren J., Comparison between solute drag and dissipation of gibbs energy by diffusion, Scripta Materialia, 2001, 45, 221-227
    [70] Oi K., Lux C., Purdy G.R., A study of the influence of Mn and Ni on the kinetics of the proeutectoid ferrite reaction in steels, Acta Materialia, 2000, 48, 2147-2155
    [71] Lee K.J., Lee J.K., Modelling of γ/α transformation in niobium containing microalloyed steels, Scripta Materialia, 1999, 40, 831-836
    [72] Hackenberg R.E., Shiflet G.J., A microanalysis study of the bainite reaction at the bay in Fe-C-Mo, Acta Materialia, 2003, 51, 2131-2147
    [73] Enomoto M., Influence of solute drag on the growth of proeutectoid ferrite in Fe-C-Mn alloy, Acta Materialia, 1999, 47, 3533-3540
    [1] Bhadeshia H.K.D.H., Waugh A.R., An atom-probe study of bainite, In Proceeding of the International Solid-Solid Phase Transformations Conference, 1981, 993-998
    [2] Bhadeshia H.K.D.H., Waugh A.R., Bainite: An atom-probe study of the incomplete reaction phenomenon, Acta Metallurgica, 1982, 30, 775-784
    [3] Bhadeshia H.K.D.H., The theory and significance of retained austenite in steels, PHD dissertation, London, Cambridge, 1979, 1-127
    [4] Bhadeshia H.K.D.H., Edmonds D.V., The mechanism of bainite formation in steels, Acta Metallurgica, 1980, 28, 1265-1273
    [5] Khan S.K., Bhadeshia H.K.D.H., The bainite transformation in chemically heterogeneous 300M high-strength steel, Metallurgical Transactions A, 1990, 21A, 859-875
    [6] Peet M., Babu S.S., Miller M.K., et al., Three-dimensional atom probe analysis of carbon distribution in low-temperature bainite, Scripta Materialia, 2004, 50, 1277-1281
    [7] Kang M.K., Sun J.L., Yang Q.M., High-temperature transmission electron microscopy in situ study of lower bainite carbide precipitation, Metallurgical Transactions A, 1990, 21A, 853-858
    [8] Bhadeshia H.K.D.H., Bainite in steels, London, 2001, 1-454
    [9] Bhadeshia H.K.D.H., Diffusional transformations: A theory for the formation of superledges, Phys. stat. sol., 1982, 69, 745-750
    [10] Bhadeshia H.K.D.H., Some phase transformations in steels, Materials Science Technology, 1999, 15, 22-29
    [11] Bhadeshia H.K.D.H., The bainite transformation: Unresolved issues, Material Science and Engineering A, 1999, 273-275, 58-66
    [12] Oka M., Okamoto H., Ishida K., Transformation of lower bainite in hypereutectoid steels, Metallurgical Transactions A, 1990, 21A, 845-851
    [13] Ohmori Y., Crystallographic aspects of bainite transformation in steels, Scripta Materialia, 2002, 47, 201-206
    [14] Sandvik B.P.J., The bainite reaction in Fe-Si-C alloys: The primary stage, Metallurgical Transactions A, 1982, 13A, 777-787
    [15] Sandvik B.P.J., The bainite reaction in Fe-Si-C alloys: The secondary stage, Metallurgical Transactions A, 1982, 13A, 789-800
    [16] Moritani T., Miyajima N., Furuhara T., et al., Comparison of interphase boundary structure between bainite and martensite in steel, Scripta Materialia, 2002, 47, 193-199
    [17] Bhadeshia H.K.D.H., A rationalisation of shear transformations in steels, Acta Metallurgica, 1981, 29, 1117-1130
    [18] Hase K., Garcia-Mateo C., Bhadeshia H.K.D.H., Bainite formation influenced by large stress, Materials Science and Technology, 2004, 20, 1499-1505
    [19] Garcia-Mateo C., Bhadeshia H.K.D.H., Nucleation theory for high-carbon bainite, Materials Science and Engineering A, 2004, 378A, 289-292
    [20] Bhadeshia H.K.D.H., Edmonds D.V., Bainite in silicon steels: New composition-property approach part I, Metal Science, 1983, 17, 411-419
    [21] Bhadeshia H.K.D.H., Edmonds D.V., Bainite in silicon steels: New composition-property approach part II, Metal Science, 1983, 17, 420-425
    [22] Garcia-Mateo C., Caballero F.G., Bhadeshia H.K.D.H., Acceleration of low temperature bainite, ISIJ international, 2003, 43, 1821-1825
    [23] Garcia-Mateo C., Caballero F.G., Bhadeshia H.K.D.H., Development of hard bainite, ISIJ International, 2003, 43, 1238-1243
    [24] Garcia-Mateo C., Caballero F.G., Bhadeshia H.K.D.H., Low temperature bainite, Journal De Physique IV, 2003, 112, 285-288
    [25] Yokota T., Garcia-Mateo C., Bhadeshia H.K.D.H., Formation of nanostructured steels by phase transformation, Scripta Materialia, 2004, 51, 767-770
    [26] Caballero F.G., Bhadeshia H.K.D.H., Mawella K.J.A., et al., Design of novel high-strength bainitic steels: Part I, Materials Science and Technology, 2001, 17, 512-516
    [27] Caballero F.G., Bhadeshia H.K.D.H., Mawella K.J.A., et al., Design of novel high-strength bainitic steels: Part II, Materials Science and Technology, 2001, 17, 517-522
    [28] Caballero F.G., Bhadeshia H.K.D.H., Very strong low temperature bainite, Materials Science and Technology, 2002, 18, 279-284
    [29] Takahashi M., Recent progress: kinetics of the bainite transformation in steels, Solid state and Materials Science, 2004, 8, 213-217
    [30] Bhadeshia H.K.D.H., Bainite: Overall transformation kinetics, Journal De Physique, 1982, C4, 443-448
    [31] Rees G.I., Bhadeshia H.K.D.H., Bainite transformation kinetics part 1 modified model, Materials Science and Technology, 1992, 8, 985-993
    [32] Rees G.I., Bhadeshia H.K.D.H., Bainite transformation kinetics part 2 non-uniform distribution of carbon, Materials Science and Technology, 1992, 8, 994-996
    [33] Tszeng T.C., Autocatalysis in bainite transformations, Materials Science and Engineering A, 2000, A293, 185-190
    [34] Matsuda H., Bhadeshia H.K.D.H., Kinetics of the bainite transformation, Proceedings of the Royal Society of London, 2004, A460, 1710-1722
    [35] Bhadeshia H.K.D.H., Lord M., Svensson L.E., Silicon-rich bainitic steel welds, In Proceedings of International Conference: Joining and Welding Solutions to Industrial Problems, Osaka, 2003, 43-52
    [36] Hsu T.Y., Mou Y.W., Thermodynamics of the bainitic transformation, Acta Metallurgica, 1984, 32, 1469-1481
    [37] Aaronson H.I., Domain H.A., Pound G.M., Thermodynamics of the austenite proeutectoid ferrite transformation I, Fe-C alloys, Transactions of The Metallurgical Society AIME, 1966, 236, 753-767
    [38] Shiflet G.J., Bradley J.R., Aaronson H.I., A re-examination of the thermodynamics of the proeutectoid ferrite transformation in Fe-C alloys, Metallurgical Transactions A, 1978, 9A, 999-1008
    [1] Liu S.K., Zhang J., The influence of the si and mn concentration on the kinetics of the bainite transformation in Fe-C-Si-Mn alloys, Metallurgical Transactions A, 1990, 21A, 1517-1525
    [2] Hackenberg R.E., Shiflet G.J., A microanalysis study of the bainite reaction at the bay in Fe-C-Mo, Acta Materialia, 2003, 51, 2131-2147
    [3] Bhadeshia H.K.D.H., Lord M., Svensson L.E., Silicon-rich bainitic steel welds, In Proceedings of International Conference: Joining and Welding Solutions to Industrial Problems, Osaka, 2003, 43-52
    [4] Quidort D., Brechet Y., The role of carbon on the kinetics of bainite transformation in steels, Scripta Materialia, 2002, 47, 151-156
    [5] Rao M.M., Winchell P.G., Growth rate of bainite from low-carbon iron-nickel-carbon austenite, Transactions of The Metallurgical Society AIME, 1967, 239, 956-965
    [6] Fourlaris G., Baker A.J., Papadimitriou G.D., Effect of copper additions on the isothermal bainitic transformation in hypereutectoid copper and copper-nickel steels, Acta Materialia, 1996, 44, 4791-4805
    [7] DeArdo A.J., Niobium in modern steels, Internation materials review, 2003, 48, 371-402
    [8] Medina S.F., The influence of niobium on the static recrystallization of hot deformed austenite and on strain induced precipitation kinetics, Scripta Metallurgica, 1995, 32, 43-48
    [9] Takahashi M., Bhadeshia H.K.D.H., Model for the transition from upper to lower bainite, Materials Science and Technology, 1990, 6, 592-603
    [10] 张丕军. 800mpa 级针状铁素体马氏体双相钢厚板的研制. 2006 博士学位论文, 东北大学: 1-150
    [11] Bhadeshia H.K.D.H., Bainite in steels, London, 2001, 1-454
    [12] Bodnar R.L., Ohhashi T., Jaffee R.I., Effects of mn, si, and purity on the designof 3.5NiCrMoV, 1CrMoV, and 2.25Cr-1Mo bainite alloy steels, Metallurgical Transactions A, 1989, 20A, 1445-1460
    [13] Zhao J., Continuous cooling transformations in steels, Materials Science and Technology, 1992, 8, 997-1003
    [14] Zhao Z., Guan X., Wan C., et al., A re-examination of the b0 and bs temperature of steel, Materials and Design, 2000, 21, 207-209
    [15] Zhao Z., Liu C., A new empirical formula for the bainite upper temperature limit of steel, Journal of Materials Science, 2001, 36, 5045-5056
    [16] Andrews K.W., Empirical formula for calculation of some transformation temperatures, Journal of Iron and Steel Institute, 1965, 203, 721-727
    [17] Fang H.S., Yang J.B., Yang Z.G., et al., The mechanism of bainite transformation in steels, Scripta Materialia, 2002, 47, 157-162
    [18] Aaronson H.I., Spanos G., Masamura R.A., et al., Sympathetic nucleation: An overview, Materials Science and Engineering, 1995, B32, 107-123
    [19] Kinsman K.R., Aaronson H.I., The inverse bainite reaction in hypereutectoid fe-c alloys, Metallurgical Transactions, 1970, 1, 1485-1488
    [20] Lee H.J., Spanos G., Shiflet G.J., et al., Mechanisms of the bainite (non-lamellar eutectoid) reaction and a fundamental distinction between the bainite and pearlite (lamellar eutectoid) reactions, Acta Metallurgica, 1988, 36, 1129-1140