子宫内膜癌细胞孕激素受体基因表观遗传学调控的研究-DNA甲基化及表达沉默相关的染色质成分变化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:子宫内膜癌在我国是最常见的妇科肿瘤之一,威胁到很多女性的健康与生命。值得注意的是,一些研究表明虽然子宫内膜癌的发病率基本稳定,但死亡率似有上升趋势。我们面临的最大挑战是如何提高病人的生存率。孕激素治疗子宫内膜癌的作用已经得到公认,但是晚期肿瘤中孕激素受体表达经常缺失,导致其对孕激素的敏感性降低。因此孕激素受体阴性肿瘤对孕激素治疗的低敏感性是目前临床激素治疗的重要课题。虽然已经知道孕激素受体表达缺失可能与孕激素受体基因DNA的异常甲基化有关,但其中具体的分子机制并不清楚。不知道异常甲基化是否起决定性的作用,也不清楚究竟在孕激素受体基因沉默的过程中其染色质上发生了什么变化。搞清楚这些途径不但有助于对于增进子宫内膜癌的治疗,而且可以帮助我们更好地理解表观遗传学调控的一般机制。
     目的:本课题将对子宫内膜癌细胞系中染色质成分改变与孕激素受体基因转录沉默之间的关系进行研究。具体来说进行以下的四大部分实验:1)确定PR-B在几种细胞系中的表达与甲基化状态;观察DNA甲基转移酶(DNMT)及组蛋白乙酰化酶(HDAC)抑制剂对孕激素受体基因重新激活作用,找出最佳的时间与浓度。2)确定孕激素受体染色体成份的改变与孕激素受体表达的关系,逐个检测MBD蛋白及组蛋白修饰在孕激素受体基因表达中的作用。3)观察MBD及组蛋白表达水平与孕激素受体表达之间的关系。4)进一步研究MeCP2在孕激素受体表达控制中的作用。
     方法:首先测定了十八种子宫内膜癌细胞系中孕激素受体的表达水平,最终选定了孕激素受体表达阳性和阴性的细胞系作进一步的研究。采用甲基化特异性PCR的方法确定了孕激素受体的甲基化状态,并使用染色体沉淀(Chromatin Immunoprecipitation, ChIP)的方法鉴定孕激素受体基因染色体上甲基化DNA结合蛋白和组蛋白翻译后修饰在不同细胞、不同基因表达状态下的状况,以及在药物处理前后的改变。
     结果:发现多种DNA结合蛋白,包括MeCP2, MBD1, MBD2, MBD3, MBD4在甲基化/表达沉默和非甲基化/表达活跃的基因中呈现完全不同的结合状态,用DNA甲基化转移酶和组蛋白乙酰化酶抑制剂处理后的细胞可引起MBD结合和组蛋白修饰的明显改变。具体来说:1)在KLE和HEC1B细胞甲基化的PR-B启动子区检测到MeCP2的结合。相反,在Ishikawa细胞非甲基化的启动子区未发现MeCP2结合。2) MBD1和MBD2能结合甲基化和非甲基化的PR-B启动子区。用ADC处理可以诱导MBD1与甲基化的(而非未甲基化)PR-B启动子区的结合。同样的处理可以在KLE细胞中诱导MBD2的结合,而在HEC-1B或者Ishikawa细胞中没有观察到此作用。3)在任何细胞系都没有发现有MBD3和MBD4的结合。4)TSA处理在任何一个细胞系都未能改变MBD的结合状态。因此,不同的MBD家族成员表现出差异的和动态的与PR-B启动子相互作用的状态。
     接下来用ChIP方法检测PR-B启动子区H3 H4乙酰化和H3赖氨酸9位甲基化和赖氨酸4位甲基化。我们观察到:1)在三个细胞系中比较总的H3 H4结合水平,甲基化的PR-B启动子区比非甲基化的PR-B启动子区H3和H4的乙酰化水平明显低。2)使用ADC或者TSA处理会明显的增加甲基化的PR-B启动子区组蛋白乙酰化水平。3)H3-K9甲基化水平在甲基化的PR-B启动子区比非甲基化的PR-B启动子区升高,而H3-K4甲基化显示与其相反。4)用ADC和TSA处理KLE细胞,结果H3-K9明显去甲基化,但却能诱导H3-K4甲基化。5)与以上在甲基化的PR-B启动子区的发现相反,ADC和TSA处理没有明显的影响非甲基化的PR-B启动子区组蛋白乙酰化和甲基化水平。
     结论:通过这一研究,认识到H34位赖氨酸上的低甲基化和H39位赖氨酸上的高甲基化是表达沉默的孕激素受体基因启动子的特点。经DNA甲基化转移酶和组蛋白乙酰化酶抑制剂处理后MeCP2的结合及组蛋白修饰可以发生逆转,导致孕激素受体基因的重新激活。免疫印迹检测表明细胞内整体水平上的蛋白浓度保持不变,说明这些改变特异性发生于孕激素受体基因的局部,而与药物在细胞整体的作用无关。为了进一步证实MeCP2在孕激素受体基因表观遗传学中的重要作用,我们进行了siRNA基因表达敲除实验。结果表明MeCP2对甲基化启动子的结合对孕激素受体基因表达沉默至关重要。在MeCP2表达敲除的细胞中,MeCP2对孕激素受体基因的结合降低,于此相关联,孕激素受体基因表达沉默发生部分逆转,引起孕激素受体mRNA的上升。
     这些发现阐明了孕激素受体基因表达调控的一些重要特点与机制,为近年来这一领域的首创,对于明确孕激素受体基因的表观遗传学提供了重要的信息。这些发现将有助于设计新的表观遗传干预方法以重新激活孕激素受体的表达,从而增进孕激素受体阴性的子宫内膜癌对激素治疗的敏感性。比如说,可以使用甲基化转移酶抑制剂(如ADC)和组蛋白去乙酰化酶抑制剂(如TSA)对孕激素受体肿瘤阴性病人进行预处理,等孕激素受体表达后再给予大剂量孕激素杀死肿瘤细胞。因为多数死于晚期或手术后复发的子宫内膜癌病例的孕激素受体为阴性,所以这种治疗方法有巨大的发展前景。根据此次研究的成果我们可以设计动物实验对这一治疗模型进行进一步验证。
Background:Endometrial carcinoma is the most common gynecologic malignancy threatening many women's health and lives. It is noteworthy that results from some studies indicated while the incidence rate appears to be stable, the death rate is rising. The challenge we are facing is how to increase the survival rate and extend the life of patients. The therapeutic value of progestational treatment for endometrial hyperplasia and early stage cancers has been well recognized. However, in advanced and recurrent cancers the progesterone receptor is often lost, leading to a decreased sensitivity to progestational therapy. Therefore how to improve the efficacy of progestins for treating advanced and recurrent cancers has become an important topic. While aberrant DNA methylation of a CpG island in PR-B promoter is considered the major cause for PR negativity, the epigenetic mechanism has not been not well understood. It is not clear if DNA methylation play a decisive role, and what occurs in the chromatin during the epigenetic silencing of progesterone receptor gene. Better understanding of the pathway will not only help us to improve the treatment of endometrial cancer, but also help us to understand the epigenetic mechanism controlling gene expression.
     Objective:In this study, we determine the specific changes in chromatin composition that are associated with the PR-B transcriptional silencing in endometrial cancer cells. We performed for parts of studies:1) to confirm the PR-B expression status in several endometrial cancer cell lines and observe the reactivation of PR-B transcription by DAN methyltransferase (DNMT) and histone deacetylase (HDAC) inhibitors.2) To determine the relationship between PR-B expression and epigenetic silencing. Using chromatin immunoprecipitation assay, we compared the methyl CpG-binding proteins (MBD) binding and histone modification alterations among cells with different PR-B methylation and expression status, as well as cells before and after treatment with DNA methyltransferase or histone deacetylase inhibitors.3) To observe the relationship between MBD binding/histone modification PR-B expression.4) To further investigate the role of MeCP2 in the expression control of PR-B.
     Methods:We first determined the PR expression status in 18 different endometrial cancer cell lines, and chose PR-B negative and positive cell lines for further analysis. We applied methylation specific PCR to determine the methylation status of PR-B in these cells. Chromatin Immumoprecipitation (ChIP) assay was used to examine the MBD binding and histone posttranslational modification in the PR-B chromatin from different cells with different PR-B expression patterns, or cells before and after drug treatment.
     Results:We have found methyl CpG-binding proteins, including MeCP2, MBD1, MBD2, MBD3, and MBD4 exhibit diverged binding profiles for methylated/silenced and unmethylated/active progesterone receptor gene. In addition, treatment with DNA methyltransferase and histone deacetylase inhibitors causes dynamic changes in both MBD binding and the histone modifications within chromatins associated with progesterone receptor gene.1) In KLE and HEC-1B cells with methylated PR-B gene, MeCP2 was found to bind to PR-B promoter. In contrast, no MeCP2 binding was observed in the Ishikawa cells in which PR-B gene is unmethylated.2) MBD1 and MBD2 bind to both methylted and unmethylated PR-B gene. ADC treatment induced the MBD1 binding of methylated, but not unmethylated PR-B promoters. The same treatment induced MBD2 binding in KLE cells.3) No change was found in the binding of MBD3 and MBD4.4) TSA treatment did not lead to alteration in MBD binding. Therefore, different MBD family members display varied binding pattern and dynamics upon their binding to PR-B gene.
     We also used the ChIP assay to examine the H3 and H4 acetylation and methylation at K4 and K9A positions. We found that 1) H3 and H4 acetylation is at their low levels in methylated PR-B promoters when compared to unmethylated promoter.2) ADC and TSA significantly affect the H3 and H4 acetylation levels.3) H3-K9 methylation level in the methylated PR-B is higher than in unmethylated PR-B. The H3 K4 methylation showed an opposite pattern.4) ADC and TSA treatment of cells led to decreased methylation of K9 but increased methylation in K4 position.5) In contrast to the findings in the methylated PR-B gene, ADC and TSA treatment had no significant effect on the histone acetylation and methylation in the unmethylated PR-B gene.
     Conclusions:We found that the low levels of histone H3 K4 methylation and high levels of K9 methylation is the characteristics of the methylated and silenced PR-B promoter. Treatment of PR-B negative cells with DNA methyltransferase and histone deacetylase inhibitors resulted in reversal of the MeCP2 occupancy and histone covalent modifications, and reactivation of the silenced PR-B gene. Importantly, Western blot analysis showed that MBD expression levels remain unchanged following treatment with DNA methyltransferase and histone deacetylase inhibitors. Thus, the observed changes in the chromatin composition are not caused by global drug effects, rather, they are most likely mediated by specific action associated with local changes on PR-B gene. To further confirm the important role of MeCP2 in epigenetic regulation of PR-B, we performed siRNA-mediated MeCP2 knockdown and measured the MeCP2 binding to PR-B promoter and PR-B mRNA levels. These experiments demonstrated that MeCP2 binding to methylated PR-B gene is critical for PR-B silencing.
     These findings have for the first time, provided new insights into the epigenetic mechanism leading to PR-B silencing in endometrial cancer. The information will be useful for the design epigenetic interference for reaction of PR-B, and enhancement of the sensitivity of endometrial cancer cells to hormonal therapy. For example, we may be able to more efficiently kill the cancer cells by pretreatment of cancer patients with DNMT and HDAC inhibitors. Since the advanced and recurrent cancer cause most of deaths of patient and many of these cancers are R-B negative, this strategy appears to be highly attractive. Using the current data, we will be able to design animal model to test the efficacy of this new treatment modality.
引文
[1]Amant F, Moerman P, Neven P, et al. Endometrial cancer [J]. Lancet,2005,366 (9484):491-505.
    [2]Greven KM, Corn BW. Endometrial Cancer [J]. Curr Probl Cancer,1997,21 (2): 65-127.
    [3]Lax SF, Kurman RJ. A dualistic model for endometrial carcinogenesis based on immunohistochemical and molecular genetic analysis[J]. Verh Dtsch Ges Pathol, 1997,81:228-232.
    [4]Levine RL, Cargile CB, Blazes MS, et al. PTEN mutations and microsatellite instability in complex atypical hyperplasia, a precursor lesion to uterine endometrioid carcinoma[J]. Cancer Research,1998,58 (15):3254-3258.
    [5]Inoue M. Current molecular aspects of the carcinogenesis of the uterine endometrium[J]. Int J of Gynecol Cancer,2001,11 (5):339-48.
    [6]Emons G, Fleckenstein G, Hinney B, et al. Hormonal interactions in endometrial cancer[J]. Endocrine related cancer,2000,7 (4):227-242.
    [7]Modesitt SC, van Nagell JR Jr. The impact of obesity on the incidence and treatment of gynecologic cancers:a review[J]. Obstet Gynecol Surv,2005,60 (10):683-692.
    [8]Siiteri PK. Steroid hormones and endometrial cancer[J]. Cancer Research, 1978,38 (11Pt2):4360-4366.
    [9]Noumoff JS, Faruqi S. Endometrial adenocarcinoma[J]. Micros Res Tech, 1993,25 (3):246-254.
    [10]Van Leeuwen FE, Rookus MA. The role of exogenous hormones in the epidemiology of breast, ovarian, and endometrial cancer[J]. Eur J Cancer Clin Oncol,1989,25 (12):1961-1972.
    [11]Spiegel GW Endoemtrial carcinoma in situ in postmenopausal women[J]. Am J Surg Pathol,1995,19 (4):417-432.
    [12]Ambros RA, Sherman ME, Zahn CM, et al. Endometrial intraepithelial carcinoma:a distinct lesion specifically associated with tumors displaying serous differentiation[J]. Hum Pathol,1995,26 (11):1260-1267.
    [13]Sherman ME. Theories of Endometrial carcinogenesis:a multidisciplinary approach[J]. Mod Pathol,2000,13 (3):295-308.
    [14]Lax SF. Dualistic model of molecular pathogenesis in endometrial carcinoma[J].Zentralbl Gynakol,2002,124 (1):10-16.
    [15]Risinger JI, Maxwell GL, Berchuck A, et al. Promoter hypermethylation as an epigenetic component in Type I and Type II endometrial cancers[J]. Ann NY Acad Sci,2003,983:208-212.
    [16]Matias-Guiu X, Catasus L, Bussaglia E, et al. Molecular pathology of endometrial hyperplasia and carcinoma[J]. Hum Pathol,2001,32 (6):569-577.
    [17]Lax SF. Molecular genetic pathways in various types of endometrial carcinoma: from a phenotypical endometrial-based classification[J]. Verchows Arch, 2004,444 (3): 213-223.
    [18]Koul A, Willen R, Bendahl PO, et al. Distinct sets of gene alterations in endometrial carcinoma implicate alternate modes of tumorigenesis[J]. Cancer, 2002,94 (9):2369-2379.
    [19]De Smet C, Loriot A. DNA hypomethylation in cancer:Epigenetic scars of a neoplastic journey[J]. Epigenetics,2010,5 (3) [Epub ahead of print].
    [20]Jungel A, Ospelt C, Gay S. What can we learn from epigenetics in the year 2009?[J].Curr Opin Rheumatol,2010,22 (3):284-292.
    [21]Renfree MB, Papenfuss AT, Shaw G, et al. Eggs, embryos and the evolution of imprinting:insights from the platypus genome[J]. Reprod Fertil Dev,2009,21 (8):935-942.
    [22]Turner BM. Epigenetic responses to environmental change and their evolutionary implications[J]. Philos Trans R Soc Lond B Biol Sci,2009,364 (1534):3403-18.
    [23]Cheng X, Blumenthal RM. Mammalian DNA methyltransferases:a structural perspective[J]. Structure,2008,16 (3):341-350.
    [24]Reid GK, Besterman JM, MacLeod AR. Selective inhibition of DNA methyltransferase enzymes as a novel strategy for cancer treatment[J]. Curr Opin Mol Ther,2002,4 (2):130-37.
    [25]Feinberg AP. Genome-scale approaches to the epigenetics of common human disease[J]. Virchows Arch,2010,456 (1):13-21.
    [26]Tamaru H, Selker EU. A histone H3 methyltransferase controls DNA methylation in Neurospora crassa[J]. Nature,2001,414 (6861):277-283.
    [27]Cosgrove DE, Cox GS. Effects of sodium butyrate and 5-azacytidine on DNA methylation in human tumor cell lines:variable response to drug treatment and withdrawal[J]. Biochim Biophys Acta,1990,1087 (1):80-86.
    [28]Hu JF, Oruganti H, Vu TH, et al. The role of histone acetylation in the allelic expression of the imprinted human insulin-like growth factor II gene[J]. Biochem Biophys Res Commun,1998,251 (2):403-408.
    [29]Zhu WG, Srinivasan K, Dai Z, et al. Methylation of adjacent CpG sites affects Sp1/Sp3 binding and activity in the p21 (Cip1) promoter[J]. Mol Cell Biol, Jun; 2003,23 (12):4056-4065.
    [30]Zelko IN, Mueller MR, Folz RJ. CpG methylation attenuates Sp1 and Sp3 binding to the human extracellular superoxide dismutase promoter and regulates its cell-specific expression[J]. Free Radic Biol Med,2010,48 (7):895-904.
    [31]Guarda A, Bolognese F, Bonapace IM, et al. Interaction between the inner nuclear membrane lamin B receptor and the heterochromatic methyl binding protein, MeCP2[J]. Exp Cell Res,2009,315 (11):1895-1903.
    [32]Muller-Tidow C, Kugler K, Diederichs S, et al. Loss of expression of HDAC-recruiting methyl-CpG-binding domain proteins in human cancer[J]. Br J Cancer,2001,85 (8):1168-1174.
    [33]Cameron EE, Bachman KE, Myohanen S, et al. Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer[J]. Nat Genet,1999,21 (1):103-107.
    [34]El-Osta A, Kantharidis P, Zalcberg JR, et al. Precipitous release of methyl-CpG binding protein 2 and histone deacetylase 1 from the methylated human multidrug resistance gene (MDR1) on activation[J]. Mol Cell Biol,2002,22 (6):1844-1857.
    [35]Robert MF, Morin S, Beaulieu N, et al. DNMT1 is required to maintain CpG methylation and aberrant gene silencing in human cancer cells[J]. Nat Genet, 2003,33 (1):61-65
    [36]Ng HH, Bird A. DNA methylation and chromatin modification[J]. Curr Opin Genet Dev,1999,9 (2):158-163.
    [37]Ballestar E, Wolff AP. Methyl-CpG-binding proteins. Targeting specific gene repression[J]. Eur J Biochem,2001,268 (1):1-6.
    [38]Markowitz S, Bertagnolli M. Molecular origins of cancer:Molecular basis of colorectal cancer[J]. N Engl J Med,2009,361 (25):2449-2460.
    [39]Kanai Y, Hirohashi S. Alterations of DNA methylation associated with abnormalities of DNA methyltransferases in human cancers during transition from a precancerous to a malignant state[J]. Carcinogenesis,2007,28 (12) 2434-2442.
    [40]Walsh MD, Cummings MC, Buchanan DD, et al. Molecular, pathologic, and clinical features of early-onset endometrial cancer:identifying presumptive Lynch syndrome patients[J]. Clin Cancer Res,2008,14 (6):1692-1700.
    [41]Zhou XC, Dowdy SC, Podratz KC, et al. Epigenetic considerations for endometrial cancer prevention, diagnosis and treatment[J].2007,107 (1) 143-153.
    [42]Hirasawa A, Aoki D, Inoue J, et al. Unfavorable prognostic factors associated with high frequency of microsatellite instability and comparative genomic hybridization analysis in endometrial cancer[J]. Clin Cancer Res,2003 Nov 15;9 (15):5675-82.
    [43]Katabuchi H, van Rees B, Lambers AR, et al. Mutations in DNA mismatch repair genes are not responsible for microsatellite instability in most sporadic endometrial carcinomas [J]. Cancer Research,1995,55 (23):5556-5560.
    [44]baldinu P, Manca A, Satta MP, et al. Microsatellite instability and mutation analysis of candidate genes in unselected sardinian patients with endometrial carcinoma[J]. Cancer,2002,94 (12):3157-3168.
    [45]Salvesen HB, Stefanson I, Kretzschmar El, et al. Significance of PTEN alterations in endometrial carcinoma:a population-based study of mutation, promoter methylation and PTEN protein expression [J]. Int J Oncol,2004,25 (6): 1615-1623.
    [46]Kanaya T, Kyo S, Sakaguchi J, et al. Association of mismatch repair deficiency with PTEN frameshift mutations in endometrial cancers nad the precursors in a Japanese population[J]. Am J Clin Pathol,2005,124 (1):89-96.
    [47]Martini M, Ciccarone M, Maggiore G, et al. Possible involvement of hMLHl, p 16 (INK4a) and PTEN in the malignant transformation of endometriosis[J]. Int J Cancer,2002,102 (4):398-406.
    [48]Moreno-Bueno G, Hardisson D, Sanchez C, et al. Abnormalities of the APC/beta-catenin pathway in endometrial cancer[J]. Oncogene,2002,21 (52) 7981-7990.
    [49]Zysman M, Saka A, Millar A, et al. Methylation of adenomatous polyposis coli in endometrial cancer occurs more frequently in tumors with microsatellite instability phenotype[J]. Cancer Res,2002,62 (13):3663-3666.
    [50]Tsuda H, Yamamoto K, Inoue T, et al. The role of p16-cyclin d/CDK-pRB pathway in the tumorigenesis of endometrioid-type endometrial carcinoma[J]. Br J Cancer,2000,82 (3):675-682.
    [51]Gonzalez-Gomez P, Bello MJ, Lomas J, et al. Aberrant methylation of multiple genes in neuroblastic tumours, relationship with MYCN amplification and allelic status at lp[J]. Eur J Cancer,2003,39 (10):1478-1485.
    [52]Semczuk A, Miturski R, Skomra D, et al. Expression of the cell-cycle regulatory proteins (pRb, cyclin D1, p16INK4A, and cdk4) in human endometrial cancer: correlation with clinicopathological features[J]. Arch Gynecol Obstet,2004,269 (2):104-110.
    [53]Ardo T, Nishimur M a, Oka Y. Decitabine (5-aza-2-deoxycytidine) decreased DNA methylation and expression of MDR-1 gene in K562/ADM cells[J]. Leukemia,2000,14 (11):1915-1920.
    [54]Grady WM, Willis J, Guilford PJ, et al. Methylation of the CDH1 promoter as the second genetic hit in hereditary diffuse gastric cancer[J]. Nat Genet,2000,26 (1):16-17.
    [55]Esteller M, Silva JM, Dominguez G, et al. Promoter hypermethylation and BRCA1 inactivation in Sporadic breast and ovarian tumors[J]. J Natl Cancer Inst,2000,92 (7):564-569.
    [56]Tashiro H, Lax SF, Gaudin PB, et al. Microsatellite instability is uncommon in uterine serous carcinorma[J]. Am J Pathol,1997,150 (1):75-79.
    [57]Xiong Y, Dowdy S, Xue A, et al. Opposite alterations of DNA methyltransferase gene expression in endometrioid and serous endometrial cancers[J]. Gynecol Oncol,2005,96 (3):601-609.
    [58]Jin F, Dowdy SC, Xiong Y, et al. Up-regulation of DNA methyltransferase 3B expression in endometrial cancers[J]. Gynecol Oncol,2005,96 (2):531-538.
    [59]Counts JL, Goodman JI. Hypomethylation of DNA:a possible epigenetic mechanism involved in tumor promotion[J]. Prog Clin Biol Res,1995,391: 81-101.
    [60]Pogribny IP, Beland FA. DNA hypomethylation in the origin and pathogenesis of human diseases[J]. Cell Mol Life Sci,2009,66 (14):2249-2261.
    [61]Dunn BK. Hypomethylation:one side of a larger picture[J]. Ann N Y Acad Sci, 2003,983:28-42.
    [62]Ehrlich M. DNA methylation in cancer:too much, but also too little[J]. Oncogene,2002,21 (35): 5400-5413.
    [63]Ehrlich M. Cancer-linked DNA hypomethylation and its relationship to hypermethylation[J]. Curr Top Microbiol Immunol,2006,310:251-274.
    [64]Hoffmann MJ, Schulz WA. Causes and consequences of DNA hypomethylation in human cancer[J]. Biochem Cell Biol,2005,83 (3):296-321.
    [65]Watanabe M, Ogawa Y, Itoh K, et al. Hypomethylation of CD30 CpG islands with aberrant JunB expression drives CD30 induction in Hodgkin lymphoma and anaplastic large cell lymphoma[J]. Lab Invest,2008,88 (1):48-57.
    [66]Florl A, Lower R, Schmitz-Drager B, et al. DNA methylation and expression of LINE-1 and HERV-K provirus sequences in urothelial and renal cell carcinomas[J].Br J Cancer,1999,80 (9):1312-1321.
    [67]Roman-Gomez J, Jimenez-Velasco A, Agirre X, et al. Promoter hypomethylation of the LINE-1 retrotransposable elements activates sense/antisense transcription and marks the progression of chronic myeloid leukemia[J]. Oncogene,2005,24 (48):7213-7223.
    [68]Howard G, Eiges R, Gaudet F, et al. Activation and transposition of endogenous retroviral elements in hypomethylation induced tumors in mice[J]. Oncogene, 2008,27 (3):404-408.
    [69]Gaudet F, Hodgson JG, Eden A, et al. Induction of tumors in mice by genomic hypomethylation[J]. Science,2003,300 (5618):489-492.
    [70]Dodge JE, Okano M, Dick F, et al. Inactivation of Dnmt3b in mouse embryonic fibroblasts results in DNA hypomethylation, chromosomal instability, and spontaneous immortalization[J].J Biol Chem,2005,280 (18):17986-17991.
    [71]Chen T, Ueda Y, Dodge JE, et al. Establishment and maintenance of genomic methylation patterns in mouse embryonic stem cells by Dnmt3a and Dnmt3b[J]. Mol Cell Biol,2003,23 (16): 5594-5605.
    [72]Ehrlich M, Jackson K, Weemaes C. Immunodeficiency, centromeric region instability, facial animalities syndrome (ICF) [J]. Orphanel J Rare Dis,2006,1 (1):2.
    [73]Hansen RS, Wijmenga C, Lou P, et al. The DNMT3B DNA methyltransferase gene is mutate in the ICF immunodeficiency syndrome[J]. Proc Natl Acad Sci USA,1999,96 (25):14412-14417.
    [74]Zardo G, Fazi F, Travaglini L. Dynamic and reversibility of heterochromatic gene silencing in human disease. Nervi C[J]. Cell Res,2005,15 (9):679-690.
    [75]Robertson KD, Jones PA. DNA methylation:past, present and future directions[J]. Carcinogenesis,2000,21 (3):461-467.
    [76]Gonzalgo ML, Jones PA. Mutagenic and epigenetic effects of DNA methylation[J]. Mutat Res,1997,386 (2):107-118.
    [77]Pradhan M, Abeler VM, Danielsen HE, et al. Image cytometry DNA ploidy correlates with histological subtypes in endometrial carcinomas[J]. Mod Pathol, 2006,19 (9):1227-35.
    [78]Hornreich G, Beller U, Lavie O, et al. Is uterine serous papillary carcinoma a BRCA1-related disease? Case report and review of the literature[J]. Gynecol Oncol,1999,75 (2):300-304.
    [79]Esteller M, Catasus L, Matias-Guiu X, et al. hMLH1 promoter hypermethylation is an early event in human endometrial tumorigenesis[J]. Am J Pathol,1999,155 (5):1767-7172.
    [80]Horowitz N, Pinto K, Mutch DG, et al. Microsatellite instability, MLH1 promoter methylation, and loss of mismatch repair in endometrial cancer and concomitant atypical hyperplasia[J]. Gynecol Oncol,2002,86 (1):62-68.
    [81]Guida M, Sanguedolce F, Bufo P, et al. Aberrant DNA hypermethylation of hMLH-1 and CDKN2A/p16 genes in benign, premalignant and malignant endometrial lesions[J]. Eur J Gynaecol Oncol,2009,30 (3):267-270.
    [82]Ota S, Catasus J, Matias-Guiu X, et al. Molecular pathology of atypical polypoid adenomyoma of the uterus[J]. Hum Pathol,2003,34 (8):784-788.
    [83]Moreno-Bueno G, Hardisson D, SarrioD, et al. Abnormalities of E-and P-cadherin and catenin (beta-, gamma-catenin, and p120ctn) expression in endometrial cancer and endometrial atypical hyperplasia[J]. J Pathol,2003,199 (4):471-478.
    [84]Jiang W, Li J, Podratz K, et al.Application of DNA methylation biomarkers for endometrial cancer management[J]. Expert Rev Mol Diagn,2008,8 (5) 607-616.
    [85]Chen H, Taylor NP, Sotamaa KM, et al. Evidence for heritable predisposition to epigenetic silencing of MLH1[J]. Int J Cancer,2007,120 (8):1684-1688.
    [86]Muraki Y, Banno K, Yanokura M, et al. Epigenetic DNA hypermethylation: clinical applications in endometrial cancer (Review) [J]. Oncol Rep,2009,22 (5):967-972.
    [87]Lentz SS. Endocrine therapy of endometrial cancer[J]. Cancer Treat Res, 1998,94:89-106.
    [88]Akhmedkhanov A, Zeleniuch-Jacquotte A, Toniolo P. Role of exogenous and endogenous hormones in endometrial cancer:review of the evidence and research perspectives[J]. Ann N Y Acad Sci,2001,943:296-315.
    [89]Mahavni V, Sood AK. Hormone replacement therapy and cancer risk[J]. Curr Opin Oncol,2001,13 (5):384-389.
    [90]Gibbons WE, Thorneycroft IH. Protecting the endometrium. Opposing the hyperplasia/malignancy potential of ERT[J]. J Reprod Med,1999,44 (2 Suppl) 203-208.
    [91]Podratz KC, O'Brien PC, Malkasian GD Jr, et al. Effects of progestational agents in treatment of endometrial carcinoma[J]. Obstet Gynecol,1985,66(1):106-110.
    [92]Podratz Kc. Hormonal therapy in endometrial carcinoma[J]. Recent Results Cancer Res,1990,118:242-251.
    [93]Decruze SB, Green JA. Hormone therapy in advanced and recurrent endometrial cancer:a systematic review[J]. Int J Gynecol Cancer,2007,17 (5):964-978.
    [94]Ramirez PT, Frumovitz M, Bodurka DC, et al.Hormonal therapy for the management of grade 1 endoemtrial adenocarcinoma:a literature review[J]. Gynecol Oncol,2004,95 (1):133-138.
    [95]Figueroa-Casas PR, Ettinger B, Delgado E, et al. Reversal by medical treatment of endometrial hyperplasia caused by estrogen replacement therapy[J]. Menopause,2001,8 (6):420-423.
    [96]Lentz SS, Brady MF, Major FJ, et al.High-dose megestrol acetate in advanced or recurrent endometrial carcinoma:a Gynecologic Oncology Group Study[J]. J Clin Oncol,1996,14 (2):357-61.
    [97]Podczaski E, Mortel R. Hormonal treatment of endometrial cancer:past, present and future[J]. Best Pract Res Clin Obstet Gynaecol,2001,15 (3):469-89.
    [98]van Rijswijk RE, Vermorken JB. Drug therapy for gynaecological cancer in older women[J]. Drugs Aging,2000,17 (1):13-32.
    [99]Whitney CW, Brunetto VL, Zaino RJ, et al. Phase II study of medroxyprogesterone acetate plus tamoxifen in advanced endometrial carcinoma:a Gynecologic Oncology Group study[J]. Gynecol Oncol,2004,92 (1):4-9.
    [100]Fiorica JV, Brunetto VL, Hanjani P, et al. Phase II trial of alternating courses of megestrol acetate and tamoxifen in advanced endometrial carcinoma:a Gynecologic Oncology Group study[J]. Gynecol Oncol,2004,92 (1):10-14.
    [101]Burnett AF, Bahador A, Amezcua C. Anastrozole, an aromatase inhibitor, endometrial cancer:a report of two cases successfully treated without hysterectomy[J]. Gynecol Oncol,2004,94 (3):832-834.
    [102]Williams SP, Sigler PB. Atomic structure of progesterone complexed with its receptor[J]. Nature,1998,393 (6683):392-396.
    [103]Wagner BL, Norris JD, Knotts TA, et al. The nuclear corepressors NCoR and SMRT are key regulators of both ligand-and 8-bromo-cyclic AMP-dependent transcriptional activity of the human progesterone receptor[J]. Mol Cell Biol, 1998,18 (3):1369-1378.
    [104]Charnock-Jones DS, Macpherson AM, Archer DF, et al. The effect of progestins on vascular endothelial growth factor, oestrogen receptor and progesterone receptor immunoreactivity and endothelial cell density in human endometrium[J].Hum Reprod,15 Suppl,2000,3:85-95.
    [105]Shiozawa T, Horiuchi A, Kato K, et al. Up-regulation of p27Kipl by progestins is involved in the growth suppression of the normal and malignant human endometrial glandular cells[J]. Endocrinology,2001,142 (10):4182-4188.
    [106]Kester HA, Sonneveld E, van der Saag PT, et al. Prolonged progestin treatment induces the promoter of CDK inhibitor p21 Cipl,Wafl through activation of p53 in human breast and endometrial tumor cells[J]. Exp Cell Res,2003,284 (2):264-273.
    [107]Amezcua CA, Lu JJ, Felix JC, et al. Apoptosis may be an early event of progestin therapy for endometrial hyperplasia[J]. Gynecol Oncol,2000,79 (2): 169-176.
    [108]Quinn MA, Cauchi M, Fortune D. Endometrial carcinoma:steroid receptors and response to medroxyprogesterone acetate[J]. Gynecol Oncol,1985,21 (3): 314-319.
    [109]Kleine W, Maier T, Geyer H, et al. Estrogen and progesterone receptors in endometrial cancer and their prognostic relevance[J]. Gynecol Oncol,1990,38 (1):59-65.
    [110]Dai D, Wolf DM, Litman ES, et al. Progesterone inhibits human endometrial cancer cell growth and invasiveness:down-regulation of cellular adhesion molecules through progesterone B receptors[J]. Cancer Res,2002,62 (3) 881-886.
    [111]Kumar NS, Richer J, Owen G, et al. Selective down-regulation of progesterone receptor isoform B in poorly differentiated human endometrial cancer cells: implications for unopposed estrogen action[J]. Cancer Res,1998,58 (9):1860-1865.
    [112]Sakaguchi H, Fujimoto J, Hong BL, et al. Drastic decrease of progesterone receptor form B but not A mRNA reflects poor patient prognosis in endometrial cancers[J]. Gynecol Oncol,2004,93 (2):394-399.
    [113]Hanekamp EE, Kuhne EC, Smid-Koopman E, et al. Loss of progesterone receptor may lead to an invasive phenotype in human endometrial cancer[J]. Eur J Cancer,2002,38 Suppl 6:S71-72.
    [114]Pijnenborg JM, Romano A, Dam-de Veen GC, et al. Aberrations in the progesterone receptor gene and the risk of recurrent endometrial carcinoma[J]. J Pathol,2005,205 (5):597-605.
    [115]Sasaki M, Dharia A, Oh BR, et al. Progesterone receptor B gene inactivation and CpG hypermethylation in human uterine endometrial cancer[J]. Cancer Res, 2001,61 (1):97-102.
    [116]Fraga MF, Ballestar E, Montoya G, et al. The affinity of different MBD proteins for a specific methylated locus depends on their intrinsic binding properties[J]. Nucleic Acids Res,2003,31 (6):1765-1774.
    [117]Magdinier F, Wolffe AP. Selective association of the methyl-CpG binding protein MBD2 with the silent pl4/p16 locus in human neoplasia[J]. Proc Natl Acad Sci U S A,2001,98 (9):4990-4995.
    [118]Lin X, Nelson W. Methyl-CpG-binding domain protein-2 mediates transcriptional repression associated with hypermethylated GSTP1 CpG islands in MCF-7 breast cancer cells[J]. Cancer Res,2003,63 (2):498-504.
    [119]Sakai H, Urano T, Ookata K, et al. MBD3 and HDAC1, two components of the NuRD complex, are localized at Aurora-A-positive centrosomes in M phase[J]. J Biol Chem,2002,277 (50):48714-48723.
    [120]Mellor J. It takes a PHD to read the histone code[J]. Cell,2006,126 (1):22-24.
    [121]Turner BM. Cellular memory and the histone code[J]. Cell,2002,111 (3):285-291.
    [122]Berger SL. The complex language of chromatin regulation during transcription[J]. Nature,2007,447 (7143):407-412.
    [123]Dai D, Kumar NS, Wolf DM, et al. Molecular tools to reestablish progestin control of endometrial cancer cell proliferation[J]. Am J Obstet Gynecol, 2001,184 (5):790-797.
    [124]Sakaguchi H, Fujimoto J, Hong BL, et al. Drastic decrease of progesterone receptor form B but not A mRNA reflects poor patient prognosis in endometrial cancers[J]. Gynecol Oncol,2004,93 (2):394-399.
    [125]Jin F, Dowdy SC, Xiong Y, et al. Up-regulation of DNA methyltransferase 3B expression in endometrial cancers[J]. Gynecol Oncol,2005,96 (2):531-538.
    [126]Sasaki M, Kaneuchi M, Fujimoto S, et al. Hypermethylation can selectively silence multiple promoters of steroid receptors in cancers[J]. Mol Cell Endocrinol,2003,202 (1-2):201-7.
    [127]Sasaki M, Dharia A, Oh BR, et al. Progesterone receptor B gene inactivation and CpG hypermethylation in human uterine endometrial cancer[J]. Cancer Res, 2001,61 (1):97-102.
    [128]Reid GK, Besterman JM, MacLeod AR. Selective inhibition of DNA methyltransferase enzymes as a novel strategy for cancer treatment[J]. Curr Opin Mol Ther,2002,4 (2):130-7.
    [129]Berg T, Guo Y, Abdelkarim M, et al. Reversal of p15/INK4b hypermethylation in AML1/ETO-positive and-negative myeloid leukemia cell lines[J]. Leuk Res, 2007,31 (4):497-506.
    [130]Goffin J, Eisenhaue E. DNA methyltransferase inhibitors-state of the art[J]. Ann Oncol,2002,13 (11):1699-716.
    [131]Hackanson B, Robbel C, Wijermans P, et al. In vivo effects of decitabine in myelodysplasia and acute myeloid leukemia:review of cytogenetic and molecular studies[J]. Ann Hematol,2005,84 (Suppl 1):32-8.
    [132]Gowher H, Jeltsch A. Mechanism of inhibition of DNA methyltransferases by cytidine analogs in cancer therapy[J]. Cancer Biol Ther,2004,3 (11):1062-8.
    [133]Vanhaecke T, Papeleu P, Elaut G, et al. Trichostatin A-like hydroxamate histone deacetylase inhibitors as therapeutic agents:toxicological point of view[J]. Curr Med Chem,2004,11 (12):1629-43.
    [134]Yoshida M, Matsuyama A, Komatsu Y, et al. From discovery to the coming generation of histone deacetylase inhibitors[J]. Curr Med Chem,2003,10 (22):2351-8.
    [135]Coombes MM, Briggs KL, Bone JR, et al. Resetting the histone code at CDKN2A in HNSCC by inhibition of DNA methylation[J]. Oncogene,2003,22 (55):8902-11
    [136]Sulewska A, Niklinska W, Kozlowski M, et al. Detection of DNA methylation in eucaryotic cells[J]. Folia Histochem Cytobiol,2007,45 (4):315-24.
    [137]Ho SM, Tang WY. Techniques used in studies of epigenome dysregulation due to aberrant DNA methylation:an emphasis on fetal-based adult diseases[J]. Reprod Toxicol,2007,23 (3):267-82.
    [138]Li LC. Designing PCR primer for DNA methylation mapping[J]. Methods Mol Biol,2007,402:371-84.
    [139]Hayatsu H. Discovery of bisulfite-mediated cytosine conversion to uracil, the key reaction for DNA methylation analysis--a personal account[J]. Proc Jpn Acad Ser B Phys Biol Sci,2008,84 (8):321-30
    [140]Derks S, Lentjes M, Hellebrekers D, et al. Methylation-specific PCR unraveled[J]. Cell Oncol,2004,26 (5-6):291-9.
    [141]Zilberman D, Henikoff S. Genome-wide analysis of DNA methylation patterns[J]. Development,2007,134 (22):3959-65.
    [142]Berger J, Bird A. Role of MBD2 in gene regulation and tumorigenesis[J]. Biochem Soc Trans,2005,33 (Pt 6):1537-40.
    [143]Hendrich B, Tweedie S. The methyl-CpG binding domain and the evolving role of DNA methylation in animals[J]. Trends Genet,2003,19 (5):269-77.
    [144]Ballestar E, Wolffe AP. Methyl-CpG-binding proteins. Targeting specific gene repression[J]. Eur J Biochem,2001,268 (1):1-6.
    [145]Lyst MJ, Nan X, Stancheva I. Regulation of MBD1-mediated transcriptional repression by SUMO and PIAS proteins[J]. EMBO J,2006,25 (22):5317-28.
    [146]Jin F, Dowdy SC, Xiong Y, et al. Up-regulation of DNA methyltransferase 3B expression in endometrial cancers[J]. Gynecol Oncol,2005,96 (2):531-538.
    [147]Sasaki M, Kaneuchi M, Fujimoto S, et al. Hypermethylation can selectively silence multiple promoters of steroid receptors in cancers[J]. Mol Cell Endocrinol,2003,202 (1-2):201-7.
    [148]Sasaki M, Dharia A, Oh BR, et al. Progesterone receptor B gene inactivation and CpG hypermethylation in human uterine endometrial cancer[J]. Cancer Res,2001,61 (1):97-102.
    [149]Collas P. The current state of chromatin immunoprecipitation[J]. Mol Biotechnol,2010,45 (1):87-100.
    [150]Park PJ. ChIP-seq:advantages and challenges of a maturing technology[J]. Nat Rev Genet,2009,10 (10):669-80.
    [151]Gottardo R. Modeling and analysis of ChIP-chip experiments[J]. Methods Mol Biol,2009,567:133-43.
    [152]Hoffman BG, Jones SJ. Genome-wide identification of DNA-protein interactions using chromatin immunoprecipitation coupled with flow cell sequencing[J]. J Endocrinol,2009,201 (1):1-13.
    [153]Dai D, Kumar NS, Wolf DM, et al. Molecular tools to reestablish progestin control of endometrial cancer cell proliferation[J]. Am J Obstet Gynecol, 2001,184 (5): 790-797.
    [154]Ramirez PT, Frumovitz M, Bodurka DC, et al. Hormonal therapy for the management of grade 1 endometrial adenocarcinoma:a literature review[J]. Gynecol Oncol,2004,95 (1):133-138.
    [155]Sasaki M, Kaneuchi M, Fujimoto S, et al. Hypermethylation can selectively silence multiple promoters of steroid receptors in cancers[J]. Mol Cell Endocrinol,2003,202 (1-2):201-207.
    [156]Sakaguchi H, Fujimoto J, Hong BL, et al. Drastic decrease of progesterone receptor form B but not A mRNA reflects poor patient prognosis in endometrial cancers[J]. Gynecol Oncol,2004,93 (2):394-399.
    [157]Jin F, Dowdy SC, Xiong Y, et al. Up-regulation of DNA methyltransferase 3B expression in endometrial cancers[J]. Gynecol Oncol,2005,96 (2):531-538.
    [158]Datta D, Zhao H. Effect of false positive and false negative rates on inference of binding target conservation across different conditions and species from ChIP-chip data[J]. BMC Bioinformatics,2009,19 (10):23.
    [159]Nix DA, Courdy SJ, Boucher KM. Empirical methods for controlling false positives and estimating confidence in ChIP-Seq peaks[J]. BMC Bioinformatics,2009,5 (9):523.
    [160]Dobosy JR, Selker EU. Emerging connections between DNA methylation and histone acetylation[J]. Cell Mol Life Sci,2001,58 (5-6):721-7.
    [161]Vaissiere T, Sawan C, Herceg Z. Epigenetic interplay between histone modifications and DNA methylation in gene silencing[J]. Mutat Res, 2008,659 (1-2):40-8.
    [162]Ikegami K, Ohgane J, Tanaka S, et al. Interplay between DNA methylation, histone modification and chromatin remodeling in stem cells and during development[J]. Int J Dev Biol,2009,53 (2-3):203-14.
    [163]Tamaru H, Selker EU. A histone H3 methyltransferase controls DNA methylation in Neurospora crassa[J]. Nature,2001,414 (6861):277-83.
    [164]Cosgrove DE, Cox GS. Effects of sodium butyrate and 5-azacytidine on DNA methylation in human tumor cell lines:variable response to drug treatment and withdrawal[J]. Biochim Biophys Acta,1990,1087 (1):80-6.
    [165]Hu JF, Oruganti H, Vu TH, et al. The role of histone acetylation in the allelic expression of the imprinted human insulin-like growth factor II gene[J]. Biochem Biophys Res Commun,1998,251 (2):403-8.
    [166]Selker EU. Trichostatin A causes selective loss of DNA methylation in Neurospora[J].Proc Natl Acad Sci U S A,1998,95 (16):9430-5.
    [167]Xiong Y, Dowdy SC, Podratz KC, et al. Histone deacetylase inhibitors decrease DNA methyltransferase-3B messenger RNA stability and down-regulate de novo DNA methyltransferase activity in human endometrial cells[J]. Cancer Res,2005,65 (7):2684-9.
    [168]Dobosy JR, Selker EU. Emerging connections between DNA methylation and histone acetylation[J]. Cell Mol Life Sci,2001,58 (5-6):721-7.
    [169]Cameron EE, Bachman KE, Myohanen S, et al. Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer[J]. Nat Genet,1999,21 (1):103-7.
    [170]El-Osta A, Kantharidis P, Zalcberg JR, et al. Precipitous release of methyl-CpG binding protein 2 and histone deacetylase 1 from the methylated human multidrug resistance gene (MDR1) on activation[J]. Mol Cell Biol,2002, 22 (6):1844-57.
    [171]Robert MF, Morin S, Beaulieu N, et al. DNMT1 is required to maintain CpG methylation and aberrant gene silencing in human cancer cells[J]. Nat Genet, 2003,33 (1):61-5.
    [172]Ng HH, Bird A. DNA methylation and chromatin modification[J]. Curr Opin Genet,1999Dev 9 (2):158-63.
    [173]Ballestar E, Wolffe AP. Methyl-CpG-binding proteins. Targeting specific gene repression[J]. Eur J Biochem,2001,268 (1):1-6.
    [174]Chen ZJ, Pikaard CS. Epigenetic silencing of RNA polymerase I transcription: a role for DNA methylation and histone modification in nucleolar dominance[J]. Genes Dev,1997,11 (16):2124-36.
    [175]Maass N, Biallek M, Rosel F, et al. Hypermethylation and histone deacetylation lead to silencing of the maspin gene in human breast cancer[J]. Biochem Biophys Res Commun,2002,297 (1):125-8.
    [176]Fournier C, Goto Y, Ballestar E, et al. Allele-specific histone lysine methylation marks regulatory regions at imprinted mouse genes[J]. Embo J,2002,21 (23):6560-70.
    [177]Bannister AJ, Kouzarides T. Histone methylation:recognizing the methyl mark[J]. Methods Enzymol,2004,376:269-88.
    [178]Schotta G, Lachner M, Peters AH, et al. The indexing potential of histone lysine methylation[J]. Novartis Found Symp,2004,259:22-37; discussion 37-47, 163-9.
    [179]Peters AH, Schubeler D. Methylation of histones:playing memory with DNA[J]. Curr Opin Cell Biol,2005,17 (2):230-8.
    [180]Kondo Y, Shen L, Issa JP. Critical role of histone methylation in tumor suppressor gene silencing in colorectal cancer[J]. Mol Cell Biol,2003,23 (1):206-15.
    [181]Fujita H, Fujii R, Aratani S, et al. Antithetic effects of MBD2a on gene regulation[J]. Mol Cell Biol,2003,23 (8):2645-57.
    [182]Li J, Lin Q, Yoon HG, et al. Involvement of histone methylation and phosphorylation in regulation of transcription by thyroid hormone receptor[J]. Mol Cell Biol,2002,22 (16):5688-97.
    [183]Shi Y. Histone lysine demethylases:emerging roles in development, physiology and disease[J]. Nat Rev Genet,2007,8 (11):829-33.
    [184]Tsukada Y, Ishitani T, Nakayama KI. KDM7 is a dual demethylase for histone H3 Lys 9 and Lys 27 and functions in brain development[J]. Genes Dev,2010,24 (5),:432-7.
    [185]Shi Y, Lan F, Matson C, et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1[J]. Cell,2004,119 (7):941-53.
    [186]Hendrich B, Bird A. Identification and characterization of a family of mammalian methyl-CpG binding proteins[J]. Mol Cell Biol,1998,18 (11):6538-47.
    [187]Wade PA. Methyl CpG-binding proteins and transcriptional repression[J]. Bioessays,2001,23 (12):1131-7.
    [188]Nan X, Bird A. The biological functions of the methyl-CpG-binding protein MeCP2 and its implication in Rett syndrome[J]. Brain Dev,2001,23 Suppl 1: S32-7.
    [189]Shahbazian MD, Antalffy B, Armstrong DL, et al. Insight into Rett syndrome: MeCP2 levels display tissue-and cell-specific differences and correlate with neuronal maturation[J]. Hum Mol Genet,2002,11 (2):115-24.
    [190]Fujita N, Shimotake N, Ohki I, et al. Mechanism of transcriptional regulation by methyl-CpG binding protein MBD1[J]. Mol Cell Biol,2000,20 (14):5107-18.
    [191]Jorgensen HF, Ben-Porath I, Bird AP. Mbdl is recruited to both methylated and nonmethylated CpGs via distinct DNA binding domains[J]. Mol Cell Biol, 2004,24 (8):3387-95.
    [192]Dhasarathy A, Wade PA. The MBD protein family-reading an epigenetic mark? [J]. Mutat Res,2008647 (1-2):39-43.
    [193]Bogdanovic O, Veenstra GJ. DNA methylation and methyl-CpG binding proteins:developmental requirements and function[J]. Chromosoma,12009,18 (5):549-65.
    [194]Ballestar E, Esteller M. Methyl-CpG-binding proteins in cancer:blaming the DNA methylation messenger[J]. Biochem Cell Biol,2005,83 (3):374-84.
    [195]Hite KC, Adams VH, Hansen JC. Recent advances in MeCP2 structure and function[J]. Biochem Cell Biol,2009,87 (11):219-27.
    [196]Percy AK. Rett syndrome:recent research progress[J]. J Child Neurol,2008,23 (5):543-9.
    [197]Chadwick LH, Wade PA. MeCP2 in Rett syndrome:transcriptional repressor or chromatin architectural protein? [J]. Curr Opin Genet Dev,2007,17(2):121-5.
    [198]Moretti PP, Zoghbi HY. MeCP2 dysfunction in Rett syndrome and related disorders[J].Curr Opin Genet Dev,2006,16(3):276-81.
    [199]Urdinguio RG, Sanchez-Mut JV, Esteller M. Epigenetic mechanisms in neurological diseases:genes, syndromes, and therapies[J]. Lancet Neurol, 2009,8 (11):1056-72.
    [200]Brero A, Easwaran HP, Nowak D, et al. Methyl CpG-binding proteins induce large-scale chromatin reorganization during terminal differentiation[J]. J Cell Biol,2005,169 (5):733-43.
    [201]Collins AL, Levenson JM, Vilaythong AP, et al. Mild overexpression of MeCP2 causes a progressive neurological disorder in mice[J]. Hum Mol Genet, 2004,13 (21):2679-89.
    [202]Bracaglia G, Conca B, Bergo A, et al. Methyl-CpG-binding protein 2 is phosphorylated by homeodomain-interacting protein kinase 2 and contributes to apoptosis[J].EMBO Rep,2009,10 (12):1327-33.
    [203]Bogdanovic O, Gveenstra GJ. DNA methylation and methyl-CpG binding proteins:developmental requirements and function[J]. Chromosoma, 2009,118 (5):549-65.
    [204]Nan X, Campoy FJ, Bird A. MeCP2 is a transcriptional repressor with abundant binding sites in genomic chromatin[J]. Cell,1997,88 (4):471-81.
    [205]Prokhortchouk E, Defossez PA. The cell biology of DNA methylation in mammals[J]. Biochim Biophys Acta,2008,1783 (11):2167-73.
    [206]Bird AP, Wolffe AP. Methylation-induced repression--belts, braces, and chromatin[J]. Cell,1999,99 (5):451-4.
    [207]Lee WC, Berry R, Hohenstein P, et al. siRNA as a tool for investigating organogenesis:The pitfalls and the promises[J]. Organogenesis,2008,4 (3):176-81.
    [208]Rassouli FB, Matin MM. Gene silencing in human embryonic stem cells by RNA interference[J]. Biochem Biophys Res Commun,2009,390 (4):1106-10.
    [209]Zhou XC, Dowdy SC, Podratz KC, et al. Epigenetic considerations for endometrial cancer prevention, diagnosis and treatment[J]. Gynecol Oncol, 2007,107 (1):143-53.
    [210]Ito K, Utsunomiya H, Yaegashi N, et al. Biological roles of estrogen and progesterone in human endometrial carcinoma--new developments in potential endocrine therapy for endometrial cancer[J]. Endocr J,2007,54 (5):667-79.
    [211]Liang G, Lin JC, Wei V, et al. Distinct localization of histone H3 acetylation and H3-K4 methylation to the transcription start sites in the human genome[J]. Proc Natl Acad Sci U S A,2004,101 (19):7357-62.
    [212]Xiong Y, Dowdy SC, Xue A, et al. Opposite alterations of DNA methyltransferase gene expression in endometrioid and serous endometrial cancers[J]. Gynecol Oncol,2005,96 (3):601-9.
    [213]Xiong Y, Dowdy SC, Podratz KC, et al. Histone deacetylase inhibitors decrease DNA methyltransferase-3B messenger RNA stability and down-regulate de novo DNA methyltransferase activity in human endometrial cells[J]. Cancer Res,2005,65 (7):2684-9
    [1]Jiang SW, Li J, Podratz K, et al. Application of DNA methylation biomarkers for endometrial cancer management J]. Expert Rev Mol Diagn,2008,8 (5): 607-16.
    [2]Buchwald M, Kramer OH, Heinzel T. HDACi--targets beyond chromatin[J]. Cancer Lett,2009,280 (2):160-7.
    [3]Spange S, Wagner T, Heinzel T, et al. Acetylation of non-histone proteins modulates cellular signalling at multiple levels[J]. Int J Biochem Cell Biol, 2009,41 (1):185-98.
    [4]Yang XJ, Seto E. Lysine acetylation:codified crosstalk with other posttranslational modifications[J]. Mol Cell,2008,31 (4):449-61.
    [5]Kramer OH, Baus D, Knauer SK, et al. Acetylation of Statl modulates NF-kappaB activity[J]. Genes Dev,2006,20 (4):473-85.
    [6]Xu WS, Parmigiani RB, Marks PA. Histone deacetylase inhibitors:molecular mechanisms of action[J].Oncogene,2007,26 (37):5541-52.
    [7]Botrugno OA, Santoro F, Minucci S. Histone deacetylase inhibitors as a new weapon in the arsenal of differentiation therapies of cancer[J]. Cancer Lett,2009,280 (2):134-44.
    [8]Bilton R, Trottier E, Pouyssegur J, et al. ARDent about acetylation and deacetylation in hypoxia signalling[J]. Trends Cell Biol,2006,16 (12):616-21.
    [9]Sakuma T, Uzawa K, Onda T, et al. Aberrant expression of histone deacetylase 6 in oral squamous cell carcinoma[J]. Int J Oncol,2006,29 (1):117-24.
    [10]Polevoda B, Sherman F. Nalpha-terminal acetylation of eukaryotic proteins[J]. J Biol Chem,2000,275 (47):36479-82.
    [11]Allfrey VG, Faulkner R, Mirsky AE, et al. Acetylation and Methylation of Histones and Their Possible Role in the Regulation of Rna Synthesis[J]. Proc Natl Acad Sci U S A,1964,51:786-94.
    [12]Glozak MA, Sengupta N, Zhang X, et al. Acetylation and deacetylation of non-histone proteins[J]. Gene,2005,363:15-23.
    [13]Yoo CB, Jones PA. Epigenetic therapy of cancer:past, present and future[J]. Nat Rev Drug Discov,2006,5 (1):37-50.
    [14]Hahn CK, Ross KN, Warrington IM, et al. Expression-based screening identifies the combination of histone deacetylase inhibitors and retinoids for neuroblastoma differentiation[J]. Proc Natl Acad Sci U S A,2008,105 (28) 9751-6.
    [15]Gregoretti IV, Lee YM, Goodson HV. Molecular evolution of the histone deacetylase family:functional implications of phylogenetic analysis[J]. J Mol Biol,2004,338 (1):17-31.
    [16]Yamamoto H, Schoonjans K, Auwerx J. Sirtuin functions in health and disease[J]. Mol Endocrinol,2007,21 (8):1745-55.
    [17]Yang XJ, Gregoire S. Class II histone deacetylases:from sequence to function, regulation, and clinical implication[J]. Mol Cell Biol,2005,25 (8):2873-84.
    [18]Glass CK, Rosenfeld MG. The coregulator exchange in transcriptional functions of nuclear receptors[J]. Genes Dev,2000,14 (2):121-41.
    [19]de Ruijter AJ, van Gennip AH, Caron HN, et al. Histone deacetylases (HDACs):characterization of the classical HDAC family[J]. Biochem J,2003,370 (Pt 3):737-49.
    [20]Marks PA. Discovery and development of SAHA as an anticancer agent[J]. Oncogene,2007,26 (9):1351-6.
    [21]Riester D, Hildmann C, Grunewald S, et al. Factors affecting the substrate specificity of histone deacetylases[J]. Biochem Biophys Res Commun,2007,357 (2):439-45.
    [22]Bandyopadhyay D, Mishra A, Medrano EE. Overexpression of histone deacetylase 1 confers resistance to sodium butyrate-mediated apoptosis in melanoma cells through a p53-mediated pathway[J]. Cancer Res,2004,64 (21) 7706-10.
    [23]Johnson CA, White DA, Lavender JS, et al. Human class I histone deacetylase complexes show enhanced catalytic activity in the presence of ATP and co-immunoprecipitate with the ATP-dependent chaperone protein Hsp70[J]. J Biol Chem,2002,277 (11):9590-7.
    [24]Tran AD, Marmo TP, Salam AA, et al. HDAC6 deacetylation of tubulin modulates dynamics of cellular adhesions[J]. J Cell Sci,2007,120 (Pt 8) 1469-79.
    [25]Gui CY, Ngo L, Xu WS, et al. Histone deacetylase (HDAC) inhibitor activation of p21WAFl involves changes in promoter-associated proteins, including HDAC1 [J]. Proc Natl Acad Sci U S A,2004,101 (5):1241-6.
    [26]Vega RB, K Matsuda J, Oh AC Barbosa X, et al. Histone deacetylase 4 controls chondrocyte hypertrophy during skeletogenesis[J]. Cell,2004,119 (4):555-66.
    [27]Arnold MA, Kim Y, Czubryt MP, et al. MEF2C transcription factor controls chondrocyte hypertrophy and bone development[J]. Dev Cell,2007,12 (3) 377-89.
    [28]Scroggins BT, Robzyk K, Wang D, et al. An acetylation site in the middle domain of Hsp90 regulates chaperone function[J]. Mol Cell,2007,25 (1):151-9.
    [29]Dequiedt F, Kasler H, Fischle W, et al. HDAC7, a thymus-specific class II histone deacetylase, regulates Nur77 transcription and TCR-mediaed apoptosis[J]. Immunity,2003,18 (5):687-98.
    [30]Zhang Q, Vo N, Goodman RH. Acetylation of adenovirus E1A regulates binding of the transcriptional corepressor CtBP[J]. Proc Natl Acad Sci U S A,2000,97 (26):14323-8.
    [31]Shimazu T, Komatsu Y, Nakayama KI, et al. Regulation of SV40 large T-antigen stability by reversible acetylation[J]. Oncogene,2006,25 (56):7391-400.
    [32]Sengupta N, Seto E. Regulation of histone deacetylase activities[J]. J Cell Biochem,2004,93 (1):57-67.
    [33]Schuettengruber B, Simboeck E, Khier H, et al., Autoregulation of mouse histone deacetylase 1 expression[J]. Mol Cell Biol,2003,23 (19):6993-7004.
    [34]Grozinger CM, Schreiber SL. Regulation of histone deacetylase 4 and 5 and transcriptional activity by 14-3-3-dependent cellular localization[J]. Proc Natl Acad Sci U S A,2000,97 (14):7835-40.
    [35]Zhao X, Ito A, Kane CD, et al. The modular nature of histone deacetylase HDAC4 confers phosphorylation-dependent intracellular trafficking[J]. J Biol Chem,2001,276 (37):35042-8.
    [36]Parra M, Mahmoudi T, Verdin E. Myosin phosphatase dephosphorylates HDAC7, controls its nucleocytoplasmic shuttling, and inhibits apoptosis in thymocytes[J]. Genes Dev,2007,21 (6):638-43.
    [37]Sadoul K, Boyault C, Pabion M, et al. Regulation of protein turnover by acetyltransferases and deacetylases[J]. Biochimie,2008,90 (2):306-12.
    [38]Bode AM, Dong Z. Post-translational modification of p53 in tumorigenesis[J]. Nat Rev Cancer,2004,4 (10):793-805.
    [39]Chen X, Bieker JJ. Stage-specific repression by the EKLF transcriptional activator[J]. Mol Cell Biol,2004,24 (23):10416-24.
    [40]Matsuzaki H, Daitoku H, Hatta M, et al. Acetylation of Foxol alters its DNA-binding ability and sensitivity to phosphorylation[J]. Proc Natl Acad Sci U S A,2005,102 (32):11278-83.
    [41]Tang Y, Zhao W, Chen Y, et al. Acetylation is indispensable for p53 activation[J]. Cell,2008,133 (4):612-26.
    [42]Zhao Y, Lu S, Wu L, et al. Acetylation of p53 at lysine 373/382 by the histone deacetylase inhibitor depsipeptide induces expression of p21 (Waf1/Cip1) [J]. Mol Cell Biol,2006,26 (7):2782-90.
    [43]Murphy M, Ahn J, Walker KK, et al. Transcriptional repression by wild-type p53 utilizes histone deacetylases, mediated by interaction with mSin3a[J]. Genes Dev,1999,13 (19):2490-501.
    [44]Luo J, Su F, Chen D. et al. Deacetylation of p53 modulates its effect on cell growth and apoptosis[J]. Nature,2000,408 (6810):377-81.
    [45]Ito A, Kawaguchi Y, Lai CH, et al. MDM2-HDAC1-mediated deacetylation of p53 is required for its degradation[J]. EMBO J,2002,21 (22):6236-45.
    [46]Vaquero A, Scher-Lee MD, Erdjument-Bromage H, et al. Human SirTl interacts with histone H1 and promotes formation of facultative heterochromatin[J]. Mol Cell,2004,16 (1):93-105.
    [47]Jin YH, Kim YJ, Kim DW, et al. Sirt2 interacts with 14-3-3 beta/gamma and down-regulates the activity of p53[J]. Biochem Biophys Res Commun,2008,368 (3):690-5.
    [48]Barlev NA, Liu L, Chehab NH, et al. Acetylation of p53 activates transcription through recruitment of coactivators/histone acetyltransferases[J]. Mol Cell,2001,8 (6):1243-54.
    [49]Kumar, BR, Swaminathan V, Banerijee S, et al. p300-mediated acetylation of human transcriptional coactivator PC4 is inhibited by phosphorylation[J]. J Biol Chem,2001,276 (20):16804-9.
    [50]Warnock LJ, Raines SA, Mee TR, et al. Role of phosphorylation in p53 acetylation and PAb421 epitope recognition in baculoviral and mammalian expressed proteins[J]. FEBS J,2005,272 (7):1669-75.
    [51]Banerjee S, Kumar BR, Kundu TK. General transcriptional coactivator PC4 activates p53 function[J]. Mol Cell Biol,2004,24 (5):2052-62.
    [52]Han Y, Jin YH, Kim YJ, et al. Acetylation of Sirt2 by p300 attenuates its deacetylase activity[J]. Biochem Biophys Res Commun,2008,375 (4):576-80.
    [53]Schulze E, Asai DJ, Bulinski JC, et al. Posttranslational modification and microtubule stability[J]. J Cell Biol,1987,105 (5):2167-77.
    [54]North BJ, Marshall BL, Borra MT, et al. The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase[J].Mol Cell,2003,11 (2):437-44.
    [55]Boyault C, Zhang Y, Fritah S, et al. HDAC6 controls major cell response pathways to cytotoxic accumulation of protein aggregates[J]. Genes Dev,2007, 21 (17):2172-81.
    [56]Marrocco DL, Tilley WD, Bianco-Miotto T, et al. Suberoylanilide hydroxamic acid (vorinostat) represses androgen receptor expression and acts synergistically with an androgen receptor antagonist to inhibit prostate cancer cell proliferation[J]. Mol Cancer Ther,2007,6 (1):51-60.
    [57]Dowdy SC, Jiang S, Zhou XC, et al. Histone deacetylase inhibitors and paclitaxel cause synergistic effects on apoptosis and microtubule stabilization in papillary serous endometrial cancer cells[J]. Mol Cancer Ther,2006,5 (11): 2767-76.
    [58]Lee YS, Lim KH, Guo X, et al. The cytoplasmic deacetylase HDAC6 is required for efficient oncogenic tumorigenesis[J]. Cancer Res,2008,68 (18): 7561-9.
    [59]Serrador JM, Cabrero JR, Sancho D, et al. HDAC6 deacetylase activity links the tubulin cytoskeleton with immune synapse organization[J]. Immunity,2004,20 (4):417-28.
    [60]Das C, Kundu TK. Transcriptional regulation by the acetylation of nonhistone proteins in humans -- a new target for therapeutics[J]. IUBMB Life,2005,57(3): 137-49.
    [61]Fu M, Rao M, Wu K, et al. The androgen receptor acetylation site regulates cAMP and AKT but not ERK-induced activity[J]. J Biol Chem,2004,279 (28): 29436-49.
    [62]Tronche F, Kellendonk C, Reichardt HM, et al. Genetic dissection of glucocorticoid receptor function in mice[J]. Curr Opin Genet Dev,1998,8 (5): 532-8.
    [63]Lin HY, Hopkins R, Cao HJ, et al. Acetylation of nuclear hormone receptor superfamily members:thyroid hormone causes acetylation of its own receptor by a mitogen-activated protein kinase-dependent mechanism[J]. Steroids,2005,70 (5-7):444-9.
    [64]Gobinet J, Carascossa S, Cavailles V, et al. SHP represses transcriptional activity via recruitment of histone deacetylases[J]. Biochemistry,2005,44 (16) 6312-20.
    [65]Klampfer L, Huang J, Swaby LA, et al. Requirement of histone deacetylase activity for signaling by STAT1 [J]. J Biol Chem,2004,279 (29):30358-68.
    [66]Chang S,Young BD, Li S, et al. Histone deacetylase 7 maintains vascular integrity by repressing matrix metalloproteinase 10[J]. Cell,2006,126 (2): 321-34.
    [67]Shankaranarayanan P, Chaitidis P, Kuhn H, et al. Acetylation by histone acetyltransferase CREB-binding protein/p300 of STAT6 is required for transcriptional activation of the 15-lipoxygenase-1 gene[J]. J Biol Chem,2001,276 (46):42753-60.
    [68]Yuan ZL, Guan YJ, Chatterjee D, et al. Stat3 dimerization regulated by reversible acetylation of a single lysine residue[J]. Science,2005,307 (5707): 269-73.
    [69]Watamoto K, Towatari M, Ozawa Y, et al. Altered interaction of HDAC5 with GATA-1 during MEL cell differentiation[J]. Oncogene,2003,22 (57):9176-84.
    [70]Hayakawa F, Towatari M, Ozawa Y, et al. Functional regulation of GATA-2 by acetylation[J]. J Leukoc Biol,2004,75 (3):529-40.
    [71]Osawa M, Takayanagi S, Kato Y, et al. Histone deacetylase 3 associates with and represses the transcription factor GATA-2[J]. Blood,2001,98 (7):2116-23.
    [72]Thomas JO, Travers AA. HMG1 and 2, and related 'architectural' DNA-binding proteins[J]. Trends Biochem Sci,2001,26 (3):167-74.
    [73]Bustin M, Reeves R. High-mobility-group chromosomal proteins:architectural components that facilitate chromatin function[J]. Prog Nucleic Acid Res Mol Biol,1996,54:35-100.
    [74]Pasheva E, Sarov M, Bidjekov K, et al. In vitro acetylation of HMGB-1 and-2 proteins by CBP:the role of the acidic tail[J]. Biochemistry,2004,43 (10): 2935-40.
    [75]Sterner R, Vidali G, Allfrey VG. Studies of acetylation and deacetylation in high mobility group proteins. Identification of the sites of acetylation in HMG-1[J]. J Biol Chem,1979,254 (22):11577-83.
    [76]Munshi N, Agalioti T, Lomvardas S, et al. Coordination of a transcriptional switch by HMGI (Y) acetylation[J]. Science,2001,293 (5532):1133-6.
    [77]Munshi N., Merika M, Yie J, et al. Acetylation of HMGI (Y) by CBP turns off IFN beta expression by disrupting the enhanceosome[J]. Mol Cell,1998,2 (4): 457-67.
    [78]Luhrs H, Hock R, Schauber J, et al. Modulation of HMG-N2 binding to chromatin by butyrate-induced acetylation in human colon adenocarcinoma cells[J]. Int J Cancer,2002,97 (5):567-73.
    [79]Thevenet L, Mejean C, Moniot B, et al. Regulation of human SRY subcellular distribution by its acetylation/deacetylation[J]. EMBO J,2004,23 (16):3336-45.
    [80]Marzio G, Wagener C, Gutierrez MI, et al. E2F family members are differentially regulated by reversible acetylation[J]. J Biol Chem,2000,275 (15): 10887-92.
    [81]Weintraub SJ, Chow KNB, Luo RX, et al. Mechanism of active transcriptional repression by the retinoblastoma protein[J].Nature,1995,375 (6534):812-5.
    [82]Chan HM, Krstic-Demonacos M, Smith L, et al. Acetylation control of the retinoblastoma tumour-suppressor protein[J]. Nat Cell Biol,2001,3 (7):667-74.
    [83]Polesskaya A, Duquet A, Naguibneva I, et al. CREB-binding protein/p300 activates MyoD by acetylation[J]. J Biol Chem,2000,275 (44):34359-64.
    [84]Sartorelli V, Puri PL, Hamamori Y, et al. Acetylation of MyoD directed by PCAF is necessary for the execution of the muscle program[J]. Mol Cell,1999,4 (5):725-34.
    [85]Deng Q, Li Y, Tedesco D, et al. The ability of E1A to rescue ras-induced premature senescence and confer transformation relies on inactivation of both p300/CBP and Rb family proteins[J]. Cancer Res,2005,65 (18):8298-307.
    [86]Molloy D, Mapp KL, Webster R, et al. Acetylation at a lysine residue adjacent to the CtBP binding motif within adenovirus 12 E1A causes structural disruption and limited reduction of CtBP binding[J]. Virology,2006,355 (2): 115-26.
    [87]Madison DL, Yaciuk P, Kwok RP et al. Acetylation of the adenovirus-transforming protein El A determines nuclear localization by disrupting association with importin-alpha[J]. J Biol Chem,2002,277 (41): 38755-63.
    [88]Batta K, Das C, Gadad S, et al. Reversible acetylation of non histone proteins: role in cellular function and disease[J]. Subcell Biochem,2007,41:193-212.
    [89]Chen LF, Mu Y, Greene WC. Acetylation of RelA at discrete sites regulates distinct nuclear functions of NF-kappaB[J]. EMBO J,2002,21 (23):6539-48.
    [90]Yeung F, Hoberg JE, Ramsey CS, et al. Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase[J]. EMBO J,2004,23 (12):2369-80.
    [91]Kiernan R, Bres V, Ng RW, et al. Post-activation turn-off of NF-kappa B-dependent transcription is regulated by acetylation of p65[J]. J Biol Chem,2003,278 (4):2758-66.
    [92]Buerki C, Rothgiesser KM, Valovka T, et al. Functional relevance of novel p300-mediated lysine 314 and 315 acetylation of RelA/p65[J]. Nucleic Acids Res,2008,36 (5):1665-80.
    [93]Deng WG, Zhu Y, Wu KK. Up-regulation of p300 binding and p50 acetylation in tumor necrosis factor-alpha-induced cyclooxygenase-2 promoter activation[J]. J Biol Chem,2003,278 (7):4770-7.
    [94]Ikenoue T, Inoki K, Zhao B, et al. PTEN acetylation modulates its interaction with PDZ domain[J]. Cancer Res,2008,68 (17):6908-12.
    [95]Yao XH, Nyomba BL. Hepatic insulin resistance induced by prenatal alcohol exposure is associated with reduced PTEN and TRB3 acetylation in adult rat offspring[J]. Am J Physiol Regul Integr Comp Physiol.2008,294 (6): R1797-806.
    [96]Gronroos E, Hellman U, Heldin CH, et al. Control of Smad7 stability by competition between acetylation and ubiquitination[J]. Mol Cell,2002,10 (3): 483-93.
    [97]Simonsson M, Heldin CH, Ericsson J, et al. The balance between acetylation and deacetylation controls Smad7 stability[J]. J Biol Chem,2005,280 (23): 21797-803.
    [98]Corda D, Colanzi A, Luini A. The multiple activities of CtBP/BARS proteins: the Golgi view[J]. Trends Cell Biol,2006,16 (3):167-73.
    [99]Vo N, Fjeld C, Goodman RH. Acetylation of nuclear hormone receptor-interacting protein RIP 140 regulates binding of the transcriptional corepressor CtBP[J]. Mol Cell Biol,2001,21 (18):6181-8.
    [100]Jacob AL, Lund J, Martinez P, et al. Acetylation of steroidogenic factor 1 protein regulates its transcriptional activity and recruits the coactivator GCN5[J]. J Biol Chem,2001,276 (40):37659-64.
    [101]Thomas MJ, Seto E. Unlocking the mechanisms of transcription factor YY1:are chromatin modifying enzymes the key? [J]. Gene,1999,236 (2):197-208.
    [102]Yang WM, Yao YL, Sun JM, et al. Isolation and characterization of cDNAs corresponding to an additional member of the human histone deacetylase gene family[J]. J Biol Chem,1997,272 (44):28001-7.
    [103]Galasinski SC, Resing KA, Goodrich JA, et al. Phosphatase inhibition leads to histone deacetylases 1 and 2 phosphorylation and disruption of corepressor interactions[J]. J Biol Chem,2002,277 (22):19618-26.
    [104]Yao YL, WM Yang, Seto E. Regulation of transcription factor YY1 by acetylation and deacetylation[J]. Mol Cell Biol,2001,21 (17):5979-91.
    [105]Zhang W, Kadam S, Emerson BM, et al. Site-specific acetylation by p300 or CREB binding protein regulates erythroid Kruppel-like factor transcriptional activity via its interaction with the SWI-SNF complex[J]. Mol Cell Biol,2001,21 (7):2413-22.
    [106]Chen X, Bieker JJ. Unanticipated repression function linked to erythroid Kruppel-like factor[J]. Mol Cell Biol,2001,21 (9):3118-25.
    [107]Rossig L, Li H, Fisslthaler B, et al. Inhibitors of histone deacetylation downregulate the expression of endothelial nitric oxide synthase and compromise endothelial cell function in vasorelaxation and angiogenesis[J]. Circ Res,2002,91 (9):837-44.
    [108]Januchowski R, Dabrowski M, Ofori H, et al. Trichostatin A down-regulate DNA methyltransferase 1 in Jurkat T cells[J]. Cancer Lett,2007,246 (1-2): 313-7.
    [109]Xiong Y, DowdySC, Podratz KC, et al. Histone deacetylase inhibitors decrease DNA methyltransferase-3B messenger RNA stability and down-regulate de novo DNA methyltransferase activity in human endometrial cells[J]. Cancer Res,2005,65 (7):2684-9.
    [110]De los Santos M, Martinez-Iglesias O, Aranda A. Anti-estrogenic actions of histone deacetylase inhibitors in MCF-7 breast cancer cells[J]. Endocr Relat Cancer,2007,14 (4):1021-8.
    [111]Aranyi T, Sarkis C, Berrard S, et al. Sodium butyrate modifies the stabilizing complexes of tyrosine hydroxylase mRNA[J]. Biochem Biophys Res Commun,2007,359 (1):15-9.
    [112]Scott GK, Mattie MD, Berger CE, et al. Rapid alteration of microRNA levels by histone deacetylase inhibition[J]. Cancer Res,2006,66 (3):1277-81.
    [113]Juan LJ, Shia WJ, Chen MH, et al. Histone deacetylases specifically down-regulate p53-dependent gene activation[J]. J Biol Chem,2000,275 (27): 20436-43.
    [114]Sheng W, Yan H, Rausa FM, et al. Structure of the hepatocyte nuclear factor 6alpha and its interaction with DNA[J]. J Biol Chem,2004,279 (32):33928-36.
    [115]Jeong JW, Bae MK, Ahn MY, et al. Regulation and destabilization of HIF-1 alpha by ARD1-mediated acetylation[J]. Cell,2002,111(5):709-20.
    [116]Kong X, Lin Z, Liang D, et al. Histone deacetylase inhibitors induce VHL and ubiquitin-independent proteasomal degradation of hypoxia-inducible factor 1alpha[J].Mol Cell Biol,2006,26 (6):2019-28.
    [117]Qian DZ, Kachhap SK, Collis SJ, et al. Class II histone deacetylases are associated with VHL-independent regulation of hypoxia-inducible factor 1 alpha[J]. Cancer Res,2006,66 (17):8814-21.
    [118]Wade PA. Transcriptional control at regulatory checkpoints by histone deacetylases:molecular connections between cancer and chromatin[J]. Hum Mol Genet,2001,10 (7):693-8.
    [119]Gabrielli BG, Johnstone RW, Saunders NA. Identifying molecular targets mediating the anticancer activity of histone deacetylase inhibitors:a work in progress[J]. Curr Cancer Drug Targets,2002,2 (4):337-53.
    [120]Choi CH, Burton ZF, Usheva A. Auto-acetylation of transcription factors as a control mechanism in gene expression[J]. Cell Cycle,2004,3 (2):114-5.
    [121]Halkidou K, Gnanapragasam VJ, Meht PB, et al. Upregulation and nuclear recruitment of HDAC1 in hormone refractory prostate cancer[J]. Prostate,2004,59 (2):177-89.
    [122]Osada H, Tatematsu Y, Saito H, et al. Reduced expression of class II histone deacetylase genes is associated with poor prognosis in lung cancer patients[J]. Int J Cancer,2004,112 (1):26-32.
    [123]Saunders LR, Verdin E. Sirtuins:critical regulators at the crossroads between cancer and aging[J]. Oncogene,2007,26 (37):5489-504.
    [124]Knights CD, Catania J, Di Giovanni S, et al. Distinct p53 acetylation cassettes differentially influence gene-expression patterns and cell fate[J]. J Cell Biol,2006,173 (4):533-44.
    [125]Huang BH, Laban M, Leung CH, et al. Inhibition of histone deacetylase 2 increases apoptosis and p21 Cip1/WAF1 expression, independent of histone deacetylase 1[J]. Cell Death Differ,2005,12 (4):395-404.
    [126]Olaharski AJ, Rine J, Marshall BL, et al. The flavoring agent dihydrocoumarin reverses epigenetic silencing and inhibits sirtuin deacetylases[J].PLoS Genet,2005,1(6):e77.
    [127]Costanzo A, Merlo P, Pediconi N, et al. DNA damage-dependent acetylation of p73 dictates the selective activation of apoptotic target genes[J]. Mol Cell,2002,9 (1):175-86.
    [128]Cohen HY, Lavu S, Bitterman KJ, et al. Acetylation of the C terminus of Ku70 by CBP and PCAF controls Bax-mediated apoptosis[J]. Mol Cell,2004,13 (5) 627-38.
    [129]Faiola F, Liu X, Lo S, et al. Dual regulation of c-Myc by p300 via acetylation-dependent control of Myc protein turnover and coactivation of Myc-induced transcription[J]. Mol Cell Biol,2005,25 (23):10220-34.
    [130]McMahon C, Suthiphongchai T, DiRenzo J, et al. P/CAF associates with cyclin D1 and potentiates its activation of the estrogen receptor[J]. Proc Natl Acad Sci USA,1999,96 (10):5382-7.
    [131]Rampalli S, Pavithra L, Bhatt A, et al. Tumor suppressor SMAR1 mediates cyclin D1 repression by recruitment of the SIN3/histone deacetylase 1 complex[J]. Mol Cell Biol,2005,25 (19):8415-29.
    [132]Ocker M., Schneider-Stock R. Histone deacetylase inhibitors:signalling towards p21 cip1/waf1[J]. Int J Biochem Cell Biol,2007,39 (7-8):1367-74.
    [133]Ju R, Muller MT. Histone deacetylase inhibitors activate p21 (WAF1) expression via ATM[J]. Cancer Res,2003,63 (11):2891-7.
    [134]Yang XJ. The diverse superfamily of lysine acetyltransferases and their roles in leukemia and other diseases[J]. Nucleic Acids Res,2004,32 (3):959-76.
    [135]Hirsch CL, Bonham K. Histone deacetylase inhibitors regulate p21 WAF1 gene expression at the post-transcriptional level in HepG2 cells[J]. FEBS Lett,2004, 570 (1-3):37-40.
    [136]Zhang HS, Gavin M, Dahiya A, et al. Exit from G1 and S phase of the cell cycle is regulated by repressor complexes containing HDAC-Rb-hSWI/SNF and Rb-hSWI/SNF[J]. Cell,2000,101 (1):79-89.
    [137]Riggs MG, Whittaker RG, Neumann JR, et al. N-Butyrate causes histone modification in HeLa and Friend erythroleukaemia cells[J]. Nature,1977,268 (5619):462-4.
    [138]Yoshida M, Kijima M, Akita M, et al. Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A[J]. J Biol Chem,1990,265 (28):17174-9.
    [139]Gottlicher M, Minucci S, Zhu P, et al. Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells[J]. EMBO J,2001, 20 (24):6969-78.
    [140]Steele NL, Plumb JA, Vidal L, et al. A phase 1 pharmacokinetic and pharmacodynamic study of the histone deacetylase inhibitor belinostat in patients with advanced solid tumors[J]. Clin Cancer Res,2008,14 (3):804-10.
    [141]Undevia SD, Kindler HL, Janisch L, et al. A phase I study of the oral combination of CI-994, a putative histone deacetylase inhibitor, and capecitabine[J].Ann Oncol,2004,15 (11):1705-11.
    [142]Acharya MR, Sparreboom A, Venitz J, et al. Rational development of histone deacetylase inhibitors as anticancer agents:a review[J]. Mol Pharmacol,2005,68 (4):917-32.
    [143]Schneider-Stock R, Ocker M. Epigenetic therapy in cancer:molecular background and clinical development of histone deacetylase and DNA methyltransferase inhibitors[J].IDrugs,2007,10 (8):557-61.
    [144]Kramer OH, Gottlicher M, Heinzel T. Histone deacetylase as a therapeutic target[J]. Trends Endocrinol Metab,2001,12 (7):294-300.
    [145]Finnin MS, Donigian JR, Cohen A, et al. Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors[J]. Nature,1999,401 (6749): 188-93.
    [146]Minucci S, Pelicci PG. Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer[J]. Nat Rev Cancer,2006,6 (1): 38-51.
    [147]Qian DZ, Wang X, Kachhap SK, et al. The histone deacetylase inhibitor NVP-LAQ824 inhibits angiogenesis and has a greater antitumor effect in combination with the vascular endothelial growth factor receptor tyrosine kinase inhibitor PTK787/ZK222584[J]. Cancer Res,2004,64 (18):6626-34.
    [148]Deroanne CF, Bonjean K, Servotte S, et al. Histone deacetylases inhibitors as anti-angiogenic agents altering vascular endothelial growth factor signaling[J]. Oncogene,2002,21 (3):427-36.
    [149]Michaelis M, Michaelis UR, Fleming I, et al. Valproic acid inhibits angiogenesis in vitro and in vivo[J]. Mol Pharmacol,2004,65 (3):520-7.
    [150]Wang LG, Liu XM, Fang Y, et al. De-repression of the p21 promoter in prostate cancer cells by an isothiocyanate via inhibition of HDACs and c-Myc[J]. Int J Oncol,2008,33 (2):375-80.
    [151]Le Tourneau C, Siu LL. Promising antitumor activity with MGCD0103, a novel isotype-selective histone deacetylase inhibitor[J]. Expert Opin Investig Drugs,2008,17 (8):1247-54.
    [152]Haggarty SJ, Koeller KM, Wong JC, et al. Domain-selective small-molecule inhibitor of histone deacetylase 6 (HDAC6)-mediated tubulin deacetylation[J]. Proc Natl Acad Sci U S A,2003,100 (8):4389-94.
    [153]Oehme I, Deubzer HE, Wegener D, et al. Histone deacetylase 8 in neuroblastoma tumorigenesis[J]. Clin Cancer Res,2009,15 (1):91-9.
    [154]Karagiannis TC, El-Osta A. Will broad-spectrum histone deacetylase inhibitors be superseded by more specific compounds? [J]. Leukemia,2007,21 (1):61-5.
    [155]Suzuki T. Explorative study on isoform-selective histone deacetylase inhibitors[J]. Chem Pharm Bull (Tokyo),2009,57 (9):897-906.
    [156]Sargeant AM, Rengel RC, Kulp SK, et al. OSU-HDAC42, a histone deacetylase inhibitor, blocks prostate tumor progression in the transgenic adenocarcinoma of the mouse prostate model[J]. Cancer Res,2008,68 (10):3999-4009.
    [157]Ramondetta L, Burke TW, Levenback C, et al. Treatment of uterine papillary serous carcinoma with paclitaxel[J]. Gynecol Oncol,2001,82 (1):156-61.
    [158]Myzak MC, Dashwood RH. Chemoprotection by sulforaphane:keep one eye beyond Keapl[J]. Cancer Lett,2006,233 (2):208-18.
    [159]Druesne N, Pagniez A, Mayeur C, et al. Diallyl disulfide (DADS) increases histone acetylation and p21 (wafl/cipl) expression in human colon tumor cell lines[J]. Carcinogenesis,2004,25 (7):1227-36.
    [160]Guyonnet D, Berges R, Siess MH, et al. Post-initiation modulating effects of allyl sulfides in rat hepatocarcinogenesis[J]. Food Chem Toxicol,2004,42 (9): 1479-85.
    [161]Lu Q, Lin X, Feng J, et al. Phenylhexyl isothiocyanate has dual function as histone deacetylase inhibitor and hypomethylating agent and can inhibit myeloma cell growth by targeting critical pathways[J]. J Hematol Oncol,2008,1: 6.
    [162]Myzak MC, Karplus PA, Chung FL, et al. A novel mechanism of chemoprotection by sulforaphane:inhibition of histone deacetylase[J]. Cancer Res,2004,64 (16):5767-74.