Cf/Mg复合材料力学与热膨胀性能研究及纤维排布设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以AZ91D镁合金及ZM6稀土镁合金为基体,M40石墨纤维为增强体,采用压力浸渗技术分别制备出结构为单向板(纤维60vol.%)和层合板(纤维50vol.%,铺层角度为±23°)的石墨纤维增强镁基复合材料。
     利用金相显微镜、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、电子拉伸试验机和热分析仪研究了碳纤维增强镁基复合材料的微观组织、力学性能和热膨胀性能,探讨了基体类型、热处理工艺、增强体排布方式等因素对复合材料性能的影响,纤维排布设计,使复合材料在二维平面内满足近似各向同性。
     研究结果表明,复合材料组织致密,纤维与基体结合良好。M40/AZ91D和M40/ZM6复合材料界面处分别存在Al17Mg12和Mg12Nd两种不同析出相。经过退火及T6处理,Cf/Mg复合材料界面处析出物数量增加,尺寸增大,导致复合材料力学性能下降。随着铺层纤维角度的增加,单向Cf/Mg复合材料抗弯强度及弹性模量逐渐降低,材料失效由纤维断裂拔出过渡为界面开裂,复合材料各向异性明显。±23°层合板结构复合材料可有效缓解单向板复合材料力学性能各向异性。
     Cf/Mg复合材料热膨胀系数同样受到热处理方式的影响,铸态、退火态及T6态复合材料线膨胀系数依次降低。单向Cf/Mg复合材料热膨胀系数具有明显的方向性,随着测试方向与纤维取向夹角从0°到90°增加,M40/AZ91D热膨胀系数从1.4~19.4×10~(-6)/K递增, M40/ZM6的热膨胀系数变化范围为1.2~18.4×10~(-6)/K。采用Kelly模型可以准确计算单向复合材料的热膨胀系数。20℃~150℃范围内,±23°M40/AZ91D层合结构复合材料的平均线膨胀系数变化范围小于单向板变化范围,明显改善单向板的各向异性。根据Kelly模型,预测出的±23°M40/AZ91D层合板复合材料的热膨胀系数与测试值符合良好。基于此模型对Cf/Mg复合材料纤维排布进行设计,结果表明,当复合材料采用±45°纤维排布时,其热膨胀系数在平面内近似各向同性,此时M40/AZ91D层合板复合材料热膨胀系数值约为3.82×10~(-6)/K。
With the AZ91D and RE-ZM6 magnesium alloys as matrix and the M40 graphite fibers as reinforcement, carbon fiber-reinforced magnesium matrix composites, including unidirectional fiber(60vol.%fiber) and laminates(50vol.% fiber,±23°of ply orientation), were fabricated by the pressure infiltration technique.
     The microstructure, mechanical property and thermal expansion property of M40/AZ91D and M40/ZM6 composites were studied by employing optical microscope, scanning electron microscopy (SEM), transmission electron microscopy (TEM), electronic tensile test machine and dilatometer. And the effects of many factors such as the matrix type, heat treatment process, arrangement sequences of reinforcement on the properties of composites were investigated.
     The result shows that the composites are dense and well-bonded. Two kinds of precipitates, Al17Mg12 and Mg12Nd, are found at the interface of M40/AZ91D and M40/ZM6 composites, respectively. After the heat treatment, the amounts of precipitates are increased in the Cf/Mg composites interface, and the sizes are enlarged. These result in decreased of the bend strengths of composites. As the increasing of the fiber orientation angle the bend strength and elastic modulus of unidirectional Cf/ Mg composites are reduced. The failure modes transit from fiber pulling-out to interface de-bonding. The composite materials show obvious anisotropy. The composite laminates with±23°of the fiber arrangement has better mechanical properties and can effectively alleviate the anisotropic properties of unidirectional composites.
     The coefficient of thermal expansion (CTEs) of Cf / Mg composites is also affected by heat treatment. The CTEs of composites are decreased in an order of casting, annealing and T6 treatment. The CTEs of unidirectional Cf/ Mg composites are obviously anisotropic. Increased CTEs are found as fiber orientation rises. The CTEs of M40/AZ91D are in the range of 1.4~19.4×10~(-6)/K, while the CTEs of M40/ZM6 lie in the range of 1.2~18.4×10~(-6)/K. The Kelly model can be used to accurately calculate the CTEs of the unidirectional composites. Within the scope of 20℃~ 150℃, the variation of average linear CTEs of±23°M40/AZ91D composite laminates is less than that of unidirectional composites, resulting in an obvious improvement in anisotropy. According to Kelly model, the CTEs of±23°M40/AZ91D composite laminates are predicted. The calculation results show that when the fiber arrangement angle in the laminate is closed to 45°, the composite materials exhibit approximate isotropic property, with a CTE of about 3.82×10~(-6)/K for the M40/AZ91D composite laminates.
引文
1王荣国,武卫莉,谷万里.复合材料概论.哈尔滨工业大学出版社. 1999: 268~269
    2胥锴,刘政,刘萍.金属基复合材料的发展及其应用.南方金属. 2005, 147: 1~3
    3张效宁,王华,胡建杭,吴桢芬.金属基复合材料研究进展.云南冶金. 2006, 35(5): 53~54
    4王宁. Cf /Al复合材料的力学性能与热膨胀性能研究.哈尔滨工业大学学士学位论文. 2005, 2: 36~43
    5张国定,赵昌正.金属基复合材料.上海交通大学出版社, 1996: 26~28
    6凤仪,许少凡,颜世钦.纤维增强金属基复合材料及其应用.机械工程材料. 2002, 26(12): 12~15
    7春胜利,黄榴红,李勇锋.碳纤维及其在复合材料方面的应用.玻璃钢. 2005, 2: 5~9
    8黄凤萍,李缨.碳纤维及其复合材料的发展.陶瓷. 2005, 10: 11~16
    9 F. K. Verlag, G. Touristik, Journal for Exploration. Mining and Metallurgy. 2000, 53(9): 517~528
    10 H. P. Degischer. Innovative Light Metals: Metal Matrix Composites and Foamed Aluminium. Materials & Design. 1997, 18(4): 221~226
    11 C. Mayencourt, R. Schaller. Mechanical-Stress Relaxation in Magnesium -Based Composites. Materials Science and Engineering. 2002, 325: 286~291
    12 K. Zhang, H. L. Li, B. L. Shang. Vacuum Casting High Strength C/Mg Composites. Acta Materiae Compositae Sinina. 1996, 13(3): 43~47
    13陈晓,傅高升,钱匡武.镁基复合材料的研究现状和发展趋势.机电技术. 2003, S1: 74~80
    14 D. M. Goddard. Report on Graphite/Magnesium Castings Metal. Progress in Aerospace Sciences. 1984, 125(5): 49~50
    15沃西源.国内外几种碳纤维性能比较及初步分析.高科技纤维与应用. 2000, 25(2): 30~36
    16凤仪,许少凡,颜世钦,应美芳,王成福.纤维强化金属基复合材料及其应用.机械工程材料. 1995, (1): 28~32
    17 E. G. Wolff, B. K. Min, M. H. Kural. Thermal Cycling of a Unidirectional Graphite-Magnesium Composite. Journal of Materials Science. 1985, 20: 1141~1149
    18 B. J. Maclean, M. S. Misra. Mechanical Behavior Metal-Matrix Composites. Metallurgical Society Rime. 1983: 195~212
    19 S. Kudela, V. Gergely, E. Jansch, A. Hofmann. Compatibility between PAN-Based Carbon Fibres and Mg8Li Alloy during the Pressure Infiltration Process. Journal of Materials Science. 1994, 29: 5576~5582
    20 C. Cayron, P. Abuffat. About the Epitaxial Growth of Mg-Subgrains on A12MgC2 Interfacial Carbides in a Spueeze Cast Mg-4A1/T300 Metal Matrix Composite. Journal of Materials Science Letters. 1999, 18: 1671~1674
    21 J. C. Viaia, G. Claveyrolas, F. Bosselet. The Chemical Behaviour of Carbon Fibres in Magnesium Base Mg-Al Alloys. Journal of Materials Science. 2000, 35: 1813~1825
    22张云鹤. Cf/Al复合材料界面特性及层间金属针穿刺强化机理研究.哈尔滨工业大学博士学位论文. 2009, 8~11
    23 A. Brendel, C. Popescu, H. Schurmann, H. Bolt. Interface Modification of SiC-Fibre/Copper Matrix Composites by Applying a Titanium Interlayer. Surface & Coatings Technology. 2005, 200(1~4): 161~164
    24 S. M. Mukhopadhyay, P. Joshi, R. V. Pulikollu. Surface Engineering Issues in Nanomaterials. Transactions of the Indian Institute of Metals. 2005, 58(6): 1017~1026
    25陶国林,胡华.石墨(碳)纤维增强镁基复合材料的界面问题.重庆工商大学学报(自然科学版). 2005, 22(5): 497~500
    26陈煜,吴桢干,张国定.石墨纤维增强镁基复合材料界面.中国有色金属学报. 1997, 7(3): 124~126
    27 F. Wu, J. Zhu, Y. Chen, G. D. Zhang. The Effect of Processing on the Microstrutures and Properties of Gr/Mg Composites. Material Science and Engineering: A. 2000, 277(1~2): 143~147
    28 S. Bodoardo, C. Portesi, P. Fino. Production by Solid/Liquid Reaction and Characterization of High Purity MgB Powders and Thick Films for Superconducting Application. Journal of the European Ceramic Society. 2004, 6: 1837~1840
    29 S. J. Swindlehurst, I. Hall. Process of International Symposium on Advances in Cast Reinforced Metal Composites. Chicago, Illinois, USA. 1988. Metals Park, American Society for Matals, 1988: 281~282
    30 F. Wu, J. Zhu, K. Ibe, T. Oikawa. Analysis of the Interface in Graphite/ Magnesium Composites at the Nanometer Scale. Composites Science Technology. 1998, 58: 77~78
    31 R. Schaller. Mechanical Spectroscopy of Interface Stress Relaxiation in Metal-Matrix Composites. Material Science and Engineering: A. 2006, 442(1~2): 423~428
    32 F. Wu, J. Zhu. Morphology of Second-phase Precipitates in Carbon-Fiber and Graphite-Fiber-Reinforced Magnesium-Based Metal-Matrix Composites. Composeite Science Technology. 1997, (57): 661~665
    33 P. Karen, A. Kjekshus, Q. Huang, V. L. Karen. The Crystal Structure of Magnesium Dicarbide. Alloys Composites. 1999, (282): 72~75
    34杨盛良.连续纤维增强铝基复合材料的制备、界面及损伤过程.国防科技大学博士论文. 1999, 9~10
    35 F. Bosselet, B. F. Mentzen, J. C. Viala. Synthesis and Structure of T2-Al2MgC2. European Journal of Solid State and Inorganic Chemistry. 1998, 35(1): 91~99
    36 F. Armin, P. Eckhard. Interface Engineering of Carbon-Fiber Reinforced Mg-Al Alloys. Advanced Engineering Materials. 2000, 2(8): 471~480
    37陈美怡,秦富生,李自德. Gr(C)/Mg复合材料纤维分布均匀性及其改善途径.铸造. 1996, 1~5
    38 K. Zhang, Y. Q. Wang, B. L. Zhou. Tensile Properties of Coated Carbon Fiber Reinforced Magnesium Composites. Transactions of Nonferrous Metals Society of China. 1997, 7(3): 86~89
    39 A. D. Reisel, Y. Nishida, V. Klemm. Investigation of Interfacial Interaction between Uncoated and Coated Carbon Fibres and the Magnesium Alloy AZ91. Analytical and Bioanalytical Chemistry. 2002, (374): 635~638
    40 M. R. Stevens, R. Todd, M. Papakyriacou. Microstructural Analysis of a Carbon Fibre Reinforced AZ91D Magnesium Alloy Composite. Surface and Interface Analysis. 2005, 37: 336~342
    41 A. Luo. Heterogeneous Nucleation and Grain Refinement in Cast Mg(AZ91)/SiCp Metal Matrix Composites. Canadian Metallurgical Quarterly.1996, 35(4): 375~377
    42张建斌,马勤.金属基复合材料及其细观力学行为的研究进展.甘肃科技. 2001, (2): 18~20
    43李坤,裴志亮,宫骏,石南林,孙超.碳纤维增强镁基复合材料的界面反应和拉伸性能研究.空间科学报. 2009, 20(1): 6~9
    44贺鹏飞,刘建萍,戴瑛等.纤维分布不均匀对单向伸强度的影响.机械工程材料. 2000, 24(1): 8~10
    45 P. Rupnowski, M. Gentz, J. K. Sutter. An Evaluation of the Elastic Properties and Thermal Expansion Coefficients of Medium and High Modulus Graphite Fibers. Composites. 2005, 36: 327~338
    46 W. S. Chan, C. Y. Lin, Y. C. Liang. Equivalent Thermal Expansion Coefficients of Lumped Layer in Laminated Composites. Composites Science and Technology. 2006, 66: 2402~2408
    47 M. Y. He, D. Singh, J. C. McNulty. Thermal Expansion of Unidirectional and Cross-Ply Fibrous Monoliths. Composites Science and Technology. 2002, 62: 967~976
    48 T. Ito, T. Sugunama, K. Wakashima. Glass Fiber Polypropylene Composite Laminates with Negative Coefficients of Thermal Expansion. Journal of Materials Science Letters. 1999, 18: 1363~1365
    49王兴业,朱文山,王晓勇.复合材料零膨胀系数层合板的设计.宇航材料工艺. 1986, (1): 39~44
    50 U. Rajendra, K. K. Chawla. Thermal Expansion of Matrix-Metrix Composites. Composites Science Technology. 1994, (50): 13~22
    51 Z. Haktan, K. Dilek. A Numerical Study on the Coefficients of Thermal Expansion of Fiber Reinforced Composite Materials. Composite Structures. 2007, 78: 1~10
    52 A. Kelly, R. J. Steam, L. N. McCartney. Composite Materials of Controlled Thermal Expansion. Composites Science and Technology. 2006, 66: 154~159
    53 J. D. D. Melo, D. W. Radford. Elastic Characterization of PEEK/IM7 Using Coefficients of Thermo Expansion Ion. Composites Part A: Applied Science and Manufacturing. 2002, 33(11): 1505~1510
    54 J. Kiehn, E. Bohm, K. U. Kainer. Deformation of Continuous Carbon Fibre Reinforced Mg-Alloys by Thermally Induced Stresses. Key EngineeringMaterials. 1997, 127: 861~868
    55 W. Robert, M. Mohan. Fabrication of Near-net Shape Graphite Magnesium Composites for Large Mirrors. Advances in Optical Structure Systems. 1990, 1303: 554~564
    56 S. P. Rawal. Interface Structure in Graphite-Fiber-Reinforced Metal-Matrix Composites. Surface and Interface Analysis. 2001, 31: 692~700
    57宋美慧,武高辉,姜龙涛,王宁.碳纤维增强AZ91D复合材料微观组织.稀有金属材料与工程. 2008, 37(10): 1861~1864
    58 T. W. Clyne, P. J. Withers. An Introduction to Metal Matrix Composites. Campridge University Press. 1996: 41~60
    59 J. H. Cao. Modification of Carbon Fiber Surface and Study of Microstructure and Thermal-Physical Properties of Cf/Cu Composites. Thesis for the Master's Degree in Engineering. Harbin Institute of Technology. 2005. 7: 43~63
    60于立思. AZ91合金及SiCw/AZ91镁基复合材料热膨胀行为的研究.哈尔滨工业大学工学硕士学位论文. 2006: 20~22
    61曾竟成,罗青,唐羽章.复合材料理化性能.国防科技大学出版社. 1998: 44~53
    62 L. N. McCartney, A. Kelly. Effective Thermal and Elastic Properties of [±θ]s Laminates. Composites Science and Technology. 2007, 67: 646~661
    63 M. Landert, A. Kelly, R. J. Stearn. Negative Thermal Expansion of Laminates. Journal of Materials Science. 2004, 39: 3563~3567