蛋白质精氨酸甲基转移酶(PRMT)在RD细胞诱导分化中作用机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
核小体核心组蛋白的尾部有多种共价修饰,包括乙酰化,磷酸化,甲基化和泛素化等。这些组蛋白的翻译后修饰可以改变染色质结构,进而影响非组蛋白转录因子与染色质的结合,在调节转录过程中发挥着重要的作用。与乙酰化不同,对组蛋白甲基化的作用知之甚少,尽管这种修饰已经被发现了近40年。当初由于不清楚具体发挥甲基化作用的酶类,很难探讨组蛋白甲基化与基因活化之间的直接联系。近些年一些具有精氨酸或赖氨酸甲基化作用的酶类陆续被鉴定出来。其中蛋白质精氨酸甲基转移酶家族(protein arginine methyltransferases, PRMTs)就是一类含有高度保守结构域的具有甲基转移酶活性的酶类。其作用底物非常广泛,涉及真核细胞DNA和RNA介导的许多过程。其修饰组蛋白,调节转录因子,调整mRNA的稳定性,参与DNA损伤修复及装配剪接复合体的功能是几乎所有真核细胞功能所必需的。
     横纹肌肉瘤(Rhabdomyosarcoma, RMS)起源于肌肉前体细胞,是一种儿童时期的软组织肉瘤,其恶性程度很高且较常见。人类胚胎型横纹肌肉瘤衍生的RD细胞,尽管表达成肌调节因子MyoD和生肌蛋白(Myogenin),但未能完成分化。为了深入了解该肿瘤的发病机理,探索可能用于体内的治疗靶点,本文以RD细胞为模型,从该肿瘤终末分化阻滞机理出发,主要研究对基因转录具有重要调控作用的组蛋白修饰酶——蛋白质精氨酸甲基转移酶(PRMTs)在TPA (12-O-tetradecanoyl-phorbol-13-acetate)诱导RD细胞分化过程中的作用及其机制,并对RD细胞分化过程中早期分化标志——生肌蛋白基因启动子区染色质的重塑以及转录相关因子的结合进行研究,为横纹肌肉瘤的临床治疗提供一定的理论依据。
     一、TPA诱导RD细胞分化过程中PRMT家族成员的表达情况
     TPA处理RD细胞过程中,流式细胞术显示,G2/M期数值增加,细胞周期明显阻滞;RT-PCR、Western Blot方法检测PRMT家族基因在RD细胞中都有不同程度的表达,且随着RD细胞分化时间的延长,表达有所增加;组蛋白精氨酸甲基化水平增加;细胞免疫荧光染色发现诱导后细胞出现分化后的形态改变,如胞体伸长,细胞内颗粒物增多;PRMT家族酶主要定位在胞浆中,细胞分化后进入细胞核。
     二、PRMT家族酶对TPA诱导的RD细胞分化过程中生肌蛋白基因表达的调控作用
     1)构建并验证了PRMT家族各成员的有效siRNA质粒。构建并鉴定了PRMT5、PRMT6的过表达质粒pCDNA6-PRMT5(/PRMT6)-FLAG。
     2)确定在RD细胞中,PRMT抑制剂AdOx的使用浓度为20μM。
     3)流式细胞术结果显示,腺苷二醛AdOx处理的RD细胞退出细胞周期,处于G2/M期阻滞状态。Western Blot检测到分化标志生肌蛋白的表达受到了明显的抑制,说明细胞没有进入分化过程。免疫荧光实验结果也表明细胞形态上没有明显的分化趋势。结果还显示随着TPA的诱导PCAF的mRNA及蛋白的表达量均明显增加,且AdOx能明显抑制其表达。而SWI/SNF染色质重塑复合物核心亚单位Brgl不论是在TPA诱导的过程中,还是AdOx处理前后都没有明显的改变。启动子活性分析实验结果提示TPA通过某种机制激活生肌蛋白基因的表达,而可被AdOx抑制的精氨酸甲基化作用可能是其激活途径的必经环节。以上AdOx处理细胞的实验结果提示,精氨酸甲基化过程是细胞分化形态的改变、主要转录因子活化、以及成肌相关因子激活所必需的。
     4)应用siRNA干扰技术,经Western Blot实验证明,TPA诱导增加的Myogenin蛋白在转染CARM1siRNA质粒后表达受到了明显的抑制,PCAF的表达也有所降低。且Myogenin和PCAF的入核量也都明显减少。过表达CARM1的实验结果显示Myogenin、PCAF和Brgl的核内表达都明显高于对照组。细胞免疫荧光实验结果显示,转染了CARM1siRNA的细胞,在TPA诱导过程中形态上没有明显的分化趋势。此外,在转染各个PRMT特异的siRNA后,myogenin基因启动子活性都被明显抑制。结合上述AdOx作用的相关实验,这些结果都显示PRMT家族酶在肌肉分化过程中发挥着重要的作用。
     5)Myogenin基因启动子活性分析实验结果显示,在Brgl促进生肌蛋白表达的过程中,CARM1的作用是不可或缺的。CARM1也是PCAF增强生肌蛋白启动子活性所必需的调控因子。而p300可能与CARM1相互作用来协同增强myogenin启动子活性。
     三、PRMT家族酶对TPA诱导的RD细胞分化过程中生肌蛋白基因染色质水平的调控作用
     1)染色质免疫共沉淀(ChIP)实验结果表明,未经TPA诱导的对照RD细胞中,CARM1并不与生肌蛋白基因启动子区结合,TPA诱导3小时后,CARM1开始结合到启动子上。6小时后,结合更加明显,而SB的处理不改变CARM1的结合,说明CARM1被募集到myogenin启动子上是非p38依赖性的。
     2)未经处理的RD细胞生肌蛋白启动子区组蛋白H3有一定水平的乙酰化,而组蛋白H4的精氨酸甲基化水平较低,TPA诱导后组蛋白乙酰化和精氨酸甲基化水平都明显升高,且经AdOx或SB处理后都受到了抑制。
     3) SWI/SNF染色质重塑复合物亚基BAF60和Brg1处理前不结合在生肌蛋白启动子上,TPA诱导后结合明显增加,这种结合依赖于p38和精氨酸甲基化作用。
     4)乙酰基转移酶p300在生理状态下就结合在生肌蛋白的启动子上,TPA诱导和SB处理后都没有改变,但AdOx处理明显抑制其结合。p300/CBP协同因子—-PCAF只在TPA诱导后结合到启动子上,但这种结合并不依赖于p38,而依赖于可被AdOx抑制的精氨酸甲基化作用。
     5)肌细胞分化调节因子MyoD不论是在TPA诱导前后,还是SB或AdOx处理过程中,都结合在启动子上且没有明显的改变。PRMT5生理条件下不结合到启动子上,TPA诱导后明显结合,这种结合依赖于p38和精氨酸甲基化作用。
     6)RNA聚合酶polⅡ生理状态下在生肌蛋白启动子上有一定的结合,TPA诱导后结合增加,而SB或AdOx处理都可对其结合有一定的抑制作用,但抑制不完全。
     综合以上结果,我们认为PRMT家族酶在RD细胞的诱导分化过程中具有正调节作用。通过该类酶促的蛋白质精氨酸甲基化,以及其他调节因子对组蛋白的修饰或转录因子的活化,可有效地促进生肌蛋白基因表达,并导致RD细胞的分化。本研究显示深入研究精氨酸甲基转移酶的调控机制有助于对肌肉细胞诱导分化机制的认识,并将为横纹肌肉瘤的临床治疗提供一定的理论依据。
The N-terminal tails of core histones in a nucleosome are covalently modified in vivo in a variety ways, such as acetylation, phosphorylation, methylation, and ubiquitination, etc. Histone modification plays a pivotal role in the regulation of eukaryotic gene transcription mainly by changing the interactions between nuclear proteins and DNA sequences in a nucleosome. Despite that the histone methylation has been known for over 35 years, its role in gene transcription remains unclear. In the past decade, several families of enzymes that act to methylate either arginine or lysine residues in the histones have been identified. Protein arginine methyltransferases (PRMTs) are a family of enzymes that share a highly conserved domain encompassing methyltransferase activity. PRMTs are capable of methylating a broad spectrum of substrates including histones, transcription factors and other proteins functions RNA processing, nucleo-cytoplasmic transport and DNA damage repair.
     Rhabdomyosarcoma, the most common pediatric soft tissue sarcoma, arises from skeletal muscle progenitor cell with high malignancy. RD is an embryonic rhabdomyosarcoma cell line that is taken as a model in this study, in which, despite the expression of MyoD and myogenin, is not efficient in terminal differentiation. TPA (12-O-tetradecanoyl-phorbol-13-acetate) is used here to induce RD cell differentiation and to investigate the functions of PRMTs therein.
     1. Expression of PRMTs during cell differentiation
     After treated with 100nM TPA, flowcytometry analyses show G2/M is increased and the cell cycle is arrested. Real-time RT-PCR, Western Blot experiments indicate PRMTs are expressed in RD cells and the expression of PRMTs increases during cell differentiation. The level of histone arginine methylation increases. Immunofluorescence analyses show RD cells acquire typical myogenic modality gradually after TPA inducing, such as a more elongated shape, more granule materials. The subcellular distributions of PRMTs are cytoplasm, then they enter nucleus after differentiation.
     2. The effect of PRMTs on the expression of myogenin during cell differentiation
     1) We construct PRMT-siRNA plasmids, PRMT5, PRMT6 expression plasmids [pCDNA6-PRMT5 (/PRMT6)-FLAG], and verify the availability of them.
     2) We use 20μM as the concentration of PRMT inhibitor AdOx in RD cells.
     3) Flowcytometry analyses show after AdOx treatment, the cells arrest at G2/M phase. The expression of myogenin is inhibited shows the cells fail to complete differentiation. Immunofluorescence analyses show RD cells did not acquire typical myogenic modality. The expression of PCAF mRNA and protein increases during cell differentiation and is restrained by AdOx. But the expression of Brgl, the core unit of SWI/SNF chromatin remodeling complex, does not change during differentiation or AdOx treatment. The analysis of promoter activity shows that TPA can activate the promoter activity of myogenin and AdoMet-mediated arginine methylation is indispensable for the full expression of myogenin. All the experiments of adenosine dialdehyde suggest that arginine methylation is necessary for (i) morphological differentiation, (ii) activation of essential transcription factors, and (iii) activation of myogenic relative factors.
     4) Transfecting RD cells with CARM1siRNA, we find (i) the expression and nuclear translocation of myogenin and PCAF protein is inhibited. (ii) RD cells do not acquire typical myogenic modality. (iii) The promoter activity of myogenin gene is obviously restrained. Overexpressing CARM1 makes the expression and nuclear translocation of myogenin, PCAF and Brgl obviously increase. In summary, protein arginine methyltransferase activity is necessary for the activation of critical transcription factors and cofactors involved in RD cells terminal differentiation.
     5) The assay of promoter activity of myogenin illuminates that Brgl can effectively increase myogenin promoter activity during RD cell differentiation and CARM1 is indispensable for this effect of Brg1. CARM1 may also cooperate with PCAF and p300 to regulate the expression of myogenin.
     3. The effect of PRMTs on the binding of chromatin modifiers on the promoter of myogenin during RD cell differetiation
     1) Chromatin Immunoprecipitation (ChIP) shows CARM1 can not bind the promoter of myogenin in RD cells. After induced by TPA for 3h, it begins to bind the myogenin promoter. The p38 inhibitor SB203580 can not restrain the binding of CARM1, which indicates the recruitment of CARM1 to the promoter is not p38-dependent.
     2) Histone H3 is acetylated at a low degree in RD cells, but the arginine methylation of histone H4 is very little. After induced by TPA, both the acetylation of H3 and arginine methylation of H4 is increased. They can be inhibited by SB or AdOx treatment.
     3) BAF60 and Brg1 can be recruited to the promoter of myogenin during RD cell differentiation, while they did not bind in normal RD cells. The binding is dependent on p38 and AdoMet-mediated methylation.
     4) P300 can bind the promoter of myogenin in RD cells. TPA inducement or SB treatment can not influence the binding, but AdOx can obviously inhibit it. PCAF can be recruited to the promoter during RD cell differentiation, whereas it can not bind the promoter in normal RD cells. The binding is p38-independent and depends on AdoMet-mediated methylation.
     5) MyoD can bind the promoter of myogenin in normal RD cells, and no matter TPA, SB or AdOx treatment can not influence the binding. PRMT5 can bind the myogenin promoter only when RD cells are induced by TPA. The binding is dependent on p38 and AdoMet-mediated methylation.
     6) RNA polymerization enzyme polⅡcan bind the promoter of myogenin at a low degree in RD cells, and the binding can be increased after TPA inducement. Both SB and AdOx treatment can partially influence the binding.
     In summary, PRMTs play an enhancing role in regulating the RD cells in TPA induced differentiation. Histone arginine methylated by PRMTs along with other histone modifications and the activation of transcription factors that jointly exert an increased expression of myogenin gene and lead the RD cells to differentiation. The regulatory functions of PRMTs in RD cell differentiation shed lights on novel target in drug development and its application to make the rhabdomyosarcoma reversal in the clinic.
引文
Aguanno, S., M. Bouche, et al. (1990). "12-O-tetradecanoylphorbol-13-acetate-induced differentiation of a human rhabdomyosarcoma cell line." Cancer Res 50(11): 3377-82.
    Arnold, H. H. and B. Winter (1998). "Muscle differentiation:more complexity to the network of myogenic regulators." Curr Opin Genet Dev 8(5):539-44.
    Black, B. L., J. D. Molkentin, et al. (1998). "Multiple roles for the MyoD basic region in transmission of transcriptional activation signals and interaction with MEF2." Mol Cell Biol 18(1):69-77.
    Black, B. L. and E. N. Olson (1998). "Transcriptional control of muscle development by myocyte enhancer factor-2 (MEF2) proteins." Annu Rev Cell Dev Biol 14: 167-96.
    Bouche, M., F. Zappelli, et al. (1995). "Rapid activation and down-regulation of protein kinase C alpha in 12-O-Tetradecanoylphorbol-13-acetate-induced differentiation of human rhabdomyosarcoma cells." Cell Growth Differ 6(7):845-52.
    Brownell, J. E. and C. D. Allis (1996). "Special HATs for special occasions:linking histone acetylation to chromatin assembly and gene activation." Curr Opin Genet Dev 6(2):176-84.
    Brummelkamp, T. R., R. Bernards, et al. (2002). "A system for stable expression of short interfering RNAs in mammalian cells." Science 296(5567):550-3.
    Bultman, S., T. Gebuhr, et al. (2000). "A Brgl null mutation in the mouse reveals functional differences among mammalian SWI/SNF complexes." Mol Cell 6(6): 1287-95.
    Casolaro, V., A. M. Keane-Myers, et al. (2000). "Identification and characterization of a critical CP2-binding element in the human interleukin-4 promoter." J Biol Chem 275(47):36605-11.
    Chen, S. L., K. A. Loffler, et al. (2002). "The coactivator-associated arginine methyltransferase is necessary for muscle differentiation:CARM1 coactivates myocyte enhancer factor-2." J Biol Chem 277(6):4324-33.
    Cserjesi, P. and E. N. Olson (1991). "Myogenin induces the myocyte-specific enhancer binding factor MEF-2 independently of other muscle-specific gene products." Mol Cell Biol 11(10):4854-62.
    Daujat, S., U. M. Bauer, et al. (2002). "Crosstalk between CARM1 methylation and CBP acetylation on histone H3." Curr Biol 12(24):2090-7.
    Dias, P., D. M. Parham, et al. (1990). "Myogenic regulatory protein (MyoD1) expression in childhood solid tumors:diagnostic utility in rhabdomyosarcoma." Am J Pathol 137(6):1283-91.
    Esposito D, G. W., Hartley JL (2003). "Blocking oligonucleotides improve sequencing through inverted repeats." Biotechniques 35:7.
    Gerber, A. N., T. R. Klesert, et al. (1997). "Two domains of MyoD mediate transcriptional activation of genes in repressive chromatin:a mechanism for lineage determination in myogenesis." Genes Dev 11(4):436-50.
    Gossett, L. A., D. J. Kelvin, et al. (1989). "A new myocyte-specific enhancer-binding factor that recognizes a conserved element associated with multiple muscle-specific genes." Mol Cell Biol 9(11):5022-33.
    Imhof, A., X. J. Yang, et al. (1997). "Acetylation of general transcription factors by histone acetyltransferases." Curr Biol 7(9):689-92.
    J Sambrook, D. W. R. (2000). Molecular Cloning:A laboratory Manual
    Kee, B. L., J. Arias, et al. (1996). "Adaptor-mediated recruitment of RNA polymerase Ⅱ to a signal-dependent activator." J Biol Chem 271(5):2373-5.
    Kiernan, R. E., C. Vanhulle, et al. (1999). "HIV-1 tat transcriptional activity is regulated by acetylation." Embo J 18(21):6106-18.
    Klochendler-Yeivin, A., C. Muchardt, et al. (2002). "SWI/SNF chromatin remodeling and cancer." Curr Opin Genet Dev 12(1):73-9.
    Kuo, M. H. and C. D. Allis (1998). "Roles of histone acetyltransferases and deacetylases in gene regulation." Bioessays 20(8):615-26.
    Lassar, A. B., S. X. Skapek, et al. (1994). "Regulatory mechanisms that coordinate skeletal muscle differentiation and cell cycle withdrawal." Curr Opin Cell Biol 6(6):788-94.
    Lee, Y. H., S. S. Koh, et al. (2002). "Synergy among nuclear receptor coactivators: selective requirement for protein methyltransferase and acetyltransferase activities." Mol Cell Biol 22(11):3621-32.
    Li, Z. Y., J. Yang, et al. (2007). "Sequential recruitment of PCAF and BRG1 contributes to myogenin activation in 12-O-tetradecanoylphorbol-13-acetate-induced early differentiation of rhabdomyosarcoma-derived cells." J Biol Chem 282(26): 18872-8.
    Liu, R., H. Liu, et al. (2001). "Regulation of CSF1 promoter by the SWI/SNF-like BAF complex." Cell 106(3):309-18.
    Margueron, R., P. Trojer, et al. (2005). "The key to development:interpreting the histone code?" Curr Opin Genet Dev 15(2):163-76.
    Mohrmann, L. and C. P. Verrijzer (2005). "Composition and functional specificity of SWI2/SNF2 class chromatin remodeling complexes." Biochim Biophys Acta 1681(2-3):59-73.
    Molkentin, J. D., B. L. Black, et al. (1995). "Cooperative activation of muscle gene expression by MEF2 and myogenic bHLH proteins." Cell 83(7):1125-36.
    Molkentin, J. D., A. B. Firulli, et al. (1996). "MEF2B is a potent transactivator expressed in early myogenic lineages." Mol Cell Biol 16(7):3814-24.
    Molkentin, J. D. and E. N. Olson (1996). "Defining the regulatory networks for muscle development." Curr Opin Genet Dev 6(4):445-53.
    Momose, F., T. Naito, et al. (2002). "Identification of Hsp90 as a stimulatory host factor involved in influenza virus RNA synthesis." J Biol Chem 277(47):45306-14.
    Muchardt, C. and M. Yaniv (1999). "The mammalian SWI/SNF complex and the control of cell growth." Semin Cell Dev Biol 10(2):189-95.
    Narlikar, G. J., H. Y. Fan, et al. (2002). "Cooperation between complexes that regulate chromatin structure and transcription." Cell 108(4):475-87.
    Paddison, P. J., A. A. Caudy, et al. (2002). "Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells." Genes Dev 16(8):948-58.
    Paddison, P. J., A. A. Caudy, et al. (2002). "Stable suppression of gene expression by RNAi in mammalian cells." Proc Natl Acad Sci U S A 99(3):1443-8.
    Paul, C. P., P. D. Good, et al. (2002). "Effective expression of small interfering RNA in human cells." Nat Biotechnol 20(5):505-8.
    Polesskaya, A., A. Duquet, et al. (2000). "CREB-binding protein/p300 activates MyoD by acetylation." J Biol Chem 275(44):34359-64.
    Puri, P. L., V. Sartorelli, et al. (1997). "Differential roles of p300 and PCAF acetyltransferases in muscle differentiation." Mol Cell 1(1):35-45.
    Sartorelli, V., P. L. Puri, et al. (1999). "Acetylation of MyoD directed by PCAF is necessary for the execution of the muscle program." Mol Cell 4(5):725-34.
    Simone, C., S. V. Forcales, et al. (2004). "p38 pathway targets SWI-SNF chromatin-remodeling complex to muscle-specific loci." Nat Genet 36(7): 738-43.
    Strahl, B. D. and C. D. Allis (2000). "The language of covalent histone modifications." Nature 403(6765):41-5.
    Tonin, P. N., H. Scrable, et al. (1991). "Muscle-specific gene expression in rhabdomyosarcomas and stages of human fetal skeletal muscle development." Cancer Res 51(19):5100-6.
    Tsitsikov, E. N., D. A. Wright, et al. (1997). "CD30 induction of human immunodeficiency virus gene transcription is mediated by TRAF2." Proc Natl Acad Sci U S A 94(4):1390-5.
    Wang, Y., W. Fischle, et al. (2004). "Beyond the double helix:writing and reading the histone code." Novartis Found Symp 259:3-17; discussion 17-21,163-9.
    Wolffe, A. P. (1994). "The transcription of chromatin templates." Curr Opin Genet Dev 4(2):245-54.
    Wong, K., J. Zhang, et al. (2004). "Nerve growth factor receptor signaling induces histone acetyltransferase domain-dependent nuclear translocation of p300/CREB-binding protein-associated factor and hGCN5 acetyltransferases." J Biol Chem 279(53):55667-74.
    Xiao, L. and W. Lang (2000). "A dominant role for the c-Jun NH2-terminal kinase in oncogenic ras-induced morphologic transformation of human lung carcinoma cells." Cancer Res 60(2):400-8.
    Xu, Q. and Z. Wu (2000). "The insulin-like growth factor-phosphatidylinositol 3-kinase-Akt signaling pathway regulates myogenin expression in normal myogenic cells but not in rhabdomyosarcoma-derived RD cells." J Biol Chem 275(47):36750-7.
    Yamagoe, S., T. Kanno, et al. (2003). "Interaction of histone acetylases and deacetylases in vivo." Mol Cell Biol 23(3):1025-33.
    Yang, X. J., V. V. Ogryzko, et al. (1996). "A p300/CBP-associated factor that competes with the adenoviral oncoprotein E1A." Nature 382(6589):319-24.
    Yun, K. and B. Wold (1996). "Skeletal muscle determination and differentiation:story of a core regulatory network and its context." Curr Opin Cell Biol 8(6):877-89.
    李兆勇,吴宁华,沈珝琲(2004).”染色质重塑与肌肉分化.”Chemistry of Life 24(5):3.
    Adams, M. M., B. Wang, et al. (2005). "53BP1 oligomerization is independent of its methylation by PRMT1." Cell Cycle 4(12):1854-61.
    Aguanno, S., M. Bouche, et al. (1990). "12-O-tetradecanoylphorbol-13-acetate-induced differentiation of a human rhabdomyosarcoma cell line." Cancer Res 50(11):3377-82.
    An, W., J. Kim, et al. (2004). "Ordered cooperative functions of PRMTl, p300, and CARM1 in transcriptional activation by p53." Cell 117(6):735-48.
    Arnold, H. H. and B. Winter (1998). "Muscle differentiation:more complexity to the network of myogenic regulators." Curr Opin Genet Dev 8(5):539-44.
    Bachand, F. and P. A. Silver (2004). "PRMT3 is a ribosomal protein methyltransferase that affects the cellular levels of ribosomal subunits." Embo J 23(13):2641-50.
    Bakker, W. J., M. Blazquez-Domingo, et al. (2004). "FoxO3a regulates erythroid differentiation and induces BTG1, an activator of protein arginine methyl transferase 1." J Cell Biol 164(2):175-84.
    Barrero, M. J. and S. Malik (2006). "Two functional modes of a nuclear receptor-recruited arginine methyltransferase in transcriptional activation." Mol Cell 24(2):233-43.
    Bauer, U. M., S. Daujat, et al. (2002). "Methylation at arginine 17 of histone H3 is linked to gene activation." EMBO Rep 3(1):39-44.
    Bedford, M. T. and S. Richard (2005). "Arginine methylation an emerging regulator of protein function." Mol Cell 18(3):263-72.
    Berthet, C., F. Guehenneux, et al. (2002). "Interaction of PRMT1 with BTG/TOB proteins in cell signalling: molecular analysis and functional aspects." Genes Cells 7(1):29-39.
    Black, B. L., J. D. Molkentin, et al. (1998). "Multiple roles for the MyoD basic region in transmission of transcriptional activation signals and interaction with MEF2." Mol Cell Biol 18(1):69-77.
    Black, B. L. and E. N. Olson (1998). "Transcriptional control of muscle development by myocyte enhancer factor-2 (MEF2) proteins." Annu Rev Cell Dev Biol 14:167-96.
    Blanchet, F., A. Cardona, et al. (2005). "CD28 costimulatory signal induces protein arginine methylation in T cells." J Exp Med 202(3):371-7.
    Boisvert, F. M., C. A. Chenard, et al. (2005). "Protein interfaces in signaling regulated by arginine methylation." Sci STKE 2005(271):re2.
    Boisvert, F. M., M. J. Hendzel, et al. (2005). "Methylation of MRE11 regulates its nuclear compartmentalization." Cell Cycle 4(7):981-9.
    Boisvert, F. M., A. Rhie, et al. (2005). "The GAR motif of 53BP1 is arginine methylated by PRMT1 and is necessary for 53 BP1 DNA binding activity." Cell Cycle 4(12):1834-41.
    Bouche, M., F. Zappelli, et al. (1995). "Rapid activation and down-regulation of protein kinase C alpha in 12-O-Tetradecanoylphorbol-13-acetate-induced differentiation of human rhabdomyosarcoma cells." Cell Growth Differ 6(7):845-52.
    Branscombe, T. L., A. Frankel, et al. (2001). "PRMT5 (Janus kinase-binding protein 1) catalyzes the formation of symmetric dimethylarginine residues in proteins." J Biol Chem 276(35):32971-6.
    Brownell, J. E. and C. D. Allis (1996). "Special HATs for special occasions:linking histone acetylation to chromatin assembly and gene activation." Curr Opin Genet Dev 6(2):176-84.
    Brummelkamp, T. R., R. Bernards, et al. (2002). "A system for stable expression of short interfering RNAs in mammalian cells." Science 296(5567):550-3.
    Bultman, S., T. Gebuhr, et al. (2000). "A Brgl null mutation in the mouse reveals functional differences among mammalian SWI/SNF complexes." Mol Cell 6(6):1287-95.
    Carrozza, M. J., R. T. Utley, et al. (2003). "The diverse functions of histone acetyltransferase complexes." Trends Genet 19(6):321-9.
    Casolaro, V., A. M. Keane-Myers, et al. (2000). "Identification and characterization of a critical CP2-binding element in the human interleukin-4 promoter." J Biol Chem 275(47):36605-11.
    Chen, D., H. Ma, et al. (1999). "Regulation of transcription by a protein methyltransferase." Science 284(5423):2174-7.
    Chen, S. L., K. A. Loffler, et al. (2002). "The coactivator-associated arginine methyltransferase is necessary for muscle differentiation:CARM1 coactivates myocyte enhancer factor-2." J Biol Chem 277(6): 4324-33.
    Chen, W., M. O. Daines, et al. (2004). "Methylation of STAT6 modulates STAT6 phosphorylation, nuclear translocation, and DNA-binding activity." J Immunol 172(11):6744-50.
    Cheng, D., J. Cote, et al. (2007). "The arginine methyltransferase CARM1 regulates the coupling of transcription and mRNA processing." Mol Cell 25(1):71-83.
    Cimato, T. R., J. Tang, et al. (2002). "Nerve growth factor-mediated increases in protein methylation occur predominantly at type I arginine methylation sites and involve protein arginine methyltransferase 1." J Neurosci Res 67(4):435-42.
    Cserjesi, P. and E. N. Olson (1991). "Myogenin induces the myocyte-specific enhancer binding factor MEF-2 independently of other muscle-specific gene products." Mol Cell Biol 11(10):4854-62.
    Cuthbert, G. L., S. Daujat, et al. (2004). "Histone deimination antagonizes arginine methylation." Cell 118(5):545-53.
    Daujat, S., U. M. Bauer, et al. (2002). "Crosstalk between CARM1 methylation and CBP acetylation on histone H3." Curr Biol 12(24):2090-7.
    Dias, P., D. M. Parham, et al. (1990). "Myogenic regulatory protein (MyoD1) expression in childhood solid tumors:diagnostic utility in rhabdomyosarcoma." Am J Pathol 137(6):1283-91.
    El-Andaloussi, N., T. Valovka, et al. (2006). "Arginine methylation regulates DNA polymerase beta." Mol Cell 22(1):51-62.
    Esposito D, G. W., Hartley JL (2003). "Blocking oligonucleotides improve sequencing through inverted repeats." Biotechniques 35:7.
    Fabbrizio, E., S. El Messaoudi, et al. (2002). "Negative regulation of transcription by the type Ⅱ arginine methyltransferase PRMT5." EMBO Rep 3(7):641-5.
    Frankel, A., N. Yadav, et al. (2002). "The novel human protein arginine N-methyltransferase PRMT6 is a nuclear enzyme displaying unique substrate specificity." J Biol Chem 277(5):3537-43.
    Friesen, W. J., S. Paushkin, et al. (2001). "The methylosome, a 20S complex containing JBP1 and pICln, produces dimethylarginine-modified Sm proteins." Mol Cell Biol 21(24):8289-300.
    Ganesh, L., T. Yoshimoto, et al. (2006). "Protein methyltransferase 2 inhibits NF-kappaB function and promotes apoptosis." Mol Cell Biol 26(10):3864-74.
    Gerber, A. N., T. R. Klesert, et al. (1997). "Two domains of MyoD mediate transcriptional activation of genes in repressive chromatin:a mechanism for lineage determination in myogenesis." Genes Dev 11(4):436-50.
    Gilbreth, M., P. Yang, et al. (1996). "The highly conserved skbl gene encodes a protein that interacts with Shkl, a fission yeast Ste20/PAK homolog." Proc Natl Acad Sci U S A 93(24):13802-7.
    Gossett, L. A., D. J. Kelvin, et al. (1989). "A new myocyte-specific enhancer-binding factor that recognizes a conserved element associated with multiple muscle-specific genes." Mol Cell Biol 9(11): 5022-33.
    Hagiwara, T., Y. Hidaka, et al. (2005). "Deimination of histone H2A and H4 at arginine 3 in HL-60
    granulocytes." Biochemistry 44(15):5827-34.
    Herrmann, F., M. Bossert, et al. (2004). "Arginine methylation of scaffold attachment factor A by heterogeneous nuclear ribonucleoprotein particle-associated PRMT1." J Biol Chem 279(47): 48774-9.
    Herrmann, F., J. Lee, et al. (2005). "Dynamics of human protein arginine methyltransferase 1(PRMT1) in vivo." J Biol Chem 280(45):38005-10.
    Imhof, A., X. J. Yang, et al. (1997). "Acetylation of general transcription factors by histone acetyltransferases." Curr Biol 7(9):689-92.
    Invernizzi, C. F., B. Xie, et al. (2007). "Arginine methylation of the HIV-1 nucleocapsid protein results in its diminished function." Aids 21(7):795-805.
    J Sambrook, D. W. R. (2000). Molecular Cloning:A laboratory Manual
    Katsanis, N., M. L. Yaspo, et al. (1997). "Identification and mapping of a novel human gene, HRMT1L1, homologous to the rat protein arginine N-methyltransferase 1 (PRMT1) gene." Mamm Genome 8(7):526-9.
    Kee, B. L., J. Arias, et al. (1996). "Adaptor-mediated recruitment of RNA polymerase II to a signal-dependent activator." J Biol Chem 271(5):2373-5.
    Kiernan, R. E., C. Vanhulle, et al. (1999). "HIV-1 tat transcriptional activity is regulated by acetylation." Embo J 18(21):6106-18.
    Kim, J., J. Lee, et al. (2004). "Loss of CARM1 results in hypomethylation of thymocyte cyclic AMP-regulated phosphoprotein and deregulated early T cell development." J Biol Chem 279(24): 25339-44.
    Kim, J. M., H. Y. Sohn, et al. (2005). "Identification of gastric cancer-related genes using a cDNA microarray containing novel expressed sequence tags expressed in gastric cancer cells." Clin Cancer Res 11(2 Pt 1):473-82.
    Klochendler-Yeivin, A., C. Muchardt, et al. (2002). "SWI/SNF chromatin remodeling and cancer." Curr Opin Genet Dev 12(1):73-9.
    Koh, S. S., D. Chen, et al. (2001). "Synergistic enhancement of nuclear receptor function by p160 coactivators and two coactivators with protein methyltransferase activities." J Biol Chem 276(2): 1089-98.
    Koh, S. S., H. Li, et al. (2002). "Synergistic coactivator function by coactivator-associated arginine methyltransferase (CARM) 1 and beta-catenin with two different classes of DNA-binding transcriptional activators." J Biol Chem 277(29):26031-5.
    Komyod, W., U. M. Bauer, et al. (2005). "Are STATS arginine-methylated?" J Biol Chem 280(23): 21700-5.
    Krause, C. D., Z. H. Yang, et al. (2007). "Protein arginine methyltransferases:evolution and assessment of their pharmacological and therapeutic potential." Pharmacol Ther 113(1):50-87.
    Kuo, M. H. and C. D. Allis (1998). "Roles of histone acetyltransferases and deacetylases in gene regulation." Bioessays 20(8):615-26.
    Kwak, Y. T., J. Guo, et al. (2003). "Methylation of SPT5 regulates its interaction with RNA polymerase Ⅱ and transcriptional elongation properties." Mol Cell 11(4):1055-66.
    Lassar, A. B., S. X. Skapek, et al. (1994). "Regulatory mechanisms that coordinate skeletal muscle differentiation and cell cycle withdrawal." Curr Opin Cell Biol 6(6):788-94.
    Le Guezennec, X., M. Vermeulen, et al. (2006). "MBD2/NuRD and MBD3/NuRD, two distinct complexes with different biochemical and functional properties." Mol Cell Biol 26(3):843-51.
    Lee, J., D. Cheng, et al. (2004). "Techniques in protein methylation." Methods Mol Biol 284:195-208.
    Lee, J., J. Sayegh, et al. (2005). "PRMT8, a new membrane-bound tissue-specific member of the protein arginine methyltransferase family." J Biol Chem 280(38):32890-6.
    Lee, J. H., J. R. Cook, et al. (2005). "PRMT7, a new protein arginine methyltransferase that synthesizes symmetric dimethylarginine." J Biol Chem 280(5):3656-64.
    Lee, Y. H., S. S. Koh, et al. (2002). "Synergy among nuclear receptor coactivators:selective requirement for protein methyltransferase and acetyltransferase activities." Mol Cell Biol 22(11):3621-32.
    Li, Z. Y., J. Yang, et al. (2007). "Sequential recruitment of PCAF and BRG1 contributes to myogenin activation in 12-O-tetradecanoylphorbol-13-acetate-induced early differentiation of rhabdomyosarcoma-derived cells." J Biol Chem 282(26):18872-8.
    Lin, W. J., J. D. Gary, et al. (1996). "The mammalian immediate-early TIS21 protein and the leukemia-associated BTG1 protein interact with a protein-arginine N-methyltransferase." J Biol Chem 271(25):15034-44.
    Liu, R., H. Liu, et al. (2001). "Regulation of CSF1 promoter by the SWI/SNF-like BAF complex." Cell 106(3):309-18.
    Ma, H., C. T. Baumann, et al. (2001). "Hormone-dependent, CARM1-directed, arginine-specific methylation of histone H3 on a steroid-regulated promoter." Curr Biol 11(24):1981-5.
    Majumder, S., Y. Liu, et al. (2006). "Involvement of arginine methyltransferase CARM1 in androgen receptor function and prostate cancer cell viability." Prostate 66(12):1292-301.
    Margueron, R., P. Trojer, et al. (2005). "The key to development:interpreting the histone code?" Curr Opin Genet Dev 15(2):163-76.
    Meissner, T., E. Krause, et al. (2004). "Arginine methylation of STAT1:a reassessment." Cell 119(5):587-9; discussion 589-590.
    Miranda, T. B., M. Miranda, et al. (2004). "PRMT7 is a member of the protein arginine methyltransferase family with a distinct substrate specificity." J Biol Chem 279(22):22902-7.
    Moggs, J. G., T. C. Murphy, et al. (2005). "Anti-proliferative effect of estrogen in breast cancer cells that re-express ERalpha is mediated by aberrant regulation of cell cycle genes." J Mol Endocrinol 34(2):535-51.
    Mohrmann, L. and C. P. Verrijzer (2005). "Composition and functional specificity of SWI2/SNF2 class chromatin remodeling complexes." Biochim Biophys Acta 1681(2-3):59-73.
    Molkentin, J. D., B. L. Black, et al. (1995). "Cooperative activation of muscle gene expression by MEF2 and myogenic bHLH proteins." Cell 83(7):1125-36.
    Molkentin, J. D., A. B. Firulli, et al. (1996). "MEF2B is a potent transactivator expressed in early myogenic lineages." Mol Cell Biol 16(7):3814-24.
    Molkentin, J. D. and E. N. Olson (1996). "Defining the regulatory networks for muscle development." Curr Opin Genet Dev 6(4):445-53.
    Momose, F., T. Naito, et al. (2002). "Identification of Hsp90 as a stimulatory host factor involved in influenza virus RNA synthesis." J Biol Chem 277(47):45306-14.
    Mowen, K. A., J. Tang, et al. (2001). "Arginine methylation of STAT1 modulates IFNalpha/beta-induced transcription." Cell 104(5):731-41.
    Muchardt, C. and M. Yaniv (1999). "The mammalian SWI/SNF complex and the control of cell growth." Semin Cell Dev Biol 10(2):189-95.
    Narlikar, G. J., H. Y. Fan, et al. (2002). "Cooperation between complexes that regulate chromatin structure and transcription." Cell 108(4):475-87.
    Paddison, P. J., A. A. Caudy, et al. (2002). "Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells." Genes Dev 16(8):948-58.
    Paddison, P. J., A. A. Caudy, et al. (2002). "Stable suppression of gene expression by RNAi in mammalian cells." Proc Natl Acad Sci U S A 99(3):1443-8.
    Pal, S. and S. Sif (2007). "Interplay between chromatin remodelers and protein arginine methyltransferases." J Cell Physiol 213(2):306-15.
    Pal, S., S. N. Vishwanath, et al. (2004). "Human SWI/SNF-associated PRMT5 methylates histone H3 arginine 8 and negatively regulates expression of ST7 and NM23 tumor suppressor genes." Mol Cell Biol 24(21):9630-45.
    Pal, S., R. Yun, et al. (2003). "mSin3A/histone deacetylase 2-and PRMT5-containing Brgl complex is involved in transcriptional repression of the Myc target gene cad." Mol Cell Biol 23(21):7475-87.
    Paul, C. P., P. D. Good, et al. (2002). "Effective expression of small interfering RNA in human cells." Nat Biotechnol 20(5):505-8.
    Pawlak, M. R., C. A. Scherer, et al. (2000). "Arginine N-methyltransferase 1 is required for early postimplantation mouse development, but cells deficient in the enzyme are viable." Mol Cell Biol 20(13):4859-69.
    Polesskaya, A., A. Duquet, et al. (2000). "CREB-binding protein/p300 activates MyoD by acetylation." J Biol Chem 275(44):34359-64.
    Pollack, B. P., S. V. Kotenko, et al. (1999). "The human homologue of the yeast proteins Skbl and Hsl7p interacts with Jak kinases and contains protein methyltransferase activity." J Biol Chem 274(44): 31531-42.
    Puri, P. L., V. Sartorelli, et al. (1997). "Differential roles of p300 and PCAF acetyltransferases in muscle differentiation." Mol Cell 1(1):35-45.
    Qi, C., J. Chang, et al. (2002). "Identification of protein arginine methyltransferase 2 as a coactivator for estrogen receptor alpha." J Biol Chem 277(32):28624-30.
    Rho, J., S. Choi, et al. (2001). "The arginine-1493 residue in QRRGRTGR1493G motif IV of the hepatitis C virus NS3 helicase domain is essential for NS3 protein methylation by the protein arginine methyltransferase 1." J Virol 75(17):8031-44.
    Richard, S., M. Morel, et al. (2005). "Arginine methylation regulates IL-2 gene expression:a role for protein arginine methyltransferase 5 (PRMT5)." Biochem J 388(Pt 1):379-86.
    Sartorelli, V., P. L. Puri, et al. (1999). "Acetylation of MyoD directed by PCAF is necessary for the execution of the muscle program." Mol Cell 4(5):725-34.
    Schurter, B. T., S. S. Koh, et al. (2001). "Methylation of histone H3 by coactivator-associated arginine methyltransferase 1." Biochemistry 40(19):5747-56.
    Schwarzler, A., H. J. Kreienkamp, et al. (2000). "Interaction of the somatostatin receptor subtype 1 with the human homolog of the Shkl kinase-binding protein from yeast." J Biol Chem 275(13):9557-62.
    Scott, H. S., S. E. Antonarakis, et al. (1998). "Identification and characterization of two putative human arginine methyltransferases (HRMT1L1 and HRMT1L2)." Genomics 48(3):330-40.
    Shi, Y., F. Lan, et al. (2004). "Histone demethylation mediated by the nuclear amine oxidase homolog LSD1." Cell 119(7):941-53.
    Shi, Y. and J. R. Whetstine (2007). "Dynamic regulation of histone lysine methylation by demethylases." Mol Cell 25(1):1-14.
    Simone, C., S. V. Forcales, et al. (2004). "p38 pathway targets SWI-SNF chromatin-remodeling complex to muscle-specific loci." Nat Genet 36(7):738-43.
    Strahl, B. D. and C. D. Allis (2000). "The language of covalent histone modifications." Nature 403(6765): 41-5.
    Strahl, B. D., S. D. Briggs, et al. (2001). "Methylation of histone H4 at arginine 3 occurs in vivo and is mediated by the nuclear receptor coactivator PRMT1." Curr Biol 11(12):996-1000.
    Swiercz, R., D. Cheng, et al. (2007). "Ribosomal protein rpS2 is hypomethylated in PRMT3-deficient mice." J Biol Chem 282(23):16917-23.
    Swiercz, R., M. D. Person, et al. (2005). "Ribosomal protein S2 is a substrate for mammalian PRMT3 (protein arginine methyltransferase 3)." Biochem J 386(Pt 1):85-91.
    Tan, C. P. and S. Nakielny (2006). "Control of the DNA methylation system component MBD2 by protein arginine methylation." Mol Cell Biol 26(19):7224-35.
    Tang, J., J. D. Gary, et al. (1998). "PRMT 3, a type Ⅰ protein arginine N-methyltransferase that differs from PRMT1 in its oligomerization, subcellular localization, substrate specificity, and regulation." J Biol Chem 273(27):16935-45.
    Teyssier, C., D. Chen, et al. (2002). "Requirement for multiple domains of the protein arginine methyltransferase CARM1 in its transcriptional coactivator function." J Biol Chem 277(48): 46066-72.
    Tonin, P. N., H. Scrable, et al. (1991). "Muscle-specific gene expression in rhabdomyosarcomas and stages of human fetal skeletal muscle development." Cancer Res 51(19):5100-6.
    Tsitsikov, E. N., D. A. Wright, et al. (1997). "CD30 induction of human immunodeficiency virus gene transcription is mediated by TRAF2." Proc Natl Acad Sci U S A 94(4):1390-5.
    Tybulewicz, V. L. (2005). "Vav-family proteins in T-cell signalling." Curr Opin Immunol 17(3):267-74.
    Wang, H., Z. Q. Huang, et al. (2001). "Methylation of histone H4 at arginine 3 facilitating transcriptional activation by nuclear hormone receptor." Science 293(5531):853-7.
    Wang, Y., W. Fischle, et al. (2004). "Beyond the double helix:writing and reading the histone code." Novartis Found Symp 259:3-17; discussion 17-21,163-9.
    Wang, Y., J. Wysocka, et al. (2004). "Human PAD4 regulates histone arginine methylation levels via demethylimination." Science 306(5694):279-83.
    Wolffe, A. P. (1994). "The transcription of chromatin templates." Curr Opin Genet Dev 4(2):245-54.
    Wong, K., J. Zhang, et al. (2004). "Nerve growth factor receptor signaling induces histone acetyltransferase domain-dependent nuclear translocation of p300/CREB-binding protein-associated factor and hGCN5 acetyltransferases." J Biol Chem 279(53):55667-74.
    Xiao, L. and W. Lang (2000). "A dominant role for the c-Jun NH2-terminal kinase in oncogenic ras-induced morphologic transformation of human lung carcinoma cells." Cancer Res 60(2): 400-8.
    Xu, Q. and Z. Wu (2000). "The insulin-like growth factor-phosphatidylinositol 3-kinase-Akt signaling pathway regulates myogenin expression in normal myogenic cells but not in rhabdomyosarcoma-derived RD cells." J Biol Chem 275(47):36750-7.
    Xu, W., H. Chen, et al. (2001). "A transcriptional switch mediated by cofactor methylation." Science 294(5551):2507-11.
    Xu, W., H. Cho, et al. (2004). "A methylation-mediator complex in hormone signaling." Genes Dev 18(2): 144-56.
    Yadav, N., J. Lee, et al. (2003). "Specific protein methylation defects and gene expression perturbations in coactivator-associated arginine methyltransferase 1-deficient mice." Proc Natl Acad Sci U S A 100(11):6464-8.
    Yamagoe, S., T. Kanno, et al. (2003). "Interaction of histone acetylases and deacetylases in vivo." Mol Cell Biol 23(3):1025-33.
    Yang, X. J., V. V. Ogryzko, et al. (1996). "A p300/CBP-associated factor that competes with the adenoviral oncoprotein E1A." Nature 382(6589):319-24.
    Yoshimoto, T., M. Boehm, et al. (2006). "The arginine methyltransferase PRMT2 binds RB and regulates E2F function." Exp Cell Res 312(11):2040-53.
    Yun, K. and B. Wold (1996). "Skeletal muscle determination and differentiation:story of a core regulatory network and its context." Curr Opin Cell Biol 8(6):877-89.
    Zhang, X. and X. Cheng (2003). "Structure of the predominant protein arginine methyltransferase PRMT1 and analysis of its binding to substrate peptides." Structure 11(5):509-20.
    Zhang, Y. and D. Reinberg (2001). "Transcription regulation by histone methylation:interplay between different covalent modifications of the core histone tails." Genes Dev 15(18):2343-60.
    Zheng, Z., K. M. Schmidt-Ott, et al. (2005). "A Mendelian locus on chromosome 16 determines susceptibility to doxorubicin nephropathy in the mouse." Proc Natl Acad Sci U S A 102(7): 2502-7.
    李兆勇,吴宁华,沈珝琲(2004).”染色质重塑与肌肉分化.”Chemistry of Life 24(5):3.
    沈珝琲(2006).染色质与表观遗传调控.北京高等教育出版社.