Fe(Co)-Zr-B-Cu非晶合金的制备及磁脉冲处理效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非晶合金具有高磁导率、高饱和磁通量、低矫顽力、低铁损等优良磁性能,具有广阔的应用前景,是综合性能优异的软磁材料。越来越受到国内外研究人员的广泛关注。本论文主要做了以下几个方面的工作:
     (1)用真空电弧炉熔炼成分为(Fe_(1-x)Co_x)_(89-y)Zr_7B_4Cu_y(x=0、0.3、0.5,y=1及x=0.5,y=0)的母合金。
     (2)利用单辊法制备了(Fe_(1-x)Co_x)_(89-y)Zr_7B_4Cu_y非晶薄带,辊速为42m/s,喷嘴口尺寸为2mm×0.3mm,压差为0.04MPa,厚度在30~50μm。通过XRD、MS表征制备态的(Fe_(1-x)Co_x)_(89-y)Zr_7B_4Cu_y(x=0、0.3、0.5,y=1及x=0.5,y=0)四种成分的非晶合金薄带。(Fe_(1-x)Co_x)_(89-y)Zr_7B_4Cu_y(x=0、0.3,y=1)两种成分非晶合金存在少量晶态相。(Fe_(1-x)Co_x)_(89-y)Zr_7B_4Cu_y(x=0.5,y=1及X=0.5,y=0)两种成分的合金为全非晶。
     (3)用差热分析对Fe_(44)Co_(44)Zr_7B_4Cu_1和Fe_(44.5)Co_(44.5)Zr_7B_4非晶合金进行热稳定性分析。Fe_(44)Co_(44)Zr_7B_4Cu_1和Fe_(44.5)Co_(44.5)Zr_7B_4非晶合金DTA曲线都有两个放热峰,表明晶化是分为两阶段进行。Fe_(44)Co_(44)Zr_7B_4Cu_1和Fe_(44.5)Co_(44.5)Zr_7B_4非晶合金初次晶化起始温度分别为499℃和506℃。对于(Fe_(1-x)Co_x)_(89-y)Zr)7B_4Cu_y非晶合金,减少1at.%Cu使过冷液相区变宽了11℃,提高了(Fe_(1-x)Co_x)_(89-y)Zr_7B_4Cu_y非晶合金的热稳定性。
     (4)对Fe_(44)Co_(44)Zr_7B_4Cu_1和Fe_(44.5)Co_(44.5)Zr_7B_4非晶合金进行磁脉冲处理,用MS分析脉冲处理后的微结构变化。MS结果表明经脉冲磁场处理后Fe_(44.5)Co_(44.5)Zr_7B_4非晶薄带存在少量的晶态相;晶化量随磁脉冲处理的场强和作用时间的增大而增大;内磁场方向随磁脉冲处理场强和作用时间的增加而逐渐趋向带平面沿带长方向。
     (5)对磁脉冲处理前后的Fe_(44.5)Co_(44.5)Zr_7B_4非晶合金用VSM进行磁性能测量。经磁脉冲处理的Fe_(44.5)Co_(44.5)Zr_7B_4非晶薄带(平行处理),比饱和磁化强度(x方向测量)较淬态的Fe_(44.5)Co_(44.5)Zr_7B_4非晶薄带有所增加。
Amorphous alloys with low coercivity H_c, large saturation inductions B_s, large resistivityand good thermal stability are the newest generation of soft magnetic materials. Itincreasingly appealed to widespread attention of domestic and foreign researchers. Thepresent paper has mainly done the following several aspect work.
     (1) Master alloy of (Fe_(1-x)Co_x)_(89-y)Zr_7B_4Cu_y(x=0、0.3、0.5, y=land x=0.5, y=0) wasobtained by vacuum arc furnace smelting equipment.
     (2) (Fe_(1-x)Co_x)_(89-y)Zr_7B_4Cu_y amorphous alloy ribbons were cast by melt spinning of singleroll casting method. Roller speed is 42m/s. The nozzle size of quartz tube is 2mm×0.3mm.Pressure difference is 0.04MPa. The as-quenched (Fe_(1-x)Co_x)_(89-y)Zr_7B_4Cu_y ribbons have thethickness in 30μm~50μm. The amorphous alloy ribbons were characterized by XRD andMS. The results indicated that (Fe_(1-x)Co_x)_(89-y)Zr_7B_4Cu_y(x=0、0.3, y=1) ribbons have occurredobvious crystallization, and (Fe_(1-x)Co_x)_(89-y)Zr_7B_4Cu_y(x=0.5, y=1及x=0.5, y=0) ribbons arecompletely amorphous.
     (3) Using differential thermal analysis (DTA), the thermal stability of Fe_(44)Co_(44)Zr_7B_4Cu_1and Fe_(44.5)Co_(44.5)Zr_7B_4 amorphous alloy ribbons were studied. The results of DTA showed thatFe_(44)Co_(44)Zr_7B_4Cu_1 and Fe_(44.5)Co_(44.5)Zr_7B_4 amorphous alloy ribbons both have two exothermicpeaks in the DTA curve respectively. The crystallization is divided into two stages. Initialtemperature of primary crystallization for Fe_(44)Co_(44)Zr_7B_4Cu_1 and Fe_(44.5)Co_(44.5)Zr_7B_4 amorphousalloy ribbons is 499℃and 506℃, respectively. For the (Fe_(1-x)Co_x)_(89-y)Zr_7B_4Cu_y amorphousalloy, the undercooled liquid region broaden 11℃by reducing of 1 at.%Cu that enhanced thethermo-stability of (Fe_(1-x)Co_x)_(89-y)Zr_7B_4Cu_y amorphous alloy.
     (4) The Fe_(44)Co_(44)Zr_7B_4Cu_1 and Fe_(44.5)Co_(44.5)Zr_7B_4 amorphous alloy ribbons were treatedby low-frequency magnetic pulsing. After magnetic pulse processing, the microstructurechange was analyzed by the MS. The MS results showed that after magnetic pulse processing,Fe_(44.5)Co_(44.5)Zr_7B_4 amorphous alloy ribbons exist some crystallizations and the quantity of crystallization increased along with the increasing of magnetic pulse intensity and treatmenttime. With magnetic pulse intensity and treatment time increased, the interior magnetic fielddirection gradually tended to the ribbons plane along the ribbons length direction.
     (5) The measure of the magnetic property of Fe_(44.5)Co_(44.5)Zr_7B_4 amorphous alloy ribbonsbefore and after magnetic pulse processing had be tested by VSM. It indicated that thesaturation magnetization (measured along X-direction) of Fe_(44.5)Co_(44.5)Zr_7B_4 amorphous alloyribbons after magnetic pulse processing (parallel processing) is lager than that of as-quenchedFe_(44.5)Co_(44.5)Zr_7B_4 amorphous alloy ribbons.
引文
1.Klement W. Non-crystalline structure in solidified gold-silicon alloys [J], Nature 1960: 1887: 869.
    2.王正品,张路.金属功能材料[M],北京:化学工业出版社,2004,23-28.
    3.Luborsky F E.非晶态合金[M],北京:冶金工业出版社,1989,2-10.
    4.李雷鸣,徐锦锋.大体积非晶合金的制备技术[J],铸造技术,2007,28(10):1332-1335.
    5.增本健.作为下一代功能材料的非晶态金属的进展[J],上海钢研,2002,(3):4-7.
    6.王一禾.非晶态合金[M],北京:冶金工业出版社,1989,4-23.
    7.Zhang C M, Hui X D, Liu X J, et al. Preration and mechanical properties of high strength Zr-based bulk metallic glasses containing high content of Cu [J], Rare Mrtal Mterials and Enginnering. 2008, 37(2): 320-324.
    8.李金富,周尧和.大块非晶形成合金液体的热物理性能与玻璃形成能力[J],功能材料,2002,33(3):317-320.
    9.吴志方,柳林.新型块体非晶合金的形成、结构、性能和应用[J],金属功能材料,2002,6(3):14-17.
    10.沈军,高玉来,陈德民等.大块非晶合金的玻璃能力[J],材料导报,2004,1(18):85-88.
    11.Li Y, Ng S C, Ong C K, et al. Glass forming ability of bulk glass forming alloys [J], Scripta Materialia, 1997, 37(7): 783-787.
    12.蔡安辉.合金玻璃形成能力表征与预测以及块体金属玻璃的制备[D],南京:东南大学材料科学与工程系,2005,45-49.
    13.Inoue A, Zhang T, Masumoto T. Al-La-Ni amorphous alloy with high glasstransition temperature significant supercooled liquid region [J], Materials transaction JIM, 1990, 31(3): 177-183.
    14.Inoue A, Kato A, Zhang T. Mg-Cu-Y amorphous alloys with high mechanical strengths produced by a metallic mold casting method [J], Materials transaction JIM, 1991, 32(7): 609-616.
    15.Jagielinski T. Flash annealing of amorphous alloys [J], IEEE Transactions on Magnetics, 1983,19(5): 1925-1927.
    16.Kulik T, Matyia H. Effect of flash- and furnace annealing on the magnetic and mechanical properties of metallic glasses [J], Materials Science Engineering, 1991, 133(1): 232-235.
    17. Lai Z H, Chao Y S, Conrad H, et al. Hyperfine structure changes in iron-base amorphous alloys produced by high current density electropulsing [J], Journal of Materials Research, 1995, 10(4): 900-906.
    18. Stenge S, Sorescu M, Conser U. Radiofrequency-induced crystallization in Fe_(81)B_(13.5)Si_(3.5)C_2 [J], Journal of Non-Crystallin Solids, 1992,151(1-2): 66-70.
    19. Kopcewicz M, Wanger H G, U.Conser. Mossbauer investigations of ferromagnetic amorphous metals in radio frequency fields [J], Journal of Magnetism and Magnetic Materials, 1983,40(1-2): 139-146.
    20. Lian L X, Liu Y, Li J. Effect of magnetic-field heat treatment on magnetic properties of Nd_2Fe_(14)B/ α-Fe nanocrystalline permanent magnets [J], The Chinese Journal of Nonferrous Metals, 2004,14(12): 2085-2089.
    21. Paul C M. Look at magnetic treatment of tools and wear surface [J], Tooling& Production, 1990, 55(12): 100-103.
    22. Tang F, Lu Anli, Fang Huizhen. A new residual stress reducing method-pulsed magnetic treatment [J], Transctions of the China Welding Institution, 2000, 21(2): 29-31.
    23. Shimisu K, Kakeshita T. Effect of magnetic fields on martensitic transformations in ferrous alloys and steels [J], ISIS International, 1989, 29(2): 97.
    24. Kakeshita T. Magnetic field-induced martensitic transformations in a few ferrous alloys [J], Journal of Magnetism and Magnetic Materials, 1990, 196(12): 34-36.
    25. Kakeshita T. Effect of magnetic field on successive martensitic transformation in an Fe-Mn-C alloy [J], Materials transaction JIM, 1992, 33(5): 461.
    26. Koch C C. Experimental evidence for magnetic or electric field effects on phase transformation [J], Materials Science and Engineering, 2000. 287(2): 213-218.
    27. Dorfrnan S, Fuks D, Gordon A. Phase growth of smart materials in a magnetic field [J], Journal of Material Science Letters, 1996,15(23): 2023-2025.
    28. Hasegawa R, Chien C L. Mossbauer and its r.f. sideband effects in iron-rich glassy alloys [J], Solid State Communications, 1976,18(7): 913-916.
    29. 何开元,周飞.非晶态合金的晶化与纳米晶软磁材料[J],物理,1993,22:535.
    30. Yoshizawa Y, Oguma S, Yamauchi K. New Fe-based soft magnetic alloys composed of ultrafine grain structure [J], Journal of Applied.Physics, 1988, 64(10): 6044.
    31. Yoshizawa Y. Magnetic propertie sand application of nanostructured soft magnetic materials [J], Script Materialia, 2001, 44(8): 1321-1324.
    32. Hono K. Cu clustering and Si port ion in gin the early crystallization stage of an Fe_(73.5)Si_(13.5)B_9Nb_3Cu_1 amorphous alloys [J], Acta Materialia, 1999(47): 997-1006.
    33. Oguma S, Hono K. Microstructure of nanocrystallines of magnetic (Fe,Co)-Si-B-Nb-Cu alloys [J], Proceeding of the 22nd Risointer national Symposiumon Materials ScienceDenmark: Roskilde, 2001: 341-345.
    34. Suzuki K. High saturation magnetization nand soft magnetic properties of bcc Fe-Zr-B alloys with ultra fine grain structure [J], Materials Transaction, 1990, 31(2): 743-745.
    35. Suzuki K. Soft magnetic properties of nanocrystalline bcc Fe-Zr-B and Fe-M-B-Cu (M=Transition Metal) alloys with high saturation magnetization [J], Journal of Applied Physics, 1991, 70(10): 6232-6235.
    36. Willard M A, Huang M Q, Laughlin D E. Magnetic Properties of HITPERM (Fe,Co)_(88)Zr_7B_4Cu_1 magnets [J], Journal of Applied Physics, 1999, 85(1): 4421-4423.
    37. Hogsdon S N. Study of Nanocrystalline Fe_(73.5)Cu_1Nb_3Si_(16.5)B_6 Ribbons by High-Resolution AE Measurements [J], IEEE Transactions on Magnetics, 1995, 31(6), 3895-3897.
    38. Johnson F, Hughes P, Gallagher R. Structure and Thermo magnetic properties of new FeCo-based nanocrystalline ferromagnets [J], IEEE Transacation on Magnetics, 2001, 37(4): 2261-2265.
    39. 柯成.金属功能材料词典[M],北京:冶金工业出版社,1999,139-140.
    40. 肖素红,晁月盛,周本濂.连续超短电脉冲对非晶Fe_(78)Si_9B_(13)合金软磁性能的影响[J],物理学报,2000,49(2):288-291.
    41. 李正明.Fe(Co)-Hf-B-Cu高温软磁合金形成及磁脉冲处理效应[D],沈阳:东北大学,2008.
    42. 李月珠.快速凝固技术和材料[M],北京:国防工业大学出版社,1993,47-68.
    43. 刘粤惠,刘平安.X射线衍射分析原理与应用[M],北京:化学工业出版社,2003,36-38.
    44. 常铁军,祁欣.材料近代分析测试方法[M],哈尔滨:哈尔滨工业大学出版社,1999,221-227.
    45. 刘吉刚.脉冲磁场及微机控制系统的设计与实现[D],沈阳:东北大学,2001.
    46. 马如璋,徐英庭.穆斯堡尔谱学[M],北京:科学出版社,1998,205-206.
    47. Pingr D H, Wu Y Q, Hono K, et al. Microstructural characterization of (Fe_(0.5)Co_(0.5))_(88)Zr_7B_4Cu_1 nanocrystalline alloys [J], Scripta Materialia, 2001, 45(7): 781-786.
    48. Willard M A, Laughlin D E, McHenry M E. Recent advances in the development of (Fe, Co)_(88)Zr_7B_4Cu_1 magnets(invited) [J], Journal of Applied Physics, 2000, 879(9): 7091-7093.
    49. Koster U, Weiss P. Crystallization and decomposition of amorphous silicon-aluminium films [J], Journal of Non-Crystalline Solids, 1975, 17(3): 359-368.
    50. Choi Y H, Busch R, Koster U. Synthesis and characterization of particulate reinforced Zr_(57)Nb_5Al_(10)Cu_(15.4)Ni_(12.6) bulk metallic glass composites [J], Acta Materialia, 1999,22(8): 2455-2462.
    51. Illekovo E. The crystallization kinetics of Fe_(80)Si_4B_(16) metallic glass [J], Thermochimica Acta, 1996, 280-281(1): 289-301.
    52. Koebrugge G W, Van der Stel J, Sietsma J. Effect of free volume on the kinetics of chemical short range ordering in amorphous Fe_(40)Ni_(40)B_(20) [J], Journal of Non-Crystalline Solids, 1990, 117-118(2): 601-604.
    53. 马如璋.穆斯堡尔谱学手册[M],北京:冶金出版社,1993,187-189.
    54. Johnson C E, Ridout M S, Cranshaw T E. The Mossbauer effect in iron alloys [J], Proc.Phys.Soc, 1963, 81(6): 1079-1090.
    55. Wetheim C K, Jaccarino V, Wernick J H, et al. D.N.E.Buchanan. Range of the exchange interaction in iron alloys [J], Physical Review Letters, 1964,12(1): 24-27.
    56. Cook D C. Strain induced martensite formation in stainles steel [J], Metallurgical and Materials Transaction A, 1987, 18(3): 201-210.
    57. 李士.穆斯堡尔谱学方法学与数据处理[M],兰州:兰州大学出版社,1990,338-339.
    58. 林肇华.非晶态材料磁各向异性不均匀性对其技术磁化的重要影响[J],物理,1985,15:481.
    59. 陆伟,严彪,殷俊林等.非晶态软磁材料的结构与磁性能的物理基础[J],上海钢研,2003,2:26-34.