Fe-Mn-Si形状记忆合金的应力自适应特性和力学行为
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Fe-Mn-Si形状记忆合金在受到外部机械力作用时,通过应力诱发马氏体相变及其贡献的附加变形来适应外界宏观应力的变化,这种特性称为应力自适应特性。
     Fe-Mn-Si形状记忆合金的应力自适应特性与力学性能之间具有紧密的关系。研究发现,虽然该合金的硬度较低,但在一定的条件下却具有良好的耐磨性、良好的抗应变、应力疲劳特性,主要原因是该合金具有应力自适应特性。出现这种特性的主要原因是它具有的不全位错的可逆运动和相变伪弹性。应力自适应特性受以下因素的影响:(1)应力、应变值的大小;(2)温度的高低;(3)合金本身各种成分的含量及其组合。
     通过滑动摩擦磨损试验和应变疲劳试验研究了4种不同成分的Fe-Mn-Si形状记忆合金的耐磨性及其应变疲劳特性;使用该合金制造了某汽车变速器中的惰轮并进行了复杂应力作用下的疲劳试验;设计制造了压力试件并进行了压缩试验;借助X射线衍射定性定量分析(XRD)、电子扫描电镜(SEM)和透射电镜(TEM)观察等手段研究了该合金的摩擦磨损和疲劳过程中的相变机制及其微观机理。
     研究发现,干摩擦时,Fe-Mn-Si形状记忆合金具有一般奥氏体材料的摩擦磨损特性,磨损机理为粘着磨损;油润滑时,该合金具有良好的摩擦磨损特性,磨损机理为磨粒磨损,其磨损量不随着载荷的增加而增大,而是存在一个较佳载荷,在这个载荷下,磨损量最小。
     Fe-Mn-Si形状记忆合金具有良好的应变疲劳特性,在应变幅值±3%时的弯曲循环疲劳寿命可达1302次,远远高于不锈钢在相同条件下的80次;在应变幅值±1.5%时的拉压循环疲劳寿命达到1300次,远远高于U71Mn重轨钢在相同条件下的120次。该合金弯曲疲劳断裂后的ε马氏体含量几乎占到100%,断口类型为准解理断裂。
     XRD分析、SEM和TEM观察表明,油润滑磨损、弯曲循环以及拉压循环时该合金的应力自适应特性导致出现了γ→ε马氏体正逆相变,降低了应力集中,抑制了塑性滑移变形,降低了微裂纹的形成和扩展速度从而提高了耐磨性和疲劳寿命等力学性能。
     Fe-Mn-Si形状记忆合金具有较好的机械加工性,用该材料制造了某汽车变速器中的惰轮并进行了复杂应力作用下的疲劳试验证明,该惰轮的疲劳寿命是同条件下1Cr18Ni9Ti奥氏体不锈钢惰轮的11倍;对用该合金制造的试件的压缩试验及计算证明,当温度在-50℃~+50℃之间变化时,只要在钢轨中按照3%的比例焊接Fe-Mn-Si形状记忆合金,就可使钢轨中的温度应力降低11%,再一次证明了这种合金的应力自适应特性是其具有良好力学性能的根本原因。
Fe-Mn-Si shape memory alloy (Fe-Mn-Si SMA) occurs martensitic transformation and transformation distortion in order to adapt change of macroscopical force in the condition of exerting outside mechanical stress. This characteristic is called the stress self-accommodation characteristic.
     The stress self-accommodation characteristic of Fe-Mn-Si SMA is close relative to mechanics property. It’s found that the Fe-Mn-Si SMA possess good wear-resisting performance, anti-strain and anti-stress fatigue characteristic in despite of its lower rigidity in some condition, because of having stress self-accommodation characteristic.The main reason for appearing this characteristic is that it has the partial dislocation reversible movement and transformation pseudoelasticity. The factors effected the stress self-accommodation characteristic are: (1) the value of stress and strain;(2)the surface temperature value ;(3) ingredient content and proportion component of Fe-Mn-Si SMA.
     The wear-resisting performance and the strain fatigue characteristic in four kinds of Fe-Mn-Si SMA with different components are investigated by sliding friction test and strain fatigue test; Some automobile transmission gearbox idler is made using the alloy and carried on fatigue tests under the complex stress condition; Pressure specimen designed and manufactured is carried on compression test ; The transformation and microcosmic mechanism of the SMA during the processes of wear abrasion and strain fatigue are respectively studied by X-ray diffraction(XRD),scanning electron microscope(SEM) and transmission electron microscopy (TEM) etc.
     It’s found that the Fe-Mn-Si SMA has the friction and wear characteristic of the common austenitic metal material in the dry friction, and the wear mechanism is adhesive wear; but it has good friction and wear characteristic and the wear mechanism is abrasive wear in lubrication. Moreover, Fe-Mn-Si SMA wear mass losses does not increase along with increasing the load ,while there is a better load that in which, the wear mass losses is the least in lubrication.
     Fe-Mn-Si SMA shows good strain fatigue resistance with cyclic bending fatigue life of 1302 times under the strain amplitude of±3% much better than stainless steel with 80 times in the same test conditions. And its cyclic tension-compression fatigue life is 1300 times under the strain amplitude of±1.5%, also much better than U71Mn heavy rail steel with 120 times. The bending-fatigue fractured section of Fe-Mn-Si SMA specimen possesses nearly 100%εmartensite with quasi-cleavage rupture type.
     It is indicated that from the analysis of XDR, the observations of SEM and TEM, in the conditions of lubrication, bending and tensile compression cycle, the stress self-accommodation characteristic of the alloy results in the appearance ofγ→εmartensitic positive and reverse transformation, reduces the stress concentration,suppresses the plastic slipping deformation and reduces the rate of microcrack's formation and expansion.Consequently it improves the mechanics property of the wear-resisting performance and fatigue life.
     The Fe-Mn-Si SMA possess better machining property.According to the fatigue test of some automobile transmission gearbox idler made of this material under the complex stress condition , it is proved that, in the same condition, the fatigue life of this idler is 10 times more than that of 1Cr18Ni9Ti austenitic stainless steel idler; The compression test and calculation to specimen made of the alloy proves that, when the temperature changes between -50℃and +50℃, the temperature stress in rail can be reduced 11% as long as welding Fe-Mn-Si SMA according to 3% proportion in rail, so it is proved again, the stress self-accommodation characteristic of the alloy is the basic reason for its good mechanics property.
引文
[1] S.Miyazaki, K.Otsuka. Development of Shape Memory Alloys. ISIJ International, 1989,29(5):353-377
    [2] C M Wayman. Shape Memory Effect Related to Martensitic Transformations and Observation in β-brass and Fe3Pt. Scripta Metall, 1981,5(6):489-492
    [3] C M Wayman. On Memory Effect Related to Martensitic Transformations and Observation in β-brass and Fe3Pt. Scripta Metall.. 1971,5(6): 489-492
    [4] D P Dunne, C M Wayman. Effect of Austenite Ordering on the Martensite Transformation in Fe-Pt Alloys Near the Composition Fe3Pt-1,2. Metall. Trans.. 1973,4(1):137-145, 147-152
    [5] 赵连城,蔡伟,郑玉峰.合金的形状记忆效应与超弹性.北京:国防工业出版社,2002.18-36
    [6] E N .Bondaryev, C M Wayman. Some Stress-Strain-Temperature Relationshi -ps for Shape Memory Alloys. Metall. Trans.. 1988,19A: 2047-2413
    [7] Y Sato, K Tanaka. Estimation of EnErgy Dissipation in Alloys due to Stress-induced Martensitic Transformation. Res. Mechanica. 1988,23:381-393
    [8] M Nishida, C M Wayman, T Honma. Precipitation Process in Near Eqniatomoc TiNi Shape Memory Alloy. Metall. Trans.. 1989,17A:105-115
    [9] L McD Schetky. The Industrial Applications of Shape Memory Alloys in North America. Materials. Proc. SMM’99, Materials Science Forum. 2000,327-328: 9-16
    [10] M Asai, Y Suzuki. Applications of Shape Memory Alloys In Japan. Proc. SMM’99, Materials Science Forum. 2000,327-328:17-22
    [11] B Bundara, M Tokuda, M Ye. SMA-Present State and Perspective for New Applications. Materials. Proc. SMM’99, Materials Science Forum. 2000,327 -328: 43-46
    [12] R R Lonaitis. Directly Acting Pipeline SM Devices for Nuclear Power Plants. Proc. SMM’99, Materials Science Forum. 2000,327-328: 51-54
    [13] S.Kajiwara. Characteristic Feature of Shape Memory Effect and Related Transformation Behavior in Fe-Based Alloys. Materials Science and Engineering, 1999,A273-275:67-88
    [14] Z G Wei, R Sandstrom, S miyazaki. Shape-memory Materials and Hybrid Composites for Smart Systems, Part I Shape-memory materials. Kluwer Academic Publishers,1998: 3743-3761
    [15] 雷竹芳. 铁基形状记忆合金及其应用. 材料开发与应用, 2000.4,139(6): 1003-1545
    [16] A Sato, E Chisima, K Soma, et al. Shape Memory Effect in γ?ε Trans -formation in Fe-30Mn-1Si Alloys Single Crystals. Acta Metall, 1982, 30: 1177-1183
    [17] A Sato, E Chisima, Y Yanaji, et al. Orientation and Composition Dependencies of Shape Memory Effect in Fe-Mn-Si Alloys. Acta Metall., 1984,32:539-547
    [18] H Otsuka, H Yanada, H Tanahashi, et al. Shape Memory Effect in Fe-Mn-Si-Cr-Ni Polycrystalline Alloys. Mater. Sci.Forum. 1990,56-58:655-660
    [19] H Inagaki. Shape Memory Effect of Fe-14Mn-6Si-9Cr-6Ni Alloy Polycrystals. Z.Metallkd. 1992, 83(2):90-96
    
    [20] 李宁,文玉华,席华萍,等. 不同淬火态 Fe-Mn-Si-Cr-Ni 形状记忆合金热机训练效果的研究. 功能材料,2000,31(6):601-602
    [21] 董治中, 刘文西, 陈金铭,等. NbC 对 FeMnSiCrNi 合金组织与记忆性能的影响. 稀有金属材料与工程,2003,32(11):927-929
    [22] V V Bliznuk, V G Gavriljuk, B D Shanina, et al. Effect of Nitrogen and Carbon on Electron Exchange and Shape memory in a Fe-Mn-Si Base Shape Memory Alloy. Acta Materialia, 2003,51:6095–6103
    [23] Huang Xing, Lei Yang, Huang Bilong, et al. Effect of Rare-earth Addition on the Shape Memory Behavior of a FeMnSiCr Alloy. Materials Letters, 2003, 57:2787–2791
    [24] Baruj.A, Kikuchi.T, Kajiwara.S, et al. Improved Shape Memory Properties and Internal Structures in Fe-Mn-Si-based Alloys Containing Nb and C. Journal De Physique. IV : JP, 2003, 112I: 373-376
    [25] Huang Wei-Gang, Lu Zhen. Microstructure and Properties of Fe-C-Mn-Si-Cr-Ni-Ti-RE Shape Memory Alloy. Heat Treatment of Metals, 2005,30(5): 46-49
    [26] Wen Y H., Yan M, Li N. Remarkable Improvement of Shape Memory Effect in Fe-Mn-Si-Cr-Ni-C Alloy by Ageing with Deformation. Scripta Materialia, 2004,50:835–838
    [27] Sato A, Soma K, Chishima E, et al. Shape Memory Alloy and Mechanical Behavior of Fe-30Mn-1Si Alloy Single Crystal. Journal De Physique, 1982,C4:797-802
    [28] Murakami M, Otsuka H, Susuki H G, et al. Complete Shape Memory Effect in Polycrystalline Fe-Mn-Si alloys. Proc.Inter.Conf. on Martensitic Trans., Nara(ICOMAT-86), (Jap Inst. Met.), 1986:985-987
    [29] 文凡. 铁基形状记忆合金及其应用. 金属功能材料,1997:186
    [30] 徐祖耀. 马氏体相变与马氏体.北京:科学出版社.1999.133
    [31] 刘蓉生.形状记忆合金的应用研究现状.机械,1997,24(2):48-50
    [32] 孙国光,刘文西.Fe-Mn-Si 基形状记忆合金及其应用. 天津城市建设学院学报, 2001,7(4):259-261
    [33] 富莉. 铁基形状记忆合金的开发与应用. 国外金属材料,1991(3):4-11
    [34] 林成新,谷南驹,赵连城. Fe-17Mn-5Si-10Cr-5Ni 形状记忆合金管接头性能分析. 材料工程,2001(11):21-24
    [35] 林成新,谷南驹,刘庆锁,等. Fe-Mn-Si 形状记忆合金低温松弛机理. 金属学报,2002(8):825-828
    [36] 温春生. FeMnSi形状记忆合金的低温松弛及智能特性: [硕士学位论文].天津: 河北工业大学,2002
    [37] 沈英明. 铁基形状记忆合金防松螺母的研究. 同济大学学报, 2000,9(12):1443-1446
    [38] 沈英明,杜彦良,李俊良,等. 状记忆合金螺母的结构设计. 石家庄铁道学院学报, 2001,14(4):5-7
    [39] 沈英明,李俊良,杜彦良.铁基形状记忆合金防松螺母加工工艺研究.石家庄铁道学院学报, 2003,16(3):34-37
    [40] Wakatsuki.Teppei, Watanabe. Yoshimi, Okada. Hiroshi. Development of Fe-Mn-Si-Cr shape memory alloy fiber reinforced plaster-based smart composites. In: Materials Science Forum. Switzerland: Trans Tech Publications Ltd, 2005:2063-2066。
    [41] N.Bergeon, G.Guenin and C.Esnouf. Microstructural analysis of the Stress-induced ε Martensite in a Fe-Mn-Si-Cr-Ni Shape Memory Alloy: Part I—Calculated description of the microstructure. MaterialsScience and Engineering, 1998,A242: 77-86
    [42] A Sato, T Mori. Development of a Shape Memory Alloy Fe-Mn-Si. Materials Science and Engineering. 1991,A416:179-204
    [43] 林成新. Fe-Mn-Si 形状记忆合金的应力诱发马氏体相变和应变恢复特性:[ 博士学位论文]. 哈尔滨: 哈尔滨工业大学,2002
    [44] J.H.Yang and C.Wayman. Self-Accommodation and Shape Memory Mechanism of ε-MartensiteⅡ : Thoretical Considerations. Mater. Char.. 1992, 28: 37-47
    [45] J.H.Yang and C.Wayman. On Secondary Variants Formed at Intersections of ε Martensite Variants. Acta Metall.. 1992,40:2011-2023
    [46] Maki T and Tsuzaki K. Transformation Behavior of ε-Martensite in Fe-Mn-Si. Proc.Inter.Conf. on Martensitic Trans. (ICOMAT-92) ed. C M Wayman and J Perkins, Monterey. 1992,33:263-270
    [47] Y.Hoshino, S.Nakamura, N.Ishikaqa, ect. In-situ Observation of Partial Dislocation Motion During γ→ε Transformation in a Fe-Mn-Si Shape Memory Alloy. Mater. Trans. JIM. 1992,33(3): 253-262
    [48] 王小祥,赵连城. Fe-Mn-Si-Ni-Co 合金中应力诱发 ε 马氏体的稳定化及其对形状记忆效应的影响. 功能材料,1994,25(5):440-445
    [49] Li Jian, Wayman C M. On the Mechanism of the Shape Memory Effect Associated with γ(fcc) to ε(hcp) Martensitic Transformation in FeMnSi Based Alloys. Scripta Metall. Mater, 1992, 27(2):279
    [50] 邵潭华, 严利民.不锈铁基形状记忆合金记忆机理的研究.功能材料,1994,25(3):219
    [51] T Maki. Ferrous Shape Memory Alloys. in Shape Memory Materials, Ed. K.Otsuka and C.W.Wayman.. Cambridge University Press. 1998: 117-132
    [52] 李建忱,吕晓霞,蒋青,等. 铁基形状记忆合金的研究进展与展望.功能材料,2000,31(1):9-11
    [53] H.Otsuka, H.Yamada, T.Maruyama, H.Tanahashi, S.Matsuda and M.Murakami. Effect of Alloying Addition on Fe-Mn-Si Shape Memory Alloys. ISIJ Int.. 1990,30(8): 674-679
    [54] 徐祖耀. 形状记忆材料.上海:上海交通大学出版社,2000. 195-248,341-384
    [55] Rong L J, Ping D H, Li Y Y, et al. Improvement of Shape Memory Effect in Fe-Mn-Si Alloy by Cr and Ni Addition. Scripta Metall., 1995,32(12): 1905- 1909
    [56] 戎利建,平德海,李依依,等. Fe-Mn-Si-Cr-Ni 记忆合金形变组织的 TEM 研究. 金属学报,1995,31A(9):300-304
    [57] Tzuzaki K, Natsume Y, Kurokaw Y, et al. Improvement of the Shape Memory Effect in Fe-Mn-Si Alloys by the Addition of Carbon. Scripta Metall, 1992,27(4):471-473
    [58] 戴品强, 刘声恒. 含碳 Fe-Mn-Si 记忆合金的记忆性能研究. 功能材料,1998,29(5):499-502
    [59] Wen Y H, Yan M, Li N. Effects of carbon addition and aging on the shape memory effect of Fe-Mn-Si-Cr-Ni alloys. Scripta Materialia, 2004,50:441-444
    [60] Ariapour A, Yakubtsov I, Perovic D D. Shape Memory Effect and Strengthening Mechanism in a Nb and D Doped Fe-Mn-Si-based alloy. Metall. Trans., 2001,32A(7):1621
    [61] 黄维刚, 陆 震. Fe-C-Mn-Si-Cr-Ni-Ti-RE 形状记忆合金的组织与性能. 金属热处理,2005,30(5):46-49
    [62] Kubo.Hiroshi, Nakamura.Kimio, Farjami, Susan, et al. Characterization of Fe-Mn-Si-Cr shape memory alloys containing VN precipitates. Materials Science and Engineering A, 2004,378: 343-348
    [63] Baruj A, Kikuchi T, Kajiwara S, et al. Improved shape memory properties and internal structures in Fe-Mn-Si-based alloys containing Nb and C. Journal De Physique. IV: JP, 2003.10, 112I: 373-376
    [64] Baruj A, Kikuchi T, Kajiwara S. TEM Observation of the Internal Structures in NbC Containing Fe-Mn-Si-based Shape Memory Alloys Subjected to pre-deformation above Room Temperature. Materials Science and Engineering A, 2004,378: 337-342
    [65] 董治中, 刘文西,陈金铭. NbC 对 FeMnSiCrNi 合金组织与记忆性能的影响. 稀有金属材料与工程, 2003,32(11):927-929
    [66] Sawaguchi Takahiro,Kikuchi Takehiko,Ogawa Kazuyuki, et al. Internal friction of Fe-Mn-Si-based shape memory alloys containing Nb and C and their application as a seismic damping material. Key Engineering Materials, 2006, 319: 53-58
    [67] Zhao Chengxu, Liang Gongyin, Liao Chenglao, et al. Infulence of Cerium, Titanium and Nitrogen on Shape Memory Effect of Fe-Mn-Si-Cr-Ni Alloys. Scripta Materials, 1998,38(7):1163-1168
    [68] Xing Huang, Yang Lei, Bilong Huang, et al. Effect of Rare-earth Addition on the Shape Memory behavior of a FeMnSiCr Alloy. Materials Letters, 2003,57:2787-2791
    [69] 郭正洪,戎咏华,陈世朴,等. Fe-Mn-Si 系形状记忆合金中热诱发 ε 马氏体的形成机理. 上海交通大学学报,1998,32(2):41-44
    [70] Saburi T. Ti-Ni Shape Memory Alloys. Shape Memory Materials. Cambridge University Press, 1998:77
    [71] M Murakami, H Otsuka, S Matasuda. Improvement in Shape Memory Effect for Fe-Mn-Si Alloys.. Transactions ISIJ, 1987,27B(7):89-92
    [72] K Tszaki, Y Murakami, Y Natsume, et al. Role of Pre-strain of Austensite in the Improvement of Shape Memory Effect in an Fe-33Mn-6Si Alloy. Adv. Mater. 93’, V/B: Shape Memory Materials and Hydrides. Edited by Otsuka, et al. Trans. Mater. Soc. Jpn, 1994,18B(9): 961-964
    [73] H.Otsuka, M.Murkami and S.Matsuda. Improvement of the Shape Memory Effect of Fe-Mn-Si Alloys by Thermomechanical Treatment. Proc. Of the MRS International Conference on Advanced Materials, Tokyo, Japan,1988, published by MRS. 1989,9: 451-456
    [74] Inagaki H. Transmission Electron Microscopy of the Shape Memory Phenomena in Fe-14Mn-6Si-9Cr- 6Ni Alloy Polycrystals,Z Metalkd, 1992,83;97
    [75]马会娜. Fe-Mn-Si-Cr-Ni-N 合金的形状记忆效应及马氏体相变研究:[硕士学位论文]. 天津:河北工业大学,2005
    [76] 李建忱,赵明,蒋青.训练对 Fe-14Mn-6Si-9Cr-6.5Ni 合金形状记忆效应的影响. 金属热处理学报,1996,17(2):42
    [77] S.Kajiwara and K.Ogawa. Mechanism of Improvement of Shape Memory Effect by Training in Fe-Mn-Si-Based Alloys. Proc. SMM’99, Materials Science Forum. 2000,327-328: 211-214
    [78] Yang J H, Chen H, Wayman C M. Development of Fe-Based Shape Memory Alloys Associated with Face-Centered Cubic-Hexagonal Close-Packed Martensitic Transformations : Part Ⅲ. Microstructures.Metall. Trans., 1992,23A:1445.
    [79] 夏瑞东, 刘冠威, 常悦, 等. 不同预应变量 Fe30Mn6Si5Cr 形状记忆合金热机械训练效果研究. 功能材料,1997,28(6):576-579
    [80] Clayton P. Tribological behavior of a titanium-nickel alloy Wear, 1993, 162-164,202-210.
    [81] 徐桂芳. CuZnAl 形状记忆合金磨损性能研究:[博士学位论文]. 镇江:江苏理工大学,2001
    [82] 王立民. 形状记忆合金的机敏摩擦学特性研究: [博士学位论文].大连: 大连海事大学, 2003
    [83] Richman R H, Rao A S, Hodgson D E. Cavitation Erosion of Two TiNi Alloys. Wear, 1992,157:401-407
    [84] Richman R H, Rao A S, Kung D. Cavitation Erosion of NiTi Explosively Welded to Steel. Wear, 1995,181-183:80-85
    [85] 徐久军,张会臣, 王刚, 等. TiNi 系形状记忆合金两体磨粒磨损机理研究. 大连理工大学学报, 1998,38(6):724-728
    [86] 徐桂芳. 相变温度对 CuZnAl 形状记忆合金干磨性能的影响. 铸造设备研究,2001,12(6):20-23
    [87] Cheng F T, Shi P, Man H C. Correlation of Cavitation Erosion Resistance with Indentation -derived Properties for a NiTi Alloy. Scripta Materialia, 2001,45:1083
    [88] 黄学文,董光能,王慧. 超弹 Ni-Ti 合金的摩擦学特性研究. 摩擦学学报, 2002,22(6):409-413
    [89] J Pen?a, F J Gil, J M Guilemany. Effect of microstructure on dry sliding wear behaviour in CuZnAl shape memory alloys. Acta Materialia, 2002,50:3115-3124
    [90] 芦笙, 林萍华, 任合, 等. Cu-Al-Be 形状记忆合金湿磨粒磨损性能研究. 摩擦学学报, 2003,23(5): 445-447
    [91] 李玉祥. CuZnAl(RE)形状记忆合金滚滑动磨损性能研究: [硕士学位论文].镇江: 江苏大学,2003
    [92] 任万才, 董元源, 王成名,等. 镍钛记忆合金自补偿磨粒磨损性能研究. 摩擦学学报, 2004,24(4):378-381
    [93] 徐桂芳, 程晓农, 司乃潮,等. 不同磨损介质下铜锌铝形状记忆合金滚动磨损性能与磨损机理研究. 新技术新工艺, 2004,8:46-49
    [94] Qian L M, Sun Q P, Zhou Z R. Fretting Wear Behavior of Superelastic Nickel Titanium Shape Memory Alloy. Tribology Letters, 2005,18(4):463-475
    [95] 赵田臣, 孙宝臣, 杜彦良,等. 铁基形状记忆合金耐磨性研究. 摩擦学学报, 1998,18(3):272-274
    [96] Kenneth E, Whilkes, Peter K.Liaw. The Fatigue Behavior of Shape-Memory Alloys. JOM. 2000,52(10):45-51.
    [97] R.W.Hertzberg. Deformation and Fracture Mechanics of Engineering Materials,4th ed.(New York: J.Wiley and Sons. Inc., 1996):530-531
    [98] Tobushi. Hisaaki, Nakagawa. Kenichi, et al. Influence of Strain Ratio and Environment on Bending Fatigue Life and Form of Fracture Surface in TiNi Shape Memory Alloy Wire. Nippon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A. 2003,69(2): 420-426
    [99] Sato. H, Takezawa. K, Sato. S. Analysis of Stress-strain Curves in the Tensile Test of Cu-Zn-Al Alloy Single Crystals. Transactions of the Japan Institute of Metals. 1984,25: 332-338
    [100] Takahiro Sawaguchi, Gregor Kaustrater; Alejandro Yawny,et al. Crack Initiation and Propagation in 50.9 At.pct Ni-Ti Pseudoelastic Shape-Memory Wires in Bending-Rotation Fatigue Metallurgical and Materials Transactions2003,34A(12):2847-2860
    [101] 饶光斌,王俭秋. 应力诱发马氏体相变对 TiNi 形状记忆合金疲劳过程影响的原位试验观察. 金属学报, 2002,6;38(6):575-582
    [102] Sakamoto H, Kijima Y, Shimizu K. Fatigue and fracture characteristics of polycrystalline Cu-Al-Ni shape memory alloys. Transactions of the Japan Institute of Metals, 1982,23(10): 585-594
    [103] 郭耕三. 高速钢及其热处理.北京: 机械工业出版社, 1985. 34-46
    [104] Dauskardt R H, Duering T W, Ritchie R U. Effects of in Situ Phase Transformation on Fatigue –Crack Propagation in Titanium-Nickel Shape Memory Alloys. MRS Process Tokyo. 1989,9:243-250
    [105] H Inagaki. Z Metallkd. In-situ TEM Observation of the ε→γ Reverse Transformation in an Fe-14Mn-6Si 9Cr-6Ni Shape Memory Alloy 1992, 83(5): 304-309
    [106] Yang J H, Wayman C M. Self-Accommodation and Shape Memory Mechanism of ε Martensite-I. Experimental Observations. Self-Accommodation and Shape Memory Mechanism of ε Martensite-Ⅱ. Theoretical Considerations. Mater. Characterization. 1992,28:23,37-47
    [107] 许淳淳,张新生. AISI304 不锈钢在冷加工过程中的微观组织变化. 北京化工大学学报, 2002, 29(6): 25-31
    [108] Maki T, Tsuzaki K. Transformation Behavior of εMartensite in Fe-Mn-Si. Proc.Iner.Conf. on Martensitic Trans.(ICOMAT-92) ed.C M Wayman and J Perkins, Monterey. 1992:1151-1162
    [109] Zhang Jihua, Rong Yonghua, Tang Ming, et al. Effect of the Pre-strain on Stress Induced ε Martensitic and Its Reverse Transformation. Journal of Shanghai Jiaotong University. 2003,37(2):179-181
    [110] R W Hertzberg. Deformation and Fracture Mechanics of Engineering Materials. New York: J.Wiley and Sons. Inc., 1996:530-531
    [111] 束德林. 金属力学性能. 北京: 机械工业出版社, 1987.169-173
    [112] 谢敏, 齐芳娟. 记忆合金应用于无缝线路连接工艺研究. 铁道建筑技术, 2003(6):32-33
    [113] 刘艳, 朱静, 岳丽婕. 超长无缝钢轨零应力轨温实用测试方法. 铁道学报, 2004,26(2):56-59
    [114] 金寿延, 朱剑月, 罗雁云, 等. 无缝线路轨道的温度力与振动特性关系的研究. 机械强度, 2002,24(1): 144-147
    [115] 刘家浚.材料磨损原理及其耐磨性.北京:清华大学出版社,1993.100-155
    [116] 詹武,阎爱淑,丁晨旭,等. 金属摩擦磨损机理剖析. 天津理工学院学报,2001,Vol.17 Suppl.1 19-22
    [117] 张家驷.摩擦磨损机理现代概念及磨损计算探讨.润滑与密封,1998(8): 80
    [118] 刘春明,邬占田,于长山,等.摩擦磨损中的马氏体相变及其对材料磨损特性的影响.金属热处理,1997(3) 8~12
    [119] 林成新,谷南驹.Fe-Mn-Si 形状记忆合金低温应力松弛机理..金属学报, 2002.8; 38(8):825-828
    [120] V.V. Bliznuk et al Effect of nitrogen and carbon on electron exchange and shape memory in a Fe–Mn–Si base shape memory alloy Acta Materialia 51 (2003) 6095–6103
    [121] Xing Huang, Yang Lei et al Effect of rare-earth addition on the shape memory behavior of a FeMnSiCr alloy Materials Letters 57 (2003) 2787–2791
    [122] Baruj,A, Kikuchi.T et al Improvement of shape memory properties of NbC containing Fe-Mn-Si based shape memory alloys by simple thermomechanical treatments Materials Science and Engineering A 2004.7; 378: 333-336
    [123] 芦笙,林萍华.Cu-Al-Be 形状记忆合金是磨粒磨损性能研究.摩擦学学报,2003.9 ;23(5):445-447
    [124] 徐桂芳.热处理工艺对 Ni-Ti 形状记忆合金组织与耐磨性能的影响.金属热处理,2001; 26(11):40-42
    [125] 黄学文,董光能.超弹 Ni-Ti 合金的摩擦学特性研究.摩擦学学报,2002,11; 22(6):409-413
    [126] Zaiyou Wang, Jinhua Zhu Cavitation erosion of Fe–Mn–Si–Cr shape memory alloys Wear 256 (2004) 66–72
    [127] 王再友, 朱金华.Fe-25Mn-6Si-7Cr 形状记忆合金空蚀研究. 材料研究学报, 2003,17(1):39-44
    [128] 武高辉. 材料分析测试技术. 哈尔滨: 哈尔滨工业大学出版社, 1998. 80-95
    [129] 孟庆平, 戎咏华, 陈世朴, 等. Fe-Mn-Si-Cr-N 形状记忆合金中应力诱发马氏体量的测定. 2001, 35(3): 389-393
    [130] 何奖爱, 王玉玮. 材料磨损与耐磨材料. 大连: 东北大学出版社, 2001.165-168
    [131] 邵荷生, 曲敬信, 许小棣, 等. 摩擦与磨损. 北京: 煤炭工业出版社, 1999. 60-71
    [132]Wang Zaiyou, Zhu Jinhua. Cavitation Erosion of Fe–Mn–Si–Cr Shape Memory Alloys. Wear, 2004, (256): 66–72
    [133] Cheng L H, Rigney D A. Transfer during Unlubricated Sliding Wear of Selected Metal Systems. Wear, 1985,105:47-61
    [134] Cheng L H, Rigney D A. Adhesion Theories of Transfer and Wear during Sliding of Metals. Wear, 1990,136:223-235
    [135] 文玉华,李宁,胥永刚,等.Fe-Mn-Si-Ni-C 形状记忆合金时效效果的研究.功能材料,2002,33(6)624-625
    [136] 张行,赵军.金属构件应用疲劳损伤力学.北京:国防工业出版社,1998.90-121
    [137] 张金海.提高机械零件抗疲劳强度的措施.十堰职业技术学院学报,2002 Vol 15 No.2:72-75
    [138] 凌卫宁.钢结构疲劳破坏的机理及原因.广西水利水电,2001(3)73-75
    [139] Sakamoto H. Fatigue Behavior of Monocrystalline. Trans.Jpn.Inst.Metals. 1983,24:665-673
    [140] 孙伟. NiTi 形状记忆合金断裂机理的研究: [硕士学位论文]. 兰州: 兰州理工大学, 2004
    [141] A Shimamoto, H Y Zhao, H Abé. Fatigue Crack Propagation and Local Crack-tip Strain Behavior in TiNi Shape Memory Fiber Reinforced Composite. International Journal of Fatigue, 2004,26: 533-542
    [142] A L McKelvey, R O Ritchie. Fatigue-crack growth behavior in the superelastic and shape-memory alloy nitinol. Metallurgical and Materials Transactions. 2001,32A(3):731-743
    [143] Sade M, Rapacioli R, Ahlers M. Fatigue in Cu-Zn-Al single Crystals. Acta Metall. 1985,33:487-497
    [144] Otsuka K. Crystallography of Martensitic Transformations and Lattice Invariant Shears. Proc.Inter.Conf. on Martensitic Trans. ICOMAT-89. Sydeney, Australia. Mater.Sci.Forum. 1990,56-58:1177-1183
    [145] E Hornbogen. Review Thermo-mechanical Fatigue of Shape Memory Alloys. Journal of MaterialsScience, 2004.1,39(2): 385-399
    [146] G Eggeler, E Hornbogen, A Yawny, et al. Structural and Functional Fatigue of NiTi Shape Memory Alloys. Materials Sccience and Engineering A. 2004(378):24-33
    [147] H Tobushi, et al. Tans. ASME. Engineering Material and Technology 1998,120:64-70
    [148] Kim Youngsik. Fatigue Properties of the Ti-Ni Base Shape Memory Alloy Wire. Materials Transactions, 2002,43(7): 1703-1706
    [149] Kasuga Jumpei, Yoneyama Takayuki, Kobayashi Equo, et al. Fatigue Property of Super-elastic Ti-Ni Alloy Dental Castings. Materials Transactions. 2005,46(7): 1555-1563
    [150] 戈康达著,颜鸣皋, 刘才穆译. 金属的疲劳与断裂. 上海: 上海科学技术出版社, 1983.203-215
    [151] 胡钢, 许淳淳. 冷加工对304不锈钢孔蚀敏感性的影响. 中国腐蚀与防护学报, 2002.8,2(4): 98-201
    [152] OlsonGB,Cohen M. Kineticofstrain-induced Martensitic Nucleation. MetTrans, 1975,6A(4):791-796
    [153] 黄维扬.工程断裂力学.北京:航空工业出版社,1992.156-165