Mn_2基Heusler合金的物性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Heusler合金中蕴藏着丰富的物理特性和应用功能,是开发功能材料的巨大宝库。特别是近年发现的铁磁性形状记忆合金和半金属磁性材料,在航空、航天、医学以及当前最为热门的计算机信息产业方面都展现出了巨大的开发潜力和应用前景,成为目前国际凝聚态物理研究的热点之一。本论文工作以此为契机,主要探索合成新的Heusler高有序合金,寻找其中具有特殊功能性质的材料,深入研究它们展现出的特殊性质、形成机制和其它相关物性;并尝试开发其可能存在的应用特性。其主要研究工作和成果概括如下:
     首次发现并报道了一种新的具有铁磁性形状记忆效应的Heusler合金Mn2NiGa,这种合金具有发生在室温附近的马氏体相变、50K的相变温度滞后、高达588K的居里温度和21.3%的晶格扭曲。就应用功能而言,材料展现出极好的双向形状记忆效应,其自由相变应变和磁增强应变分别高达1.7%和4.0%。这些都表明Mn2NiGa合金是一种具有大应变开发潜力,适合在室温应用的新型功能材料。
     开发出一些列新的偏分合金:Mn50-xNi25+xGa25(0     结合实验和理论两方面工作研究了Mn2NiGa合金的晶体结构,电子结构和磁性。明确提出合金形成一种不同于传统L21结构的新型高有序结构—Hg2CuTi型结构。基于这一结构,通过第一性原理方法计算了合金奥氏体和马氏体的电子结构和磁性。发现在奥氏体状态下,合金中的两个Mn原子磁矩大小不同,且反平行排列,即,合金是亚铁磁体。当马氏体相变发生时,Mn原子的磁矩发生巨大变化,最终导致合金的马氏体状态表现出铁磁性。实验方面,研究了合金马氏体和奥氏体的基本磁性,并结合上述理论研究,成功解释了合金相变前后磁性变化的奇特行为和特殊的热磁曲线,这是本工作的又一创新之处。
     研究了Mn50-xNi25+xGa25系列合金的磁性随成分的变化关系,分析了它们的变化机理。发现随着Mn含量的增加,材料的饱和磁化强度成线性下降。进一步分析发现,在偏分合金中,掺杂Mn原子所起的作用与正分Mn2NiGa合金中Mn原子的作用相同,并没有随着Mn含量的增加而发生质的变化。从而也进一步证明无论哪种成分的合金,掺入的Mn原子总是趋向于占相同的晶位。
     为了改善和提高Mn2NiGa合金多方面的性能,我们对Mn2NiGa合金进行了掺杂实验。即:分别用Fe和Co替代合金中的Ni元素,制备了Mn50Ni25-xFe(Co)xGa25系列合金。研究了Fe和Co元素对Mn2NiGa合金的结构、马氏体相变行为、磁性和机械性能等方面的影响,发现了一些有意义的结果。
     从理论上探索了一系列新的具有Hg2CuTi型结构的Heusler合金:Mn2CoZ (Z=Al, Ga, In, Si, Ge, Sn, Sb)。利用第一性原理方法计算了它们的电子结构和磁性,首次发现并报道了一系列新的半金属合金:Mn2CoZ (Z=Al, Si, Ge, Sn, Sb)。
     深入研究了材料的半金属带隙形成机理和磁性的变化行为。首次发现并提出合金中半金属带隙的形成来源于两种机制:共价作用机制和d-d带隙机制,而d-d带隙机制最终决定了合金半金属带隙的宽度。Mn2CoZ合金遵守Slater-Pauling规则:MH =NV ?24。但我们发现,实现这一规则的内在机制是合金中Mn(C)原子磁矩的减少,而其它原子的贡献非常微小。这在前人的工作中还未见报道。
     进一步,我们在实验上首次成功合成了Mn2CoZ (Z=Al, Ga, In, Ge, Sn, Sb)六种合金,并对其结构和磁性进行了测量和分析,与我们的理论计算非常一致。
     另外,我们尝试合成了一批新的Mn2基Heusler合金,初步研究了它们的磁性和一些基本物性,进一步的工作还有待继续开展。
Heusler alloys exhibit rich physical properties and many applicable functions. Two of the most important functions are ferromagnetic shape memory effect and half metallic properties. In this dissertation, we will try to develop new Heusler alloys with these two properties and investigate their structure and basic physical properties. We abstract the main content of this dissertation as following:
     Ferromagnetic Heusler alloy Mn2NiGa has been discovered, which exhibits a martensitic transformation around the room temperature with a large thermal hysteresis up to 50K and a lattice distortion as large as 21.3%. It was also found that Mn2NiGa has a Curie temperature up 588 K being much higher than that of studied Ni2MnGa, whose Curie temperature is about 370 K. The excellent two-way shape memory behavior with a strain of 1.7% was observed in the single crystal Mn2NiGa. The magnetic-field-controlled effect created a total strain up to 4.0% and changed the sign of the shape deformation effectively.
     Both experimental and theoretical studies have been carried out to investigate the structural and magnetic properties of Mn2NiGa alloys. We have found, instead of forming L21 structure where both A and C sites are occupied by Mn atoms, the alloy favor a structure where C site is occupied by Ni atoms and Mn atoms at A and B sites. The electronic structures of both cubic austenite and tetragonal martensite Mn2NiGa were calculated by self-consistent full-potential linearized-augmented plane-wave (F-LAPW) method. Austenite Mn2NiGa materials show ferrimagnetism due to antiparallel but unbalanced magnetic moments of Mn atoms at A and B sublattice. The magnetic moment of Mn atoms decrease greatly upon martensitic transformation to a tetragonal structure with a 50% reduction in Mn moments at A site and almost completely suppressed Mn moments at B sites. Consequently, martensite Mn2NiGa alloys show ferromagnetic coupling. Different magnetic orderings in martensite and austenite also lead to very different temperature dependence, with which the abnormal behavior of magnetization upon martensitic transformation can be understood. In the off-stoichiometric samples with composition between Ni2MnGa and Mn2NiGa, We show that additional Mn atoms that substitute for Ni atoms in Ni2MnGa have the same magnetic behaviors as Mn in Mn2NiGa phase, which successfully explains the dependence of the magnetization on Mn content.
     In order to improve the properties of this material and develop new ferromagnetic shape memory alloys, an experiment of partially substituting Ni in Mn2NiGa alloys with Fe or Co was carried out to examine the effect of Fe or Co in quaternary Mn50Ni25-xFe(Co)xGa25 alloys on their structure, magnetic properties, martensitic transformation, and mechanical properties. Some interesting results were found.
     First-principle FLAPW calculations have been carried out to study the electronic structure and magnetic properties of compounds with Hg2CuTi-type structure. It is found that the compounds with Z=Al, Si, Ge, Sn and Sb are half-metallic ferrimagnet. Experimentally, we successfully synthesized the Mn2CoZ (Z=Al, Ga, In, Ge, Sn, Sb) compounds. Using the XRD measurements and Rietveld refinements, we have confirmed that these new compounds form Hg2CuTi-type structure instead of conventional L21 structure. Based on the analysis on the electronic structures, we find that there are two mechanisms to induce the minority-spin band gap near the Fermi level, but only d-d band gap determines the final width of the band gap. The magnetic interaction is quite complex in these alloys. The competition between the intra-atomic exchange splitting and covalency mechanism dominate the formation and coupling of the magnetic moments. The Mn2CoZ alloys follow the Slater-Pauling rule: MH = NV ? 24 with the varying Z atom. It was further elucidated that the molecular magnetic moment, MH, increases with increasing valence concentration only by decreasing the antiparallel magnetic moment of Mn(C) while the magnetic moments of Mn(B) and Co are unaffected .
     We successfully synthesized some of Mn2-based Heusler alloys using the melt-spun method. Some basic physical properties of these alloys were also investigated primarily.
引文
[1] J. Pierre, R. V. Skolozdra, Yu. K. Gorelenko and M. Kouacou. From nonmagnetic semiconductor to itinerant ferromagnet in the TiNiSn-TiCoSn series. J. Magn. Magn. Mater. 1994. 134. 95
    [2] S. J. Murray, M. Marioni, S. M. Allen, R. C. O’Handley and T. A. Lograsso. 6% magnetic-field-induced strain by twin-boundary motion in ferromagnetic Ni-Mn-Ga. Appl. Phys. Lett. 2000. 77. 886
    [3] R.A. de Groot, F.M. Mueller, P.G. van Engen, and K.H.J. Buschow. New class of materials: Half- metallic ferromagnets. Phys. Rev. Lett. 1983. 50. 2024-2027
    [4] A. D?nni, P. Fischer, F. Fauth, P. Convert, Y. Aoki, H. Sugawara and H. Sato. Antiferromagnetic ordering in the cubic superconductor YbPd2Sn. Physica B. 1999. 259. 705-706
    [5] P. Webster. Heusler alloys. Contemp. Phys. 1969.10.559
    [6] V. A. Chernenko, E. Cesari, V. V. Kokorin, and I. N. Vitenko, Scripta Metllurgica et Materialia. The development of new ferromagnetic shape-memory alloys in Ni-Mn-Ga system. 1995. 33.1239
    [7] K. Ullakko, J.K. Huang, C. Kantner, R.C. O’Handley, and V.V. Kokorin. Large magnetic-field-induced strains in Ni2MnGa single crystals. Applied Physics Letters. 1996. 69. 1966-1968
    [8] G. H. Wu, C. H. Yu, L. Q. Meng, J. L. Chen, F. M. Yang, S. R. Qi, W. S. Zhan, Z. Wang, Y. F. Zheng, and L. C. Zhao. Giant magnetic-field-induced strains in Heusler alloy NiMnGa with modified composition. Appl. Phys. Lett. 1999. 75. 2990-2992
    [9] R. D. James and M. Wuttig. Magnetostriction of Martensite. Philosophical Magazine A. 1998. 77. 1273
    [10] F. Heusler, et al., Deut. Phys. Ges. 1903.5.219
    [11] Shape Memory Materials. Edited by K. Otsuka and C. M. Wayman. Cambridge University Press. Cambridge, UK, 1998
    [12] G. V. Kurdjumov, L. G. Khandros, Doklad. Akad. Nauk.1949.SSSR66.221
    [13] C. M. Wayman, K. Shimizu. J. Metal Science.1972.6.175
    [14] S. Legvold, J. Alstad, J. Rhyne. Giant magnetostriction in Dysprosium and Holmium Single Crystals.Phys. Rev. Lett. 1963.10.509
    [15] A. E. Clark, Ferromagnetic Materials, Ed. E. P. Wolhfarth.1980.1.532
    [16] A. E. Clark, et al., AIP Conf. Proc. 1973.10.749
    [17] A. E. Clark, et al., AIP Conf. Proc. 1974.10.1015
    [18] K. Ullakko, Int. Conf. on Magnetic Trans., ICOMAT-95, Lausanne, Switz., Aug. 20-25,1995; Proceedings of the 3rd International Conference on Intelig. Mtls., Lyon, France, June 2-5, 1996
    [19] Liu Z. H., Zhang M., Cui Y.T., Zhou Y.Q., Wang W.H., Wu G.H., Zhang X.X., and Xiao G. Martensitic transformation and shape memory effect in ferromagnetic Heusler alloy Ni2FeGa. Appl. Phys. Lett. 2003. 82. 424
    [20] A. Fujita, K. Fukamichi, F. Gejima, R. Kainuma, and K. Isshida. Magnetic properties and large magnetic-field-induced strains in off-stoichometric Ni-Mn-Al Heusler alloys. Appl. Phys. Lett. 2001. 77. 3054-3056
    [21] M. Wuttig, J. Li, C. Craciunescu. A new ferromagnetic shape memory alloy system. Scripta Materialia. 2001. 44. 2393-2397
    [22] K. Oikawa, L. Wulff, T. Iijima, F. Gejima, T. Ohmori, A. Fujita, K. Fukamichi, R.Kainuma, K. Ishida. Promising ferromagnetic Ni-Co-Al shape memory alloy system. Appl. Phys. Lett., 2001. 79. 3290-3292
    [23] Y. Sutou, Y. Imano, N. Koeda, T. Omori, R. Kainum, K. Ishida, K. Oikawa. Magnetic and martensitic transformations of NiMnX (X=In, Sn, Sb) ferromagnetic shape memory alloys. Appl. Phys. Lett. 2004. 85. 4358-4360
    [24] P.J. Webster, K.R.A. Ziebeck, S.L. Town, M.S. Peak. Magnetic order and phase transformation in Ni2MnGa. Phil. Mag. B. 1984. 49. 295-310
    [25] T. Kanomata, et al. J. Magn. Magn. Mat. Effect of hydrostatic pressure on the Curie temperature of the Heusler alloys Ni2MnZ(Z = Al, Ga, In, Sn and Sb. 1987. 65. 76-82
    [26] V. V. Kokorin. Phys. Met. Metall, 1987.67.173-176
    [27] K. Zasimchuk, V. V. Kokorin,V.V. Martynov, A.V. Tkachenko, and V.A.Chernenko. Crystal structure of martensite in the Heusler alloy Ni2MnGa. Phys. Met. Metall. 1990. 69. 104-108
    [28] A. N. Vasilev, A. Kalper, V. V. Kokorin, V. A. Chernenko, T. Takagi, J. Tani. Structural phase-transitions induced in Ni2MnGa by low-temperature uniaxial compression. JETP Lett. 1993.58.308
    [29] V. V. Kokorin, V.V. Martynov, and V. A. Chernenko, Stress-induced martensitic transformations in Ni2MnGa. Scripta Metllurgica et Materialia. 1992. 26. 175
    [30] G Fritsch, VV Kokorin, VA Chernenko, A Kempf, IK Zasimchuk, Martensitic transformation in Ni-Mn-Ga alloys. Phase Transitions.1996. 57(4). Part A. 233-240
    [31] N. Vasilev, S. A. Klestov, V. V. Kokorin, R. Z. Levitin, V. V. Snegirev and V. A.Chernenko. Magnetoelastic interaction under martensite transform in Ni2MnGa monocrystals. Zhurnal Eksperimentalnoi I Teoreticheskoi Fiziki. 1996. 109. 973
    [32] U. Stuhr, P. Vorderwisch and V. V. Kokorin. Spin waves and phonon anomaly in the Heusler alloy Ni2MnGa. Phys. B. 1997. 234. 135
    [33] S. Wirth, A. LeitheJasper, A. N. Vasilev, J. M. D. Coey. Structural and magnetic properties of Ni2MnGa. J. Magn. Magn. Mater. 1997. 167. L7
    [34] E. Cesari, V. A. Chernenko, V. V. Kokorin, J. Pons and C. Segui. Internal friction associated with the structural phase transformations in Ni-Mn-Ga alloys. Acta Materialia. 1997. 45. 999
    [35] V. V. Kokorin, V. A. Chernenko, J. Pons, C. Segu and E. Cesari. Acoustic phonon mode condensation in Ni2MnGa compound. Sol. St. Comm. 1997. 101. 7
    [36] V. D. Buchelnikov, A. N. Vasilyev, I. Y. Dikshteyn, A. T. Zayak, V. S. Romanov, V. G. Shavrov. Structure and magnetic phase transitions in ferromagnets with shape memory effect. Fizika metallov i metallovedenie.1998.85.54-63 MAR
    [37] A. D. Bozhko, A. N. Vasilev, V. V. Khovailo, V. D. Buchelnikov, I. E. Dikshtein, S. M. Seletskii and V. G. Shavrov. Phase transitions in the ferromagnetic alloys Ni2+xMn1-xGa. JETP Lett. 1998. 67. 227
    [38] V.A. Chernenko, C. Segui, E. Cesari. Some aspects of structural behaviour of Ni-Mn-Ga alloys. J. Phys. IV. 1997. 7. 137-141
    [39] V.V. Kokorin, V.A. Chernenko, E. Cesari, J. Pons, C. Segui. Pre-martensitic state in Ni-Mn-Ga alloys. Journal of Physics - Condensed Matter. 1996. 8. 6457-6463
    [40] V. V. Martynon. X-ray diffraction study of thermally and stress- induced phase transformations in single crystalline Ni-Mn-Ga alloys. J. de. Physiqueiv Colloque, 1995. C8. 91-99
    [41] A. Zheludev and S. M. Shapiro. “Uniaxial stress dependence of the [zeta zeta 0]-TA2 anomalous phonon branch in Ni2MnGa”. Solid State Communications. 1996. 98. 35-39
    [42] A. Planes, E. Obrado, A. GonzalezComas and L. Manosa. Premartensitic transition driven by magnetoelastic interaction in bcc ferromagnetic Ni2MnGa. Phys. Rev. Lett. 1997. 79. 3926
    [43] V.V. Kokorin, V.A. Chernenko, J. Pons, C. Segui, E. Cesari. Lattice instability of Ni2MnGa. Physics of the Solid State. 1997. 39. 485-487
    [44] L. Manosa, A. GonzalezComas, E. Obrado, A. Planes, V.A. Chernenko, V.V. Kokorin, E. Cesari. Anomalies related to the TA(2)-phonon-mode condensation in the Heusler Ni2MnGa alloy. Physical Review B, 1997. 55. 11068-11071
    [45] C. Segui, E. Cesari, J. Pons, V.A. Chernenko, V.V. Kokorin. A premartensitic anomaly inNi2MnGa alloys studied by dynamic mechanical analysis. Journal de Physique IV. 1996. 6. 381-384
    [46] A. Zheludev, S. M. Shapiro, P. Wochner and L. E. Tanner. Precursor effects and premartensitic transformation in Ni2MnGa. Phys. Rev. B - Condensed Matter. 1996. 54. 15045
    [47] J. Worgull, E. Petti and J. Trivisonno. Behavior of the elastic properties near an intermediate phase transition in Ni2MnGa. Phys. Rev. B - Condensed Matter. 1996. 54. 15695-15699
    [48] F. Zuo, X. Su, K.H. Wu. Magnetic properties of the premartensitic transition in Ni2MnGa alloys. Physical Review B. 1998. 58. 11127-11130
    [49] V.A.Lvov, E.V. Gomonaj, V.A. Chernenko. A phenomenological model of ferromagnetic martensite. Journal of Physics - Condensed Matter. 1998. 10. 4587-4596
    [50] T.E. Stenger, J.Trivisonno. Ultrasonic study of the two-step martensitic phase transformation in Ni2MnGa. Physical Review B. 1998. 57. 2735-2739
    [51] U. Stuhr, P. Vorderwisch, V. V. Kokorin and P. A. Lindgard. Premartensitic phenomena in the ferro- and paramagnetic phases of Ni2MnGa. Phys.l Rev. B-Condensed Matter, 1997. 56. 14360-14365
    [52] T. Castan, E.Vives, P.A. Lindgard. Modeling premartensitic effects in Ni2MnGa: A mean- field and Monte Carlo simulation study. Physical Review B. 1999. 60. 7071-7084
    [53] A. GonzalezComas, E.Obrado, L. Manosa, A. Planes. V. A. Chernenko, B. J. Hattink and A. Labarta. Premartensitic and martensitic phase transitions in ferromagnetic Ni2MnGa. Phys. Rev. B - Condensed Matter. 1999. 60. 7085
    [54] I Velikokhatnyi, II Naumov. Electronic structure and instability of Ni2MnGa Physics of the Solid State. 1999. 41(4). 617-623
    [55] P. J. Brown, A. Y. Bargawi, J. Crangle, K-U. Neumann, K. R. A. Ziebeck. Direct observation of a band Jahn-Teller effect in the martensitic phase transition of Ni2MnGa. J. Phys. Condens. Matter. 1999. 11. 4715-4722
    [56] RW Overholser, M Wuttig, DA Neumann. Chemical ordering in Ni-Mn-Ga Heusler alloys. Scripta Materialia. 1999. 40(10). 1095-1102
    [57] A. D. Bozhko, A. N. Vasilev, V. V. Khovailo, I. E. Dikshtein, V. V. Koledov, S. M. Seletskii, A. A. Tulaikova, A. A. Cherechukin, V. G. Shavrov, V. D. Buchelnikov. Magnetic and structural phase transitions in the shape-memory ferromagnetic alloys Ni2+xMn1-xGa Journal of Experimental and Theoretical Physics. 1999. 88(5). 954-962
    [58] V. G. Shavrov, V. D. Buchelnikov, A. T. Zayak, Phase transitions in an Ni-Mn-Ga ferromagnetic alloy with allowance for the modulation order parameter. Physics of Metalsand Metallography. 2000. 89. Suppl. 1. S84-S93
    [59] U. Stuhr, P. Vorderwisch, V. V. Kokorin. Phonon softening in Ni2MnGa with high martensitic transition temperature. Journal of Physics - Condensed Matter. 2000. 12.34 7541-7545
    [60] N. I. Glavatska, K. Ullakko. Isomagnetic martensitic transformation in Ni2MnGa alloys. Journal of Magnetism and Magnetic Materials. 2000. 218(2-3). 256-260
    [61] V. A. Chernenko, E. Cesari, J. Pons, C. Segui. Phase transformations in rapidly quenched Ni-Mn-Ga alloys. Journal of Materials Research. 2000. 15(7). 1496-1504
    [62] V. V. Khovailo, T. Takagi, A. N. Vasilev, H. Miki, M. Matsumoto, R. Kainuma. On order-disorder (L21-B2') phase transition in Ni2+xMn1-xGa Heusler alloys. Phys. Stat. Sol. 2001. 183. R1-R3
    [63] V. V. Godlevsky, K. M. Rabe. Soft tetragonal distortions in ferromagnetic Ni2MnGa and related materials from first principles. Physical Review B. 2001. 6313(13).13 4407
    [64] A. Planes, L. Manosa, Vibrational properties of shape-memory alloys. Solid State Physics: Advances in Research and Applications.2001. 55. 159-267
    [65] M. Pugaczowa Michalska. Electronic structure and martensitic transformation in Ni2MnGa Heusler alloy. Acta Physica Polonica A. 1999. 96. 467-473
    [66] S. Y. Chu, A. Cramb, M. DeGraef, D. Laughlin, M. E. McHenry. The effect of field cooling and field orientation on the martensitic phase transformation in a Ni2MnGa single crystal. Journal of Applied Physics. 2000. 87(9). Part 2. 5777-5779
    [67] R. D. James, K. F. Hane, R. D. James, K. F. Hane. Martensite transformations and shape-memory materials. Acta Mater. 2000. 48(1). 197-202
    [68] J. Pons, C. Segui, V. A. Chernenko, E. Cesari, P. Ochin and R. Portier. Transformation and ageing behaviour of melt-spun Ni-Mn-Ga shape memory alloys. Materials Science and Engineering A - Structural Materials Properties Microstructure and Processing. 1999. 275. 315-319
    [69] M. Matsumoto, T. Takagi, J. Tani, T. Kanomata, N. Muramatsu and A. N. Vasilev, Phase transformation of Heusler type Ni2+xMn1-xGa (X=0 similar to 0.19). Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing. 1999. 275. 326
    [70] K. Ullakko, J. K. Huang, V. V. Kokorin and R. C. O’handley. Magnetically controlled shape memory effect in Ni2MnGa intermetallics. Scripta Materialia. 1997. 36. 1133-1138
    [71] R. C. O’handley. Model for strain and magnetization in magnetic shape-memory alloys. Journal of Applied Physics. 1998. 83. 3263-3270
    [72] E. Obrado, A. GonzalezComas, L. Manosa, A. Planes. Magnetoelastic behavior of the Heusler Ni2MnGa alloy. J. Appl. Phys. 1998. 83. 7300
    [73] R. Tickle and R. D. James. Magnetic and magnetomechanical properties of Ni2MnGa. J. Magn. Magn. Mater. 1999. 195. 627
    [74] A. Gonzalez Comas, E. Obrado, L. Manosa, A. Planes and A. Labarta. Magnetoelasticity in the Heusler Ni2MnGa alloy. J. Magn. Magn. Mater. 1999. 197. 637-638
    [75] J. W. Dong, L. C. Chen, C. J. Palmstrom, R. D. James and S. M. Kernan. Molecular beam epitaxy growth of ferromagnetic single crystal (001) Ni2MnGa on (001) GaAs. Appl. Phys. Lett. 1999. 75. 1443-1445
    [76] A. A. Likhachev, K. Ullakko. Magnetic-field-controlled twin boundaries motion and giant magneto-mechanical effects in Ni-Mn-Ga shape memory alloy. Physics Letters A. 2000. 275. 142-151
    [77] H. D. Chopra, C. H. Ji, V. V. Kokorin. Magnetic-field-induced twin boundary motion in magnetic shape-memory alloys. Physical Review B, 2000. 61(22). R14913-R14915
    [78] T. Liang, H. B. Xu, C. B. Jiang and S. K. Gong. Preparation and properties of the Ni2MnGa magnetic shape memory alloy. Chin. Phys. Lett. 2000. 17. 296
    [79] C. H. Yu, W. H. Wang, L. Tang, F. M. Yang, J. L. Chen, G. H. Wu. Magnetic- field- induced strains and magnetic properties of Heusler alloy Ni52Mn23Ga25. J. Appl. Phys. 2000. 87. 6292-6294
    [80] Q. Pan and R. D. James. Micromagnetic study of Ni2MnGa under applied field (Invited). J. Appl. Phys. 2000. 87. 4702-4706
    [81] R.C. O’Handley, S.J. Murray, M. Marioni, H. Nembach, S.M. Allen. Phenomenology of giant magnetic-field-induced strain in ferromagnetic shape memory materials. J. Appl. Phys. 2000. 87. 4712-4717
    [82] A. A. Likhachev, K. Ullakko. Quantitative model of large magnetostrain effect in ferromagnetic shape memory alloys. Eur. Phys. J. B, 2000. 14. 263-267
    [83] Z. H Liu, F. X. Hu, W. H. Wang, J. L. Chen, G. H. Wu, S. X. Gao, A. Ling. Investigation on martensitic transformation and field-induced two-way shape memory effect of Ni-Mn-Ga alloys. Acta Physica Sinica. 2001. 50. 233
    [84] K Inoue, K Enami, Y Yamaguchi, K Ohoyama, Y Morii, Y Matsuoka, K Inoue. Magnetic-field-induced martensitic transformation in Ni2MnGa-based alloys. Journal of the Physical Society of Japan. 2000. 69(12). 4118
    [85] J. W. Dong, L. C. Chen, J. Q. Xie, T. A. R. Muller, D. M. Carr, C. J. Palmstrom, S. McKernan, Q. Pan, R. D. James. Epitaxial growth of ferromagnetic Ni2MnGa on GaAs(001) using NiGa interlayers. Journal of Applied Physics. 2000. 88(12). 7357-7359
    [86] K. Inoue, K. Enami, Y. Yamaguchi, K. Ohoyama, Y. Morii, Y. Matsuoka, K. Inoue.Magnetic-field-induced martensitic transformation in Ni2MnGa-based alloys. Journal of the Physical Society of Japan. 2000. 69. 3485-3488
    [87] O. Heczko, A. Sozinov, K. Ullakko. Giant field-induced reversible strain in magnetic shape memory NiMnGa alloy. IEEE Transactions on Magnetics. 2000. 36. 3266-3268
    [88] K. Ullakko, Y. Ezer, A. Sozinov, G. Kimmel, P. Yakovenko, and V. K. Lindroos. Magnetic-field-induced strains in polycrystalline Ni-Mn-Ga at room temperature. Scripta Materialia. 2001. 44. 475
    [89] 钟文定. 铁磁学. 北京. 科学出版社. 2000
    [90] K. Oikawa, T. Ota, Y.Sutou, T. Ohmori, R. Kaninuma, K. Ishida. Magnetic and martensitic phase transformation in Ni54Ga27Fe19 alloy. Mater. Tran. 2002. 43. 2360-2367
    [91] Corneliu Craciunescu, Yoichi Kishi, T.A. Lograsso, Manfred Wuttig. Martensitic transformation in Co2NiGa ferromagnetic shape memory alloys. Scripta Materialia. 2002. 47. 285-288
    [92] M. Sato, T.Okazaki, Y. Furuya, M. Wuttig. Magnetostrictive and shape memory properties of Heusler type Co2NiGa alloys. Mater. Trans. 2003. 44. 372-375
    [93] K. Oikawa, T. Ota, F. Gejima, T. Ohmori, R. Kaninuma, K. Ishida. Phase equilibria and phase transformation in new B2-bype ferromagnetic shape memory alloys of Co-Ni-Ga and Co-Ni-Al systems. Mat. Trans. 2001 42. 2472-2475
    [94] H. Morito, Magnetocrystalline anisotropy in single-crystal Co-Ni-Al ferromagnetic shape memory alloy. Appl. Phys. Lett. 2002. 81.1657-1661
    [95] Y. Murakami. Magnetic domain structures in Co-Ni-Al shape memory alloys studied by Lorentz microscopy and electron holography. Acta. Mater. 2002. 50. 2173-2177
    [96] R. Kainuma,Y. Imano, W. Ito, Y. Sutou, H. Morito, S. Okamoto, O. Kitakami, K. Oikawa, A. Fujita, T. Kanomata, K. Ishida. Magnetic-field-induced shape recovery by reverse phase transformation. Nature. 2006. 439. 957-960
    [97] K. Oikawa, W. Ito, Y. Imano, Y. Sutou, R. Kainuma, and K. Ishida, S. Okamoto and O. Kitakami, T. Kanomata. Effect of magnetic field on martensitic transition of Ni46Mn41In13 Heusler alloy. Applied physics letters. 2006. 88 (12).122507
    [98] S. Y. Yu, Z. H. Liu, G. D. Liu, J. L. Chen, Z. X. Cao, and G. H. Wu, B. Zhang and X. X. Zhang. Large magnetoresistance in single-crystalline Ni50Mn50–xInx alloys (x=14–16) upon martensitic transformation. Applied physics letters. 2006. 89 (16). 162503
    [99] V. Y. Irkhin, M. I. Katsnel’son. Half-metallic ferromagnets. Physics-Uspekhi. 1994.37.659
    [100] R.A. de Groot, F.M. Mueller, P.G. van Engen, and K.H.J. Buschow. New class of materials: Half- metallic ferromagnets. Phys. Rev. Lett. 1983. 50. 2024-2027
    [101] W. E. Pickett, J. S. Moodera. Half metallic magnets. Physics Today.2001.54.39
    [102] R. J. Soulen, J. M. Byers, M. S. Osofsky, B. Nadgorny, T. Ambrose, S. F. Cheng, P. R. Broussard, C. T. Tanaka, J. Nowak. Measuring the spin polarization of a metal with a superconducting point contact. Science. 1998.85.282
    [103] Y. Ji, G. J. Strijkers, F. Y. Yang, C. L. Chien, J. M. Byers, A. Anguelouch, Gang Xiao, A. Gupta. Determination of the spin polarization of half-metallic CrO2 by point contact Andreev reflection. Phys. Rev. Letters. 2001.86.5585
    [104] 王文洪,NiMnGa 合金的结构、磁性和单晶应用功能的研究。中国科学院物理研究所博士学位论文。中国科学院物理研究所。2002.5
    [105] 代学芳,铁磁形状记忆合金 CoNiGa 的物性研究。中国科学院物理研究所博士学位论文。中国科学院物理研究所。2006.5
    [106] 柳祝红,新型 Ni 基铁磁性形状记忆合金的物性研究。中国科学院物理研究所博士学位论文。中国科学院物理研究所。2006.5
    [107] 杜江,中国科学院物理研究所硕士学位论文,1998.5
    [108] 唐成春,Ce 基 Laves 相化合物的磁性和磁致伸缩。中国科学院物理研究所博士学位论文。中国科学院物理研究所。1998.5
    [109] R. M. Bozorth, Ferromagnetism, 1951
    [110] 廖绍彬著,铁磁学,北京,科学出版社,1998
    [111] 赵学根,中国科学院物理研究所硕士学位论文,1995
    [112] J. Czochralski, Z. Phys.Chem. 1918.92.219
    [113] G. W. Berkstresser, A. J. Valentino, C. D. Brandle, Growth of single crystals of rare earth gallates. J. Crystal Growth.1991.109.457
    [114] G. Müller, E. Schmidt and P. Kyr J. Investigation of convection in melts and crystal growth under large inertial accelerations. Crystal Growth.1980.49.387-395
    [115] 梁敬魁,相图与相结构(下),北京,科学出版社,1993
    [116] 周公度,晶体结构测定,北京,科学出版社,1982
    [117] B.D.柯列迪,冯根源译,X 射线金属学,1965
    [118] 许顺生,金属 X 射线学,上海,上海科学出版社,1962
    [119] 李树棠,金属 X 射线衍射与电子显微分析技术,冶金工业出版社,1980
    [120] 谢希德,陆栋,固体能带理论,上海, 复旦大学出版社,1998
    [121] O. Heczko, N. Glavatska, V. Gavriljuk, K. Ullako. Influence of magnetic field and stress on large magnetic shape memory effect in single crystalline Ni-Mn-Ga ferromagnetic alloy at room temperature. Mater. Sci. For. 2001.373.341
    [122] A. Vasil’ev, A. Bozhko, V. Khovailo, I. Dikshtein, V. Shavrov, S. Seletskii, V. Buchelnikov.Structural and magnetic phase transitions in shape memory alloys Ni2+xMn1-xGa. J. Magn. Magn. Mater.1999. 196-197. 837
    [123] W. H. Wang, J. L. Chen, Z. H. Liu, G. H. Wu, and W. S. Zhan. Thermoelastic intermartensitic transformation and its internal stress dependency in Ni52Mn24Ga24 single crystals. Phys. Rev. B.2002.65.12416
    [124] T. Krenke, E. Duman, M. Acet, E. F. Wassermann, X. Moya, L. Manosa, A. Planes. Inverse magnetocaloric effect in ferromagnetic Ni-Mn-Sn alloys. Nature Mater. 2005.4.450
    [125] J. Enkovaara, O. Heczko, A. Ayuela, and R. M. Nieminen. Coexistence of ferromagnetic and antiferromagnetic order in Mn-doped Ni2MnGa. Phys. Rev. B. 2003.67.212405
    [126] P. J. Webster, R. S. Tebble. Magnetic and Chemical Order in Pd2MnAl in Relation to Order in the Heusler Alloys Pd2MnIn, Pd2MnSn, and Pd2MnSb. J. Appl. Phys. 1968.39.471
    [127] J. Kübler, A. R. Williams, C. B. Sommers. Formation and coupling of magnetic moments in Heusler alloys. Phys. Rev. B.1983.28.1745
    [128] A. Chakrabarti, C. Biswas, S. Banik, R. S. Dhaka, A. K. Shukla, S. R. Barman. Influence of Ni doping on the electronic structure of Ni2MnGa. Phys. Rev. B.2005.72.073103
    [129] N. Lanska, O. S?derberg, A. Sozinov, K. Ullakko, V. K. Lindroos. Composition and temperature dependence of the crystal structure of Ni-Mn-Ga alloys. J. Appl. Phys. 2004.95.8074
    [130] A. N. Vasil'ev, A. D. Bozhko, V. V. Khovailo, I. E. Dikshtein, S. G. Shavrov, V. D. Buchelnikov, M. Matsumoto, S. Suzuki, T. Takagi and J. Tani. Structural and magnetic phase transitions in shape-memory alloys Ni2+xMn1-xGa. Phys. Rev. B. 1999.59.1113
    [131] V. A. Chernenko. Compositional instability of beta-phase in Ni-Mn-Ga alloys. Scrip. Mater. 1999.40.523
    [132] I. Dikshtein, V. Koledov, V. Shavrov, A. Tulaikova, A. Cherechuking, V. Buchelnikov, V. Khovailo, M. Matsumoto, T. Takagi, J. Tani. Phase transitions in intermetallic compounds Ni-Mn-Ga with shape memory effect. IEEE Trans. Magn. 1999.35.3811
    [133] L. Ma?osa, A. Planes, Adv. Sol. Stat. Phys. 2000.40.36
    [134] X. Jin, M. Marioni, D. Bono, S. M. Allen, R. C. O’Handley, T. Y. Hsu. Empirical mapping of Ni-Mn-Ga properties with composition and valence electron concentration. J. Appl. Phys. 2002.91.8222
    [135] F. Zuo, X. Su, P. Zhang, G. C. Alexandrakis, F. Yang, K. H. Wu. Magnetic and transport properties of the Ni2-xMn1+xGa alloys. J. Phys. Condens. Mater. 1999.11. 2821
    [136] Y. Feng, J. Y. Rhee, T. A. Wiener, D. W. Lynch, B. E. Hubbard, A. J. Sievers, D. L. Schlagel,T. A. Lograsso, and L. L. Miller. Physical properties of Heusler-like Fe2VAl. Phys. Rev. B.2001.63.165109
    [137] R. B. Helmholdt, K. H. J. Buschow, J. Less-Comm. Met. 1987.128.167
    [138] R. C. O’Handley. 现代磁性材料原理和应用。北京,化学工业出版社。2002.165
    [139] S. Picozzi, A. Continenza, A. J. Freeman. Co2MnX (X=Si, Ge, Sn) Heusler compounds: ab initio study of their structural, electronic, and magnetic properties at zero and elevated pressure. Phys. Rev. B.2001.66.094421
    [140] D. van der Marel, G. A. Sawazky. Electron-electron interaction and localization in d and f transition metals. Phys. Rev. B.1988. 37.10674
    [141] J. H. Wijngaard, C. Haas, R. A. de Groot. Ferrimagnetic-antiferromagnetic phase transition in Mn2-xCrxSb: Electronic structure and electrical and magnetic properties. Phys. Rev. B.1992. 45.5395
    [142] Y. J. Zhao, W. T. Geng, A. J. Freeman,B. Delley. Structural, electronic, and magnetic properties of α- and β-MnAs: LDA and GGA investigations. Phys. Rev. B.2002.65.113202
    [143] G. D. Liu, J. L. Chen, Z. H. Liu, X. F. Dai, G. H. Wu, B. Zhang, X. X. Zhang. Martensitic transformation and shape memory effect in a novel ferromagnetic shape memory alloy: Mn2NiGa. Appl. Phys. Lett. 2005.87.262504
    [144] 崔玉亭,朱亚波,王万录,廖克俊. Ni2MnGa 单晶马氏体相变过程热摩擦耗能的热动力学计算. 物理学报.2004.53.861
    [145] C. B. Jiang, Y. Muhammad, L. Deng, W. Wu, H. B. Xu. Composition dependence on the martensitic structures of the Mn-rich NiMnGa alloys. Acta Mater. 2004.52.2779
    [146] Y. X. Li, H. Y. Liu, F. B. Meng, L. Q. Yan, G. D. Liu, X. F. Dai, M. Zhang, Z. H. Liu, J. L. Chen, G. H. Wu. Magnetic field-controlled two-way shape memory in CoNiGa single crystals. Appl. Phys. Lett. 2004.84.3594
    [147] 代学芳,刘何燕,阎丽琴,曲静萍,陈京兰,吴光恒. CoNiGaZ 系列合金的结构和马氏体相变性质.物理学报.2006.55.2534
    [148] Z. H. Liu, M. Zhang, W.Q. Wang, W. H. Wang, J. L. Chen, G. H. Wu, F. B. Meng, H. Y. Liu, B. D. Liu, J. P. Qu, Y. X. Li. Magnetic properties and martensitic transformation in quaternary Heusler alloy of NiMnFeGa. J. Appl. Phys 2002.92.5006
    [149] G. A. Prinz. Device physics – Magnetoelectronics.Science.1998.282.1660
    [150] I. Galanakis, P. H. Dederichs, N. Papanikolaou. Origin and properties of the gap in the half-ferromagnetic Heusler alloys. Phys. Rev. B. 2002.66.134428
    [151] S. N. Holmes, M. Pepper. Magnetic and electrical properties of Co2MnGa grown on GaAs(001). Appl. Phys. Lett. 2002.81.1651
    [152] S. Fujii, S. Sugimura, S. Ishida, S. Asano. Hyperfine fields and electronic structures of the Heusler alloys Co2MnX (X=Al, Ga, Si, Ge, Sn). J. Phys.: Condens. Matter 1990.2. 8583
    [153] S. Ishida, S. Fujii, S. Sugimura, S. Asano. Search for half-metallic compounds in Co2MnZ (Z=IIIB, IVB, VB element). J. Phys. Soc. Jpn. 1995.654.2152
    [154] U. von Barth, L. Hedin. A local exchange-correlation potential for the spin polarized case. J. Phys. C.1972.5.1629
    [155] K. H. J. Buschow, P. G. van Engern. Magnetic and magneto-optical properties of heusler alloys based on aluminium and gallium. J. Mag. Mag. Mater. 1981.25.90
    [156] R. Weht, W. E. Pickett. Half-metallic ferrimagnetism in Mn2VAl. Phys. Rev. B.1999.60.13006
    [157] C. Jiang, M. Venkatesan, J. M. D. Coey. Transport and magnetic properties of Mn2VAl: Search for half-metallicity. Sol. Stat. Commun. 2001.118.513
    [158] K. Ozdogan, I. Galanakis, E. Sasioglu. B. Atkas, Search for half-metallic ferrimagnetism in V-based Heusler alloys Mn2VZ (Z = Al, Ga, In, Si, Ge, Sn). J. Phys.: Condens. Matter.2006.18.2905
    [159] M. P. Raphael, B. Ravel, Q. Huang, M. A. Willard, S. F. Cheng, B. N. Das, R. M. Stroud, K. M. Bussmann, J. H. Claassen, V. G. Harris. Presence of antisite disorder and its characterization in the predicted half-metal Co2MnSi. Phys. Rev. B.2002.66.104429
    [160] G. D. Liu, X. F. Dai, S. Y. Yu, Z. Y. Zhu, J. L. Chen, G. H. Wu, H. Zhu, J. Q. Xiao. Physical and electronic structures and magnetism of Mn2NiGa: Experiment and density-functional theory calculations. Phys. Rev. B.2006.74.054435
    [161] T. J. Burch, T. Litrenta, J. I. Budnick. Hyperfine Studies of Site Occupation in Ternary Systems. Phys. Rev. Lett. 1974.33.421
    [162] M. Pugaczowa-Michalska, A. Go, L. Dobrzynski, S. Lipinski. Electronic structure and magnetism of Fe3?xCrxSi alloys. J. Magn. Magn. Mater. 2003.256.46
    [163] C. M. Fang, G. A. de Wijs, R. A. de Groot. Spin-polarization in half-metals (invited). J. Appl. Phys. 2002.91.8340
    [164] A. R. Williams, R. Zeller, V. L. Moruzzi, C. D. Gelatt. Covalent magnetism: An alternative to the Stoner model. J. Kubler. J. Appl. Phys. 1981.52.2067
    [165] I. Galanakis, P. H. Dederichs, N. Papanikolaou. Slater-Pauling behavior and origin of the half-metallicity of the full-Heusler alloys. Phys. Rev. B. 2002.66.174429
    [166] S. Fujii, S. Ishida, S. Asano. A half-metallic band-structure and Fe2MnZ (Z=Al, Si, P). J.Phys. Soc. Jpn. 1995.64.185
    [167] G. H. Fecher, H. C. Kandpal, S. Wurmehl, C. Felser, G. Sch?nhense. Slater-Pauling rule and Curie temperature of Co2-based Heusler compounds. J. Appl. Phys. 2006.99.08J106