原子级厚度二维晶体的设计及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
原子级厚度二维晶体是一种全新的材料,它的出现为制备大面积和高质量的纳米器件带来了希望。这种独特的二维结构能够将微观下优异的电学、磁学和光学性能与宏观下的超薄性、透明性和柔韧性有机地结合在一起,从而能够实现器件的微型化和功能的最大化。然而,对于原子级厚度二维晶体的研究大多都集中在硼氮、层状过渡金属硫属化合物等层间由范德华力结合的层状化合物中。将二维晶体的研究拓展至具有非层状结构或层间由较强力所结合的准层状结构的材料中,不仅能够丰富原子级厚度二维晶体的种类,同时也能够给我们带来不可预期的惊喜。
     本论文旨在探索新型原子级厚度二维晶体的设计、可控合成及其相关性能研究。在本论文中我们补充并发展了直接液相剥离、基于置换固溶体的液相剥离、取向连接、二维面内共组装等合成方法,同时通过密度泛函的理论研究与实验相结合的方法对反应的机理、所获得的新型二维晶体的结构和性能进行了充分的研究。本论文主要包括以下几方面的内容:
     1.作者通过晶体结构的分析首次提出由于层间由范德华力所结合和与水相吻合的表面能,石墨相C3N4(g-C3N4)可以在水溶液中通过简单液相剥离的方法来获得其相应的原子级厚度二维晶体。所得到的超薄g-C3N4纳米片具有显著的光响应性增强,这与理论计算给出其导带底部增强的态密度相一致。同时原子级厚度g-C3N4纳米片的光致发光量子产率高达19.6%,为相应块材的4倍多。基于稳定的本征光致发光性能,极高的发光量子产率、良好的水溶性和生物兼容性,g-C3N4纳米片具有良好的细胞成像的效果。
     2.针对层间强相互作用的准层状结构材料无法直接剥离的困难,作者发展了基于置换固溶体的液相剥离法,旨在通过合成具有基于Hume-Rothery置换固溶体的活化层,进而将具有相对较强层间作用力的多元准层状材料剥离成超薄二维晶体,并以此成功实现了MAX相物质的剥离。在MAX结构中MX层与A层之间由较强的键所连接,不能通过直接液相剥离的方法而剥离成片层。以Ti3SiC2为例,作者通过用Al取代Si层间1/4Si原子的位置来形成Si-Al无序的置换固溶体Ti3Si0.75Al0.25C2(TSAC)来活化Ti3SiC2物相,使其能够剥离开来。较之相应的块材,所获得的超薄TSAC纳米片层体现出增强的热学和力学性能,可以作为填充物来改良高分子材料的热学和力学性能。
     3.作者通过二维取向连接的方式获得了具有独特层状堆积结构的超薄Co9Se8纳米片,其单层厚度仅为0.52nm,恰恰是Co9Se8单胞的一半。态密度计算表明,这种独特半分子层厚度的纳米片呈现出本征的半金属铁磁性能,而块材Co9Se8则是典型的半导体。同时Co9Se8纳米片所呈现的弱半导体特性和室温铁磁性能也对其本征半金属铁磁性能给出了实验上的支持。据我们所知这种原子级厚度的Co9Se8纳米片是首个人工合成的具有本征半金属铁磁性能的无机二维晶体,这一报道不仅能够激发大家在低维物质中寻找新的具有半金属铁磁性能物质的研究兴趣,同时也为设计具有超薄、透明、柔性的电子自旋器件提供了一个可行的道路。
     4.作者首次发展了二维面内共组装方法,设计并合成了一系列具有原子级厚度的过渡金属硫属化合物—有机胺分子(MxTy—胺,其中M为Co或Fe或Ni;T为S或Se;胺为CnH2n+xNH2,n≥12)组成的无机—有机杂化纳米片,并且以Co9S8.油胺为例,对杂化片的结构特点和形成机理进行了详细的研究。研究表明所合成的杂化片厚度仅为约0.5纳米,这一厚度恰恰为Co9S8单胞的一半,并且呈现出无机、有机单元交替连接的网络状结构。理论计算表明,油胺分子倾向于吸附在Co9S8纳米片的侧面和边角的Co原子处,而吸附在上、下表面则是极不稳定的,这一结论也对我们所提出的无机、有机单元二维面内共组装的机理给出了理论的支持。同时通过同步辐射X射线吸收精细结构谱(XAFS)揭示了Co9S8纳米片中存在着晶体结构的扭曲,正是由于这种扭曲使得杂化片层能够稳定存在,同时也可能带来更多的新颖的性质。MXTy—胺杂化纳米片是首个具有原子级厚度的无机—有机杂化片,丰富了原子级厚度纳米片的种类。
Atomically thick two-dimensional (2D) crystals are brand new materials, which can be used for the design of high quality nano-devices. The atomically thick2D crystals can effectively combine the microscopic electronic, magnetic and optical properties with macroscopic ultrathin, transparent and flexible devices, guaranteeing a maximum functionality while keeping the size minimized. However, the study of atomically thick2D crystals were mainly restrict on the layered materials with weak van der Waals force between the layers, such as, hexagonal boron nitride (h-BN), layered transition metal chalcogenides, and so on. Expanding the study area to atomically thick2D crystals with nonlayered structure or quasi-layered structure with relatively strong bonds between the layers will not only enrich the family of2D atomic crystals, but also bring us unprecedented surprises.
     The goal of this dissertation is to design and controllable synthesize newly atomically thick2D crystals, as well as the study of their corresponding properties. In this dissertation, we highlight direct liquid exfoliation, substitutional-solid-solution based exfoliation, oriented attachment and in-plane coassembly strategies for the design of a series of new2D crystals with atomic thickness. Furthermore, the reaction mechanism, structures and properties of the atomically thick2D crystals are comprehensively studied by the combination of density functional theory (DFT) and experimental studies. The details are summarized briefly as follows:
     1. By detailed crystal structure analysis, for the first time, we proposed that the graphite-C3N4(g-C3N4) could be exfoliated into atomically thick nanosheets by direct liquid exfoliation strategy for its layered structure. Further study shows that water is the best solvent to exfoliate the g-C3N4for its highest polarity among the used solvents and matched surface energy with g-C3N4. DFT calculations indicate that the atomically thick g-C3N4nanosheets show enhanced photoresponsivity compared with corresponding bulk materials, which has been confirmed by detailed experiments, such as, intrinsic photocurrent and photocatalytic activity. Furthermore, the ultrathin g-C3N4nanosheets show extremely high photoluminescence (PL) quantum yield of about19.4%, which is four times higher than the corresponding bulk materials. Thus, benefiting from the inherent blue light PL with high quantum yields and high stability, good biocompatibility, and nontoxicity, the water-soluble ultrathin g-C3N4nanosheet is a brand-new but promising candidate for bioimaging application.
     2. The authors firstly developed a substitutional-solid-solution based exfoliation strategy for the preparation of the atomically thick2D crystals of MAX phases, in which the MX and A layers are covalented by relatively strong bonds and cannot be exfoliated into nanosheets by direct liquid exfoliation process. By taking Ti3SiC2for example, we substituted1/4of Si with Al atoms to form a Si-Al disordered substitutional-solid-solution Ti3Si0.75Al0.25C2(TSAC) to activate the A layers of Ti3SiC2, which would be exfoliatable. Compared to bulk counterparts, the atomically thick TSAC nanosheets show enhanced thermal and mechanical properties, and can be used as a promising candidate for the application in polymeric composites.
     3. The atomically thick Co9Se8nanosheets with unique lamellar stacking have been prepared by2D oriented attachment process, which show single layer just half unit cell thick of Co9Se8crystal of about0.52nm. Further density of states (DOSs) study indicate that the single layered Co9Se8nanosheet is half-metallic ferromagnetism, however, the corresponding bulk counterpart is a typical semiconductor. Meanwhile, the weak semiconducting and room-temperature ferromagnetic characteristics strongly supported the intrinsic half-metallic ferromagnetism of the atomically thick Co9Se8nanosheets. To the best of our knowledge, the ultrathin Co9Seg nanosheets with atomic thickness are the first artificial inorganic2D nanosheets with intrinsic half-metallic ferromagnetism, which will not only inspire scientific interest in the possible half-metallic ferromagnetism of low dimensional materials but also pave a practical way to achieve ultrathin, transparent, and flexible paperlike spintronic devices.
     4. For the first time, we highlight a universal pathway for the controlled synthesis of ultrathin transition metal chalcogenide-alkylamine (MxTy-alkylamine, where M=Co, Fe, Ni; T=S, Se; alkylamine means CnH2n+xNH2with n≥12) inorganic-organic hybrid nanosheets with atomic thickness by a unique in-plane coassembly strategy between small2D transition metal chalcogenide nanoplates and alkylamines with different lengths. By taking Co9S8-oleylamine (Co9S8-OA) hybrid nanosheets as example, we studied the structure and formation mechanism of the hybrid nanosheets in detail. The Co9S8-OA hybrid nanosheets with thickness of only about0.5nm and lateral size up to1μm, and the inorganic and organic parts alternately arrange with each other in a confined2D space forming a network structure. Theoretical studies show that the oleylamine molecules tend to adsorb on the corner and side surface Co sites of Co9S8nanoplates, however, adsorbing on the top surface Co sites is extremely unstable, which supports the2D in-plane coassembly strategy. Furthermore, the surface distortion of the Co9S8nanoplate revealed by X-ray absorption fine structure spectroscopy (XAFS) not only stabilizes the hybrid nanosheets structure but also influences their electronic structure and brings on novel physical properties. The as-obtained MxTy-alkylamine hybrid nanosheets reported here was the first case of artificial inorganic-organic hybrid nanosheets with atomic thickness, enriched the kinds of atomically thick nanosheets.
引文
[1]a) A. K. Geim, K. S. Novoselov, Nat. Mater.2007,6,183; b) M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, H. Zhang, Nat. Chem.2013,5,263; c) S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutierrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, J. E. Goldberger, ACS Nano 2013,7,2898.
    [2]X. Zhang, X. Xie, H. Wang, J. Zhang, B. Pan, Y. Xie, J. Am. Chem. Soc.2012,135,18.
    [3]a) J. Feng, L. Peng, C. Wu, X. Sun, S. Hu, C. Lin, J. Dai, J. Yang, Y. Xie, Adv. Mater.2012, 24,1969; b) J. Feng, X. Sun, C. Wu, L. Peng, C. Lin, S. Hu, J. Yang, Y. Xie, J. Am. Chem. Soc. 2011,133,17832.
    [4]Y. Sun, H. Cheng, S. Gao, Q. Liu, Z. Sun, C. Xiao, C. Wu, S. Wei, Y. Xie, J. Am. Chem. Soc. 2012,134,20294.
    [5]Y. Sun, H. Cheng, S. Gao, Z. Sun, Q. Liu, Q. Liu, F. Lei, T. Yao, J. He, S. Wei, Y. Xie, Angew. Chem. Int. Ed.2012,51,8727.
    [6]B Radisavljevic, A Radenovic, J Brivio, V Giacometti, A Kis, Nat. Nano.2011,6,147.
    [7]K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 2004,306,666.
    [8]Y.-H. Lee, X.-Q. Zhang, W. Zhang, M.-T. Chang, C.-T. Lin, K.-D. Chang, Y.-C. Yu, J. T.-W. Wang, C.-S. Chang, L.-J. Li, T.-W. Lin, Adv. Mater.2012,24,2320.
    [9]J. N. Coleman, M. Lotya, A. O'Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, I. V. Shvets, S. K. Arora, G. Stanton, H.-Y. Kim, K. Lee, G. T. Kim, G. S. Duesberg, T. Hallam, J. J. Boland, J. J. Wang, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, J. M. Perkins, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist, V. Nicolosi, Science 2011,331,568.
    [10]a)X. Zhang, J. Zhang, J. Zhao, B. Pan, M. Kong, J. Chen, Y. Xie, J. Am. Chem. Soc.2012, 134,11908; b)C. Schliehe, B. H. Juarez, M. Pelletier, S. Jander, D. Greshnykh, M. Nagel, A. Meyer, S. Foerster, A. Kornowski, C. Klinke, H. Weller, Science 2010,329,550.
    [11]a) X. Huang, Z. Zeng, H. Zhang, Chem. Soc. Rev.2013,42,1934; b) J. H. Han, S. Lee, J. Cheon, Chem. Soc. Rev.2013,42,2581.
    [12]a) K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, A. K. Geim, Proc. Natl Acad. Sci. U. S. A.2005,102,10451; b) H. Li, G. Lu, Y. Wang, Z. Yin, C. Cong, Q. He, L. Wang, F. Ding, T. Yu, H. Zhang, Small 2013, DOI:10.1002/smll.201202919.
    [13]X. Li, W. Cai, L. Colombo, R. S. Ruoff, Nano Lett.2009,9,4268.
    [14]K.-K. Liu, W. Zhang, Y.-H. Lee, Y.-C. Lin, M.-T. Chang, C.-Y. Su, C.-S. Chang, H. Li, Y. Shi.
    H. Zhang, C.-S. Lai, L.-J. Li, Nano Lett.2012,12,1538.
    [15]Z. Tang, Z. Zhang, Y. Wang, S. C. Glotzer, N. A. Kotov, Science 2006,314,274.
    [16]K. T. Nam, S. A. Shelby, P. H. Choi, A. B. Marciel, R. Chen, L. Tan, T. K. Chu, R. A. Mesch, B.-C. Lee, M. D. Connolly, C. Kisielowski, R. N. Zuckermann, Nat. Mater.2010,9,454.
    [17]X. Zhang, Q. Liu, L. Meng, H. Wang, W. Bi, Y. Peng, T. Yao, S. Wei, Y. Xie, ACS Nano 2013, 7,1682.
    [18]L. Li, Z. Chen, Y. Hu, X. Wang, T. Zhang, W. Chen, Q. Wang, J. Am. Chem. Soc.2013,135, 1213.
    [19]Y. Min, G. D. Moon, B. S. Kim, B. Lim, J.-S. Kim, C. Y. Kang, U. Jeong, J. Am. Chem. Soc. 2012,134,2872.
    [20]Z. Wang, C. Schliehe, T. Wang, Y. Nagaoka, Y. C. Cao, W. A. Bassett, H. Wu, H. Fan, H. Weller, J. Am. Chem. Soc.2011,133,14484.
    [21]冯冯,吴长征,谢毅,中国科学:化学2012,42,1576.
    [22]X. Huang, S. Li, Y. Huang, S. Wu, X. Zhou, S. Li, C. L. Gan, F. Boey, C. A. Mirkin, H. Zhang, Nat. Commun.2011,2,292.
    [23]W. Bi, M. Zhou, Z. Ma, H. Zhang, J. Yu, Y. Xie, Chem. Commun.2012,48,9162.
    [24]Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun'Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, J. N. Coleman, Nat. Nano.2008,3,563.
    [25]K.-G. Zhou, N.-N. Mao, H.-X. Wang, Y. Peng, H.-L. Zhang, Angew. Chem. Int. Ed.2011,50, 10839.
    [26]M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, M. W. Barsoum, Adv. Mater.2011,23,4248.
    [27]X. Zhang, J. Xu, H. Wang, J. Zhang, H. Yan, B. Pan, J. Zhou, Y. Xie, Angew. Chem. Int. Ed. 2013,52,4361.
    [28]M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu, L. Hultman, Y. Gogotsi, M. W. Barsoum, ACS Nano 2012,6,1322.
    [29]a) H. Nakano, M. Ishii, H. Nakamura, Chem. Commun.2005,2945; b) H. Nakano, T. Mitsuoka, M. Harada, K. Horibuchi, H. Nozaki, N. Takahashi, T. Nonaka, Y. Seno, H. Nakamura, Angew. Chem. Int. Ed.2006,45,6303; c) Y. Sugiyama, H. Okamoto, T. Mitsuoka, T. Morikawa, K. Nakanishi, T. Ohta, H. Nakano, J. Am. Chem. Soc.2010,132,5946.
    [30]H. S. S. Ramakrishna Matte, A. Gomathi, A. K. Manna, D. J. Late, R. Datta, S. K. Pati, C. N. R. Rao, Angew. Chem. Int. Ed.2010,49,4059.
    [31]C. Lin, X. Zhu, J. Feng, C. Wu, S. Hu, J. Peng, Y. Guo, L. Peng, J. Zhao, J. Huang, J. Yang, Y. Xie, J. Am. Chem. Soc.2013,135,5144.
    [32]Z. Zeng, Z. Yin, X. Huang, H. Li, Q. He, G. Lu, F. Boey, H. Zhang, Angew. Chem. Int. Ed. 2011,50,11093.
    [33]L. Liu, T. Yao, X. Tan, Q. Liu, Z. Wang, D. Shen, Z. Sun, S. Wei, Y. Xie, Small 2012,8, 3752.
    [34]Y. Sun, Z. Sun, S. Gao, H. Cheng, Q. Liu, J. Piao, T. Yao, C. Wu, S. Hu, S. Wei, Y. Xie, Nat. Commun.2012,3,1057.
    [35]J. S. Son, X.-D. Wen, J. Joo, J. Chae, S.-i. Baek, K. Park, J. H. Kim, K. An, J. H. Yu, S. G. Kwon, S.-H. Choi, Z. Wang, Y.-W. Kim, Y. Kuk, R. Hoffmann, T. Hyeon, Angew. Chem. Int. Ed. 2009,48,6861.
    [36]H. Zhu, X. Qin, X. Sun, W. Yan, J. Yang, Y. Xie, Sci. Rep.2013,3.
    [37]a)D. C. Elias, R. R. Nair, T. M. G. Mohiuddin, S. V. Morozov, P. Blake, M. P. Halsall, A. C. Ferrari, D. W. Boukhvalov, M. I. Katsnelson, A. K. Geim, K. S. Novoselov, Science 2009,323, 610; b)J. O. Sofo, A. S. Chaudhari, G. D. Barber, Phys. Rev. B 2007,75,153401.
    [38]R. R. Nair, W. Ren, R. Jalil, I. Riaz, V. G. Kravets, L. Britnell, P. Blake, F. Schedin, A. S. Mayorov, S. Yuan, M. I. Katsnelson, H.-M. Cheng, W. Strupinski, L. G. Bulusheva, A. V. Okotrub, I. V. Grigorieva, A. N. Grigorenko, K. S. Novoselov, A. K. Geim, Small 2010,6,2877.
    [39]W. Chen, Y. Li, G. Yu, C.-Z. Li, S. B. Zhang, Z. Zhou, Z. Chen, J. Am. Chem. Soc.2010,132, 1699.
    [40]X. Wei, M.-S. Wang, Y. Bando, D. Golberg, ACS Nano 2011,5,2916.
    [41]M. S. Si, D. S. Xue, Phys. Rev. B 2007,75,193409.
    [42]P. Johari, V. B. Shenoy, ACS Nano 2012,6,5449.
    [43]Y. Zhou, Z. Wang, P. Yang, X. Zu, L. Yang, X. Sun, F. Gao, ACS Nano 2012,6,9727.
    [44]a) K. F. Mak, C. Lee, J. Hone, J. Shan, T. F. Heinz, Phys. Rev. Lett.2010,105,136805; b) S. Hu, X. Wang, Chem. Soc. Rev.2013; c) A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, F. Wang, Nano Lett.2010,10,1271.
    [45]F. Wu, Y. Liu, G. Yu, D. Shen, Y. Wang, E. Kan, J. Phys. Chem. Lett.2012,3,3330.
    [46]L. J. Cote, F. Kim, J. Huang, J. Am. Chem. Soc.2008,131,1043.
    [47]X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang, H. Dai, Nat. Nano.2008,3,538.
    [48]a) K. Akatsuka, M.-a. Haga, Y. Ebina, M. Osada, K. Fukuda, T. Sasaki, ACS Nano 2009,3, 1097; b) B.-W. Li, M. Osada, T. C. Ozawa, Y. Ebina, K. Akatsuka, R. Ma, H. Funakubo, T. Sasaki, ACS Nano 2010,4,6673.
    [49]a) Y. Zhang, J. Ye, Y. Matsuhashi, Y. Iwasa, Nano Lett.2012,12,1136; b) Y. Yoon, K. Ganapathi, S. Salahuddin, Nano Lett.2011,11,3768; c) Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, M. S. Strano, Nat. Nano.2012,7,699.
    [50]Y. Zhu, S. Murali, M. D. Stoller, K. J. Ganesh, W. Cai. P. J. Ferreira, A. Pirkle, R. M. Wallace, K. A. Cychosz, M. Thommes, D. Su, E. A. Stach, R. S. Ruoff, Science 2011,332,1537.
    [51]J. J. Yoo, K. Balakrishnan, J. Huang, V. Meunier, B. G. Sumpter, A. Srivastava, M. Conway, A. L. Mohana Reddy, J. Yu, R. Vajtai, P. M. Ajayan, Nano Lett.2011,11,1423.
    [52]a) J. Zhu, L. Bai, Y. Sun, X. Zhang, Q. Li, B. Cao, W. Yan, Y. Xie, Nanoscale 2013; b)X. Rui, Z. Lu, Z. Yin, D. H. Sim,N. Xiao, T. M. Lim. H. H. Hng, H. Zhang, Q. Yan, Small 2013,9,716.
    [53]H. Li, Z. Yin, Q. He, H. Li, X. Huang, G. Lu, D. W. H. Fam, A. I. Y. Tok, Q. Zhang, H. Zhang, Small 2012,8,63.
    [54]K. P. Loh, Q. Bao, G. Eda, M. Chhowalla, Nat. Chem.2010,2,1015.
    [55]Z. Liu, J. T. Robinson, X. Sun, H. Dai, J. Am. Chem. Soc.2008,130,10876.
    [56]S. Zhu, J. Zhang, C. Qiao, S. Tang, Y. Li, W. Yuan, B. Li, L. Tian, F. Liu, R. Hu, H. Gao, H. Wei, H. Zhang, H. Sun, B. Yang, Chem. Commun.2011,47,6858.
    [57]a) S. He, B. Song, D. Li, C. Zhu, W. Qi, Y. Wen, L. Wang, S. Song, H. Fang, C. Fan, Adv. Funct. Mater.2010,20,453; b) C.-H. Lu, H.-H. Yang, C.-L. Zhu, X. Chen, G.-N. Chen, Angew. Chem. Int. Ed.2009,48,4785.
    [58]a) S. Chen, Q. Wu, C. Mishra, J. Kang, H. Zhang, K. Cho, W. Cai, A. A. Balandin, R. S. Ruoff, Nat. Mater.2012,11,203; b) S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, R. S. Ruoff, Nature 2006,442, 282.
    [59]Y. Lin, J. W. Connell, Nanoscale 2012,4,6908.
    [60]C. Zhi, Y. Bando, C. Tang, H. Kuwahara, D. Golberg, Adv. Mater.2009,21,2889.
    [1]a)Novoselov, K.S.;Jiang, D.; Schedin, F.; Booth, T. J.;Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Proc. Natl Acad. Sci.U.S.A.2005,102,10451. b) Geim, A. K.; Novoselov, K. S. Nat. Mater.2007,6,183. c) Loh, K. P.; Bao, Q.; Eda, G.; Chhowalla, M. Nat. Chem.2010.2, 1015. d) Feng, J.; Peng, L.; Wu, C.; Sun, X.; Hu, S.; Lin, C.; Dai, J.; Yang, J.; Xie, Y. Adv. Mater.2012,24,1917.
    [2]a) Zhang, X.; Zhang, J.; Zhao, J.; Pan, B.; Kong, M.; Chen, J.; Xie,Y. J. Am. Chem. Soc.2012, 134,11908. b) Schliehe, C.; Juarez, B. H.;Pelletier, M.; Jander, S.; Greshnykh, D.; Nagel, M.; Meyer, A.; Foerster.S.; Kornowski, A.; Klinke, C.; Weller, H. Science 2010,329,550. c) Ramakrishna Matte, H. S. S.; Gomathi, A.; Manna, A. K.; Late, D. J.;Datta, R.; Pati, S. K.; Rao, C. N. R. Angew. Chem., Int. Ed.2010,49,4059. d) Ma, R.; Sasaki, T. Adv. Mater.2010, 22,5082.
    [3]a) Wang, X.; Zhi, L.; Mullen, K. Nano Lett.2007,8,323. b) Feng, J.; Sun, X.; Wu, C.; Peng, L.; Lin, C.; Hu, S.; Yang, J.; Xie, Y. J. Am. Chem. Soc.2011,133,17832. c) Liu, Z.; Robinson, J. T.; Sun, X.; Dai, H. J. Am.Chem. Soc.2008,130,10876. d) Sreejith, S.; Ma. X.; Zhao, Y. J. Am. Chem. Soc.2012,134,17346. e) Yang, X.; Zhang, X.; Liu, Z.; Ma, Y.;Huang, Y.; Chen, Y. J. Phys. Chem. C 2008,112,17554.
    [4](a) Zhang, Y.; Li, Y.; Yan, X.-P. Small 2009,5,185. (b) Gu, Y.-P.; Cui, R.; Zhang, Z.-L.; Xie, Z.-X.; Pang, D.-W. J. Am. Chem. Soc.2011,134,79. (c) Zimmer, J. P.; Kim, S.-W.; Ohnishi, S.; Tanaka, E.; Frangioni, J. V.; Bawendi, M. G. J. Am. Chem. Soc.2006,128,2526.
    [5]Soo Choi, H.; Liu, W.; Misra, P.; Tanaka, E.; Zimmer, J. P.; Itty Ipe,B.; Bawendi, M. G.; Frangioni, J. V. Nat. Biotechnol.2007,25,1165.
    [6]a) Liu, R.; Wu, D.; Feng, X.; Mullen, K. J. Am. Chem. Soc.2011,133,15221. b) Zhu, S.; Zhang, J.; Qiao, C.; Tang, S.; Li, Y.; Yuan, W.; Li, B.; Tian, L.; Liu, F.; Hu, R.; Gao, H.; Wei, H.; Zhang, H.; Sun, H.; Yang, B. Chem. Commun.2011,47,6858.
    [7]Montigaud, H.; Tanguy, B.; Demazeau, G.; Alves, I.; Birot, M.; Dunogues, J. Diam. Relat. Mater.1999,8,1707.
    [8]Groenewolt, M.; Antonietti, M. Adv. Mater.2005,17,1789.
    [9]a) Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.;Carlsson, J. M.; Domen, K.; Antonietti, M. Nat. Mater.2009,8,76. b) Zhang, Y.; Antonietti, M. Chem. Asian J.2010,5, 1307. c) Su, F.;Mathew. S. C.; Lipner, G.; Fu, X.; Antonietti, M.; Blechert, S.; Wang, X. J. Am. Chem. Soc.2010,132,16299. d) Du, A.; Sanvito, S.; Smith, S. C. Phys. Rev. Lett.2012, 108, 197207. e) Du, A.; Sanvito, S.; Li, Z.; Wang,D.; Jiao, Y.; Liao, T.; Sun, Q.; Ng, Y. H.; Zhu, Z.; Amal, R.; Smith, S. C. J. Am. Chem. Soc. 2012, 134, 4393.
    [10]Sun, Y.; Cheng, H.; Gao, S.; Sun, Z.; Liu, Q.; Liu, Q.; Lei, F.; Yao, T.; He, J.; Wei, S.; Xie, Y. Angew. Chem., Int. Ed. 2012, 57, 8727.
    [11]Xu, T. G.; Zhang, C.; Shao, X.; Wu, K.; Zhu, Y. F. Adv. Funct.Mater. 2006, 16, 1599.
    [12]Madl, M.; Brezna, W.; Klang, P.; Andrews, A. M.; Strasser, G.; Smoliner, J. Semicond. Sci. Technol. 2010, 25, 065010.
    [13]a) Coleman, J. N.; Lotya, M.; O'Neill, A.; Bergin, S. D.; King, P.J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R. J.; Shvets, I. V.;Arora, S. K.; Stanton, G.; Kim, H: Y.; Lee, K.; Kim, G. T.; Duesberg, G.S.; Hallam, T.; Boland, J. J.; Wang, J. J.; Donegan, J. F.; Grunlan, J. C.;Moriarty, G.; Shmeliov, A.; Nicholls, R. J.; Perkins, J. M.; Grieveson, E.M.; Theuwissen, K.; McComb, D. W.; Nellist, P. D.; Nicolosi, V. Science2011, 331, 568. b) Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F.M.; Sun, Z.; De, S.; McGovern, 1. T.; Holland, B.; Byrne, M.; un'Ko, Y.K.; Boland, J. J.; Niraj, P.; Duesberg, G.; Krishnamurthy, S.; Goodhue,R.; Hutchison, J.; Scardaci, V.; Ferrari, A. C.; Coleman, J. N. Nat.Nanotechnol. 2008, 3, 563.
    [14]Grimme, S. J. Comput. Chem. 2006, 27, 1787.
    [15]Lotsch, B. V.; Do"blinger, M.; Sehnert, J.; Seyfarth, L.; Senker, J.;Oeckler, O.; Schnick, W. Chem.Eur. J. 2007, 13, 4969.
    [16]Sun, Y.; Qu, B.; Liu, Q.; Gao, S.; Yan, Z.; Yan, W.; Pan, B.; Wei, S.;Xie, Y. Nanoscale 2012, 4,3761.
    [17]Pan, D.; Zhang, J.; Li, Z.; Wu, M. Adv. Mater. 2010, 22, 734.
    [1]P. Eklund, M. Beckers, U. Jansson, H. Hogberg, L. Hultman, Thin Solid Films 2010,518, 1851.
    [2]X. H. Wang, Y. C. Zhou, J. Mater. Sci. Technol.2010,26,385.
    [3]M.W. Barsoum, M. Radovic, Annu. Rev. Mater. Res.2011,41,195.
    [4]R. Ahuja, O. Eriksson, J. M. Wills, B. Johansson, Appl. Phys. Lett.2000,76,2226.
    [5]Y. Sun, H. Cheng, S. Gao, Z. Sun, Q. Liu, Q. Liu, F. Lei, T. Yao, J. He, S.Wei, Y. Xie, Angew. Chem. Int. Ed.2012,51,8727.
    [6]X. Zhang, X. Xie, H. Wang, J. Zhang, B. Pan, Y. Xie, J. Am. Chem. Soc.2013,135,18.
    [7]L. Lindsay, D. A. Broido, Phys. Rev. B 2011,84,155421.
    [8]S. Chen, Q. Wu, C. Mishra, J. Kang, H. Zhang, K. Cho, W. Cai, A. A. Balandin, R. S. Ruoff, Nat. Mater.2012,11,203.
    [9]S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, R. S. Ruoff, Nature 2006,442,282.
    [10]Y. Lin, J. W. Connell, Nanoscale 2012,4,6908.
    [11]L. M. Veca, M. J. Meziani,W.Wang, X.Wang, F. Lu, P. Zhang, Y. Lin, R. Fee, J.W. Connell, Y.-P. Sun, Adv. Mater.2009,21,2088.
    [12]T. Ramanathan, A. A. Abdala, S. Stankovich, D. A. Dikin, M. Herrera Alonso, R. D. Piner, D. H. Adamson, H. C. Schniepp, X. Chen, R. S. Ruoff, S. T. Nguyen, I. A. Aksay, R. K. Prud' Homme, L. C. Brinson, Nat. Nanotechnol.2008,3,327.
    [13]G. Goncalves, P. A. A. P. Marques, A. Barros-Timmons,1. Bdkin, M. K. Singh, N. Emami, J. Gracio, J. Mater. Chem.2010,20,9927.
    [14]C. Zhi, Y. Bando, C. Tang,H.Kuwahara,D. Golberg, Adv. Mater.2009,21,2889.
    [15]W.-L. Song, P. Wang, L. Cao, A. Anderson, M. J. Meziani, A. J. Farr, Y.-P. Sun, Angew. Chem. Int. Ed.2012,51,6498.
    [16]M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, M.W. Barsoum, Adv. Mater.2011,23,4248.
    [17]M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu, L. Hultman, Y. Gogotsi, M.W. Barsoum, ACS Nano 2012,6,1322.
    [18]M. Khazaei, M. Arai, T. Sasaki, C.-Y. Chung, N. S. Venkataramanan, M. Estili, Y. Sakka, Y. Kawazoe, Adv. Funct. Mater.2013,23,2185.
    [19]Z. Zhang, X. Liu, B. I. Yakobson, W. Guo, J. Am. Chem. Soc.2012,134,19326.
    [1]Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 10451.
    [2]Novoselov, K. S. Rev. Mod. Phys. 2011, 83, 837.
    [3]Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Nat. Nanotechnol. 2011, 6, 147.
    [4]Zhang, Y.; He, K.; Chang, C.-Z.; Song, C.-L.; Wang, L.-L.; Chen, X.; Jia, J.-F.; Fang, Z.; Dai, X.; Shan, W.-Y.; Shen, S.-Q.; Niu, Q.; Qi, X.-L.; Zhang, S.-C.; Ma, X.-C.; Xue, Q.-K. Nat. Phys. 2010, 6, 584.
    [5]Pushparaj, V. L.; Shaijumon, M. M.; Kumar, A.; Murugesan, S.; Ci, L.; Vajtai, R.; Linhardt, R. J.; Nalamasu, O.; Ajayan, P. M. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 13574.
    [6]Feng, J.; Sun, X.; Wu, C. Z.; Peng, L. L.; Lin, C. W.; Hu, S. L.; Yang, J. L.; Xie, Y. J. Am. Chem. Soc. 2011, 133, 17832.
    [7]Wang, X.; Zhi, L.; Mu"lien, K. Nano Lett. 2007, 8, 323.
    [8]Meric, I.; Han, M. Y.; Young, A. F.; Ozyilmaz, B.; Kim, P.; Shepard, K. L. Nat. Nanotechnol. 2008, 3, 654.
    [9]Zhu, Y.; Murali, S.; Stoller, M. D.; Ganesh, K. J.; Cai, W.; Fenreira, P. J.; Pirkle, A.; Wallace, R. M.; Cychosz, K. A.; Thommes, M.; Su, D.; Stach, E. A.; Ruoff, R. S. Science 2011, 332, 1537.
    [10]Zhang, Y.; Tan, Y.-W.; Stormer, H. L.; Kim, P. Nature 2005, 438, 201.
    [ 11 ]Son, Y.-W.; Cohen, M. L.; Louie, S. G. Nature 2006, 444, 347.
    [12]Schliehe, C.; Juarez, B. H.; Pelletier, M.; Jander, S.; Greshnykh, D.; Nagel, M.; Meyer, A.; Foerster, S.; Kornowski, A.; Klinke, C.; Weller, H. Science 2010, 329, 550.
    [13]Son, J. S.; Wen, X.-D.; Joo, J.; Chae, J.; Baek, S.-i.; Park, K.; Kim, J. H.; An, K.; Yu, J. H.; Kwon, S. G.; Choi, S.-H.; Wang, Z.; Kim, Y.-W.; Kuk, Y.; Hoffmann, R.; Hyeon, T. Angew. Chem., Int. Ed. 2009, 48, 6861.
    [14]Yu, T.; Lim, B.; Xia, Y. Angew. Chem., Int. Ed. 2010, 49, 4484.
    [15]Min, Y.; Moon, G. D.; Kim, B. S.; Lim, B.; Kim, J.-S.; Kang, C. Y.; Jeong, U. J. Am. Chem. Soc. 2012, 134, 2872.
    [16]Coleman, J. N.; Lotya, M.; O'Neill, A.; Bergin, S. D.; King, P. J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R. J.; Shvets, I. V.; Arora, S. K.; Stanton, G.; Kim, H.-Y.; Lee, K.; Kim, G. T.; Duesberg, G. S.; Hallam, T.; Boland, J. J.; Wang, J. J.; Donegan, J. F.; Grunlan, J. C.; Moriarty, G.; Shmeliov, A.; Nicholls, R. J.; Perkins, J. M.; Grieveson. E. M.; Theuwissen. K.; McComb, D. W.; Nellist, P. D.; Nicolosi, V. Science 2011.331.568.
    [17]Ma, R.; Sasaki, T. Adv. Mater.2010,22,5082.
    [18]Hsu, F.-C.; Luo, J.-Y.; Yeh, K.-W.; Chen, T.-K.; Huang, T.-W.; Wu, P. M.; Lee, Y.-C.; Huang, Y.-L.; Chu, Y.-Y.; Yan, D.-C.; Wu, M.-K. Proc. Natl. Acad. Sci. U.S.A.2008,105, 14262.
    [19]Kwon, S. K.; Youn, S. J.; Min, B. I. Phys. Rev. B 2000,62,357.
    [20]Xie, W.-H.; Xu, Y.-Q.; Liu, B.-G.; Pettifor, D. G. Phys. Rev. Lett.2003,91, No.037204.
    [21]Lee, E. J. H.; Ribeiro, C.; Longo, E.; Leite, E. R. J. Phys. Chem. B 2005,109,20842.
    [22]Wolf, S. A.; Awschalom, D. D.; Buhrman, R. A.; Daughton, J. M.; von Molnar, S.; Roukes, M. L.; Chtchelkanova, A. Y.; Treger, D. M. Science 2001,294,1488.
    [23]Gao, M. R.; Jiang, J.; Yu, S. H. Small 2012,8,13.
    [24]Tenga, A.; Lidin, S.; Belieres, J.-P.; Newman, N.; Wu, Y.; Haussermann. U. J. Am. Chem. Soc.2008,130,15564.
    [25]McMillan, W. L. Phys. Rev. B 1983,28,5216.
    [26]Kan, E. J.; Hu, W.; Xiao, C. Y.; Lu, R. F.; Deng, K. M.; Yang, J. L.; Su, H. B. J. Am. Chem. Soc.2012,134,5718.
    [27]Wang, L.; Cai, Z.; Wang, J.; Lu, J.; Luo, G.; Lai, L.; Zhou, J.; Qin, R.; Gao, Z.; Yu, D.; Li, G.; Mei, W. N.; Sanvito, S. Nano Lett.2008,8,3640.
    [28]Kan, E.-J.; Wu, X.; Li, Z.; Zeng, X. C.; Yang, J.; Hou, J. G. J. Chem. Phys.2008,129, No. 084712.
    [29]Chen, Q.; Wang, J. L.; Zhu, L. Y.; Wang, S. D.; Ding, F. J. Chem. Phys.2010,132, No. 204703.
    [1]Lehn, J.-M. Science 2002,295,2400.
    [2]Ringsdorf, H.; Schlarb, B.; Venzmer, J. Angew. Chem., Int. Ed. Engl.1988,27,113.
    [3]Whitesides, G. M.; Boncheva, M. Proc. Natl. Acad. Sci. U.S.A.2002,99,4769.
    [4]Nie, Z.; Petukhova, A.; Kumacheva, E. Nat. Nanotechnol.2010,5,15.
    [5]Gao, B.; Arya, G.; Tao, A. R. Nat. Nanotechnol.2012,7,433.
    [6]Xia, Y.; Nguyen, T. D.; Yang, M.; Lee, B.; Santos, A.; Podsiadlo, P.; Tang, Z.; Glotzer, S. C.; Kotov, N. A. Nat. Nanotechnol.2011,6,580.
    [7]Li, C.; Numata, M.; Bae, A.-H.; Sakurai, K.; Shinkai, S. J. Am. Chem. Soc.2005,127,4548.
    [8]Tang, Z.; Zhang, Z.; Wang, Y.; Glotzer, S. C.; Kotov, N. A. Science 2006,314,274.
    [9]Breen, T. L.; Tien, J.; Olivers, S. R. J.; Hadzic, T.; Whitesides, G. M. Science 1999,284,948.
    [10]Feng, J.; Sun, X.; Wu, C.; Peng, L.; Lin, C.; Hu, S.; Yang, J.; Xie, Y. J. Am. Chem. Soc. 2011,133,17832.
    [11]Feng, J.; Peng, L.; Wu, C.; Sun, X.; Hu, S.; Lin, C.; Dai, J.; Yang, J.; Xie, Y. Adv. Mater. 2012,24,1969.
    [12]Wang, X.; Zhi, L.; Mullen, K. Nano Lett.2008,8,323.
    [13]Coleman, J. N.; Lotya, M.; O'Neill, A.; Bergin, S. D.; King, P. J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R. J.; et al. Science 2011,331,568.
    [14]Ramakrishna Matte, H. S. S.; Gomathi, A.; Manna, A. K.; Late, D. J.; Datta, R.; Pati, S. K.; Rao, C. N. R. Angew. Chem., Int. Ed.2010,49,4059.
    [15]Zeng, Z.; Yin, Z.; Huang, X.; Li, H.; He, Q.; Lu, G.; Boey, F.; Zhang, H. Angew. Chem., Int. Ed.2011,50,11093.
    [16]Ren, L.; Qi, X.; Liu, Y.; Hao, G.; Huang, Z.; Zou, X.; Yang, L.; Li, J.; Zhong, J. J. Mater. Chem.2012,22,4921.
    [17]Schliehe, C.; Juarez, B. H.; Pelletier.M.; Jander, S.; Greshnykh, D.; Nagel, M.; Meyer, A.; Foerster, S.; Kornowski, A.; Klinke, C.; et al. Science 2010,329,550.
    [18]Kissel, P.; Erni, R.; Schweizer, W. B.; Rossell, M. D.; King, B. T.; Bauer, T.; Gotzinger, S.; Schluter, A. D.; Sakamoto, J. Nat. Chem.2012,4,287.
    [19]Sun, Y.; Sun, Z.; Gao, S.; Cheng, H.; Liu, Q.; Piao, J.; Yao, T.; Wu, C.; Hu, S.; Wei, S.; et al. Nat. Commun.2012,3,1057.
    [20]Sun, Y.; Cheng, H.; Gao, S.; Sun, Z.; Liu, Q.; Liu, Q.; Lei, F.; Yao, T.; He, J.; Wei, S.; et al. Angew. Chem., Int. Ed.2012,51,8727.
    [21]Zhang. X.; Zhang, J.; Zhao, J.; Pan, B.; Kong. M.; Chen, J.; Xie, Y. J. Am. Chem. Soc.2012, 134,11908.
    [22]An, Q.; Chen, Q.; Zhu, W.; Li, Y.; Tao, C.; Yang, H.; Li, Z.; Wan, L.; Tian. H.; Li. G. Chem. Commun.2010,46,725.
    [23]Sakamoto, J.; van Heijst, J.; Lukin, O.; Schluter, A. D. Angew. Chem., Int. Ed.2009,48, 1030.
    [24]Son, J. S.; Wen, X.-D.; Joo, J.; Chae, J.; Baek, S.-i.; Park, K.; Kim, J. H.; An, K.; Yu, J. H.; Kwon, S. G.; et al. Angew. Chem., Int. Ed.2009,48,6861.
    [25]Wang, X.; Zhuang, J.; Peng, Q.; Li, Y. Nature 2005,437,121.
    [26]Park, J.; An, K.; Hwang, Y.; Park, J.-G.; Noh, H.-J.; Kim, J.-Y.; Park, J.-H.; Hwang, N.-M.; Hyeon, T. Nat. Mater.2004,3,891.
    [27]Li, Z.; Peng, X. J. Am. Chem. Soc.2011,133,6578.
    [28]Crozier, E. D. Nucl. Instrum. Methods Phys. Res., Sect. B 1997,133,134.