形状记忆合金复合材料薄壁箱形梁的主动变形特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
面对日益膨胀的能源需求,发展新型的可再生能源已经刻不容缓。风能作为一种取之不尽,用之不竭,没有污染的新型能源得到广泛认可。风力机已经在许多国家迅速发展起来。典型的大型风力机叶片多采用薄壁多闭室复合材料结构形式,并且在新型飞行器设计中薄壁箱型结构应用也十分广泛,因此,对复合材料薄壁结构的研究具有非常重要的价值。形状记忆合金材料(SMA)是二十世纪发展起来的智能材料,它在温度和应力作用下会发生马氏体相变而产生回复作用,能够驱动薄壁结构,使之产生变形,改善结构表面的气动性能,进而对结构动力学特性进行控制和调节。
     本文首先研究了具有耦合作用的复合材料薄壁箱型梁的静变形特征,基于变分渐进法导出梁横截面轴向力、扭矩、弯矩与横截面平均位移和转角之间的本构关系方程,并对CUS和CAS两种特殊铺设形式下的拉伸-扭转耦合和弯曲-扭转耦合进行了数值计算,揭示了具有一般铺层角的薄壁梁的拉伸-扭转-弯曲静变形特性的作用规律。其次,介绍了SMA的本构关系和相变动力学方程,并且根据应力-温度之间的关系,将应力引起的马氏体含量转换成温度形式引入马氏体含量函数关系中,通过线性化处理得出不同温度区间线性形式的相变动力学方程。第三,导出了各向同性弹性薄壁箱型外壁粘贴SMA层的复合材料薄壁结构的主动变形模型,针对横向均布载荷作用下的情况进行了数值计算,研究了在温度激励作用下,SMA层对该类结构的驱动作用,分析了温度和基体层厚度的影响。第四,基于变分渐进法、SMA应力应变关系以及线性相变动力模型,提出了具有拉伸-扭转-弯曲变形耦合的、包含SMA主动纤维驱动作用的复合材料薄壁空心梁的截面内力(矩)与位移(转角)本构方程。讨论了CUS构型和CAS构型,并给出了简化的本构方程。通过数值计算揭示了SMA对拉伸-弯曲-扭转变形特性的作用规律,分析了SMA纤维含量和驱动温度与复合材料铺层角的影响。研究表明,在马氏体向奥氏体转变阶段,空心悬臂梁在SMA纤维驱动下的产生较为显著的静变形响应,而且在不同的铺层角下,SMA纤维的驱动作用是不同的,调节SMA纤维的激励温度、改变SMA纤维的含量和SMA的初始应变,都能明显改善SMA的变形驱动性能。
With the growing trend for energy demand, the development of new renewable energy is becoming very urgent. Wind energy as one kind of new sources of energy, which is inexhaustible and no pollution, has been widely recognized. Wind turbine has been developed rapidly in many countries. A typical large wind turbine blades usually use composite materials closed thin-walled structures. And in the design of new generation of flight vehicle, thin-walled box structure is also widely applied. So the research of composite materials thin-walled structures is very important and valuable. Shape memory alloy (SMA) is developed as a smart material in twentieth century. With the change of temperature and stress, martensitic transformation will occur, therefore recovery stress will be produced in the material. The bending and twisting deformations of the structures can be induced by SMA. By controlling the deformations of the structures, the geometry of the structures can be changed, the aerodynamic loads can be modified, and then the aeroelastic behavior of the structures can be controlled.
     First, the deformation of the thin-walled laminated composite beams with coupled effect is investigated. The constitutive relationship of the composite thin-walled box structure is derived using an asymptotic variational method. The general form of constitutive relation was applied to the cases of extension-twist coupling, corresponding to Circumferentially Uniform(CUS) and bending-twist coupling, corresponding to Circumferentially Anti-Symmetric(CAS). The static tensile - torsion - bending deformation behavior of thin-walled beam with general ply angle is predicted. Secondly, the constitutive relation of SMA and the phase transformation dynamic equations are described. A linearized phase transformation dynamic equation is obtained by using the linearized approach at different temperature range. Thirdly, a static deformation analytical model of a cantilever box composite beam with shape memory alloy (SMA) layers pasted on the outside surfaces of the isotropy thin-wall beam is developed, and the numerical results of SMA actuated deformations under transverse uniform load is presented. Numerical results show that the transverse deflection is significant due to SMA layer actuation. The effects of thickness of the beam wall and the martensitic residual strain of SMA layers are also very important to the static response of the composite thin-walled beam. Fourth, based on asymptotic variational method, SMA stress-strain relationship, as well as the linearized phase transformation dynamic equation, the constitutive equations relating cross-sectional loads (forces and moments) to cross-sectional displacements (stretching, bending, twisting) of thin-walled laminated beams with integral shape memory alloy (SMA) active fibers was presented. Numerical results shown that significant extension, bending and twisting deflection occur during the phase transformation due to SMA actuation. The effects of temperature on structural response behavior during phase transformation from martensite to austenite are significant. The effects of the volume fraction of the SMA fiber, the martensitic residual strain and ply angle were also addressed.
引文
1.陈云程,陈孝耀,朱成名.风力机设计与应用[M],上海:上海科学技术出版社,1990,33-44.
    2.朱瑞兆,祝昌汉.中国太阳能-风能资源及其利用[M],北京:气象出版社,1988,3-5.
    3.王承煦,张源.风力发电[M],北京:中国电力出版社,2003,53-55.
    4.Bent A A.Active fiber composites for structural actuation[D],Department of Aeronautics and Astronautics,Massachusetts Institute of Technology,1997.
    5.Wilkie W K,Bryant R G,High J W,etal.Low-cost piezocomposite actuator for structural control applications[C],Proceedings of SPIE 7th Annual Int.Symptom on Smart Structures and Materials,2000.
    6.Park J S,Kim J H.Design and aeroelastic analysis of active twist rotor blades incorporating single crystal macro fiber composite actuators[J],Composites:Part B,2008,39:1011-1025.
    7.Cesnik C E S.Modeling,design,and testing of the NASA/Army/MIT active twist rotor prototype blade[C],Proc.American Helicopter Society 55th Annual Forum,Canada,1999.
    8.Song O,Librescu L.Free vibration of anisotropic composite thin-walled beams of closed cross-section contour[J],Journal of Sound and Vibration,1993,167(1):129-147.
    9.Simith E C,Chopra I.Formulation and evaluation of an analytical model for composite box-beams[J],Journal of The American Helicopter Society,1991,7:23-35.
    10.Hodges D H,Atilgan A R,Fulton M V.Free-vibration Analysis of composite beams[J],Composite Beams Dynamics,1991,7:36-47.
    11.Dancila D S,Armanios E A.The influence of coupling on the free vibration of anisotropic thin-walled closed-section beams[J],International Journal of Solids and Structures,1998,35(23):3105-3119.
    12.Andreas B,Elmar B.Adaptive blade twist-calculations and experimental results[J],Aerospace Science and Technology,2000,4:309-319.
    13.Armanios E A,Badir A M.Free vibration analysis of anisotropic thin-walled closed-section beams,AIAA,1995,33:1905-1910.
    14.王元丰,徐晓明.复合材料薄壁梁的翘曲[J],北方交通大学学报,1996,20(5):569-572.
    15. Bauld N R Jr, Tzeng L S. A vlasov theory for fiber reinforced beams with thin-walled open cross sections [J], International Journal of Solids Structure, 1984,203: 277-297.
    
    16. Kohelev V V, Laaarichev A D. Model of thin-walled anisotropic rods[J], Mekhanika Kompoztinykh Materialov, 1988,241: 102-109.
    
    17. Chandra R, Chopra L. Experimental and theoretical analysis of composites beams with elastic couplings[J], A1AA, Journal, 1991, 29(12): 2197- 2217.
    
    18. Huang D, Sun B H. Approximate solution on smart composites beams by MATLAB[J], Composite, Structure, 2001, 54: 197-205.
    
    19.Waissman H, Abramovich H. Active stiffening of laminated composite beams using piezoelectric actuators[J], Composite, Structure, 2002, 58:109-20.
    
    20. Raja S, Prathap G, Sinha P K. Active vibration control of composite sandwich beams with piezoelectric extension-bending and shear actuators [J], Smart Mater, Structure, 2002, 11:63-71.
    
    21. Sloss J M, Bruch J C, Sadek I S, etal. Piezo patch sensor/actuator control of the vibrations of a cantilever under axial load[J], Composite, Structure, 2003, 62: 423-438.
    
    22. Wang Q, Quek ST. Enhancing flutter and buckling capacity of column by piezoelectric layers[J], Int J Solids Structure, 2002, 39: 4167-4180.
    
    23. Abramovich H, Livshits A. Dynamic behavior of cross-ply laminated beam with piezoelectric layers[J], Composite, Structure, 1993, 25:371-379.
    
    24. Song G, Qiao P Z, Binienda W K, etal. Active vibration damping of composite beams using smart sensors and actuators[J], Aerospace Engineer, 2002, 15(3): 97-103.
    
    25. Librescu L, Mcirovitch L, Na S S. Control of cantilever vibration via structural tailoring and adaptive materials[J], AIAA, 1997, 35(8): 1307-1315.
    
    26. Jiang B, Batra R C. Micromechanical modeling of a composite containing piezoelectric and shape memory alloy inclusions[J], Journal of Intelligent Material Systems and Structures, 2001, 12: 165-182.
    
    27. Chandra R, Chopra Inderjit. Structural modeling of composite beams with induced-strain Actuators[J], AIAA, Journal, 1993,31(9): 1692-1701.
    
    28. Chen P C, Chopra I. Hover testing of smart rotor with induced-strain actuation of blade twist[J], AIAA Journal, 1997, 35(1): 6-16.
    29.Cesnik C E S,Shin S J.On the modeling of integrally actuated helicopter blades[J],International Journal of Solids and Structures,2001,38:1765-1789.
    30.Ghomshei M M,Tabandeh N,A Ghazavi.A three-dimensional shape memory alloy/elastomer actuator[J],Composites,2001.32:441-449.
    31.Chandra R.Active shape control of composite blades using shape memory actuation[J],Institute of Physics Publishing,2001,10:1018-1024.
    32.王吉军,崔立山,杨大智等.NiTi形状记忆合金的振动主动控制研究[J],大连理工大学学报,1997,37(4):484-489.
    33.霍永忠,Hoffimann K H.形状记忆合金的主动振动控制研究[C],96年中国材料研讨会论文集(功能材料),1996,660-664.
    34.梅胜敏,秦太验,陶宝棋.SMA用于主动振动控制的方法初探[J],力学与实践,1995,17(4):16-18.
    35.Chen Q,Levy C.Active vibration control of elastic beam by means of shape memory alloy layers[J],Smart Materials and Structures,1996,5(4):400-406.
    36.邹静,钟伟芳,王兴光.含SMA纤维的复合材料梁有限元法[J],华中科技大学学报,2001,29(12):98-100.
    37.邵兵,任勇生.SMA纤维混杂层合梁的振动分析[J],工程力学,2003,20(4):183-187.
    38.秦惠增,任勇生.含形状记忆合金(SMA)层柔性梁的振动频响特性[J],机械强度,2002,24(1):45-48.
    39.Chandra R.Active shape control of composite blades using shape memory actuation[J],Smart Mater,Structure,2001,10:1018-1024.
    40.何存富,金江,陶宝祺.形状记忆合金驱动薄壁圆管扭转变形分析及试验研究[JJ,机械工程学报,2001,37(2):17-21
    41.沈观林,胡更开.复合材料力学,北京:清华大学出版社,2006.
    42.Liang C,Rogers C A.One-dimensional thermomechanical constitutive relations for shape memory materials[J],AIAA,1990,39(3):16-28.
    43.Lin M W,Rogers C A.Analysis of stress distribution in a shape memory alloy composite beam[J],AIAA,1991,39(3):169-177.
    44.Badir A M.Analysis of advanced thin-walled composite structures[D],Georgia Instruct of Technology,1992.
    45.Zhong Z W,Chen R R,Mei C.Buckling and postbuckling of shape memory alloy fiber-reinforced composite plates[C],Buckling and postbuckling of composite structures,1994,115-132.
    46.邹静,钟伟芳,王兴光.含形状记忆合金纤维的复合材料层合板的弯曲及自由振动的有限元分析[J],固体力学学报,2000,21(1):27-32.
    47.杨东涛,吴亚平.复合材料层合箱梁在压、弯、扭荷载作用下的线性及非线性分析[D],兰州交通大学,2006.
    48.邹静,钟伟芳,王兴光.含形状记忆合金纤维的复合材料层合板的弯曲及自由振动的有限元分析[J],固体力学学报,2000,21(1):27-32.
    49.李世荣,郁汶山.嵌入形状记忆合金纤维复合材料圆板的弯曲[J],力学与实践,2008,30(1):27-30.
    50.王蓓,赵永利,李杰等.形状记忆合金纤维复合材料纤维方向弹性模量的实验研究[J],科学技术与工程,2008,8(4):1023-1024.
    51.缪正华,于月民,丁元柱.形状记忆聚合物复合材料梁的弯曲变形[J],黑龙江科技学院学报,2008,18(1):73-76.