碰撞式取样系统开发及在柴油机燃烧分析中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着柴油机市场占有率的逐步增加及其排放控制要求的越来越严格,从燃烧过程的角度探索柴油机有害排放物生成及转化机理进而寻求其排放控制策略是很有必要的研究。为此开发了一套基于接触碰撞机理的全气缸取样系统,并利用该系统在柴油机上进行了有害排放物生成历程的研究。
     设计了基于高速A/D数据采集卡和MCS-51单片机控制的试验测量与控制系统,实现了在瞬态条件下对柴油机排放物按循环及燃烧位置的取样。
     开发了基于接触碰撞机理的全气缸取样机构,简化了系统构成,实现了在发动机非停机状态下的取样。
     对碰撞式全气缸取样系统进行的性能测试表明:取样系统延迟时间的均方差为2.179ms。当柴油机转速为1500r·min-1时,在0~35°CA ATDC区间的取样率为50%~80%,在0~60°CA ATDC区间的压力半衰期约为10~20°CA。
     进行了有害排放物缸内生成历程的取样试验。大量的取样试验过程表明碰撞式全气缸取样系统具有较高的可靠性。
     稳态试验结果表明:柴油机的PM和DS质量生成历程具有单峰形式,DS随燃烧的开始而产生并在20°CA ATDC左右达到峰值;CO和HC的体积浓度生成历程具有单峰形式,CO随燃烧的开始而产生并在15~20°CA ATDC区间达到峰值;NOx的体积浓度生成历程呈类“S”形,大部分NOx都在燃烧开始后20°CA内生成;采用EGR后,DS的最大生成量有所减小而后期生成量有所增加,并且DS趋于稳定排放对应的曲轴转角也有所提前;GTL燃料的微粒生成量要低于柴油;微粒的生成过程中还伴随着不完全氧化作用,导致微粒总粒数浓度生成历程的峰值点滞后DS生成历程峰值点约10°CA。在0.01~1.0μm的区间内,在燃烧中期生成的微粒对应各粒径下的浓度值普遍高于燃烧前期和燃烧后期生成的量。
     瞬态试验结果表明:瞬态工况下由于边界条件滞后,DS的最大生成量要低于相应的稳态工况,而DS的后期生成量要高于相应的稳态工况;气体排放物的生成量略小于相应的稳态工况。边界条件的差异对瞬态工况前期的影响较后期大。
The human being’s society has been made progress with the development of world’s automobile industry powered by internal combustion engines, but automobiles also brought seriously environment problems. The automobile emission control regulations have become stricter than before to limit the emissions of pollutants. Diesel engines have been widely used because of its high power density, low fuel consumption, and high work reliability, the mostly attention have been paid on its particulate emissions. The performances of diesel engines under transient conditions are much different from that under steady operating conditions. The combustion process, the emission behavior and the performance improvement of diesel engines under transient operating conditions have been a very important research field.
     An important way to control emissions is to study the creation behavior of pollutants through combustion process of diesel engines. These techniques include in-cylinder sampling, optic measurements, CFD (Computational Fluid Dynamics), and so on. The total in-cylinder sampling technique has several advantages than other techniques, such as lower cost, more reliability of the measuring results, more prior to be used to measure in-cylinder mass-averaged particulate histories. The sampling mechanism is the key of total in-cylinder sampling technique. The conventional sampling mechanism uses cutter and diaphragm to obtain samples which brought some flaws to this technique. The conventional total in-cylinder sampling system is more complicated and the experimental period has been prolonged by the replacing of diaphragm due to its broken after each sampling action. So improve the sampling mechanism is very meaningful to meet with the high requirements of convenience and efficiency of modern control and measure system.
     This research discussed on emission formation histories, such as particulate, nitrogen oxides and total hydrocarbon in a single direct injection (D.I.) diesel engine by using a developed total in-cylinder sampling system. The effects on emission formation histories by using GTL fuel and EGR technique were analyzed. The differences of emission formation histories under transient operating conditions and steady operating conditions were also discussed.
     The main study objects and achievements are as follows.
     1. Establishment of control and measure system for transient operating conditions
     The test system was composed of three components: parameter measure system, operating conditions control system and sampling control system.
     1) A high speed, real time data recording and monitoring system was developed. The data of in-cylinder pressure, speed of engine, et al, could be recording and displaying at the same time by software programming of an A/D converter board.
     2) A repeatable transient condition control system was realized by using SCP (Single Chip Processors) of MCS-51 series as the core control elements and a step motor as the actuator. Two kinds of typical transient operating conditions at constant speed or constant torque could be realized by a conventional eddy current dynamometer combined with the developed transient condition control system.
     3) The signals of engine cycles and crank angles obtained by sensors were identified by the ECU (Electronic Control Unit) to trigger the action of sampling mechanism. Before each sampling action, released determinate volume of nitrogen gas under NTP (Standard Conditions for Temperature and Pressure,NTP) into the flexible sampling bag to quench the chemical reaction of cylinder contents gathered latterly.
     2. Development of sampling mechanism
     An impact theory based total in-cylinder sampling mechanism was developed. The kinetic performances of the developed sampling mechanism were simulated by ADAMS software.
     1) The sampling mechanism was composed of electronic magnet, spring, impact anvil, sampling valve, and so on. This system was simplified by removing the intake and exhaust valve deactuators and injection system controller which indispensably in conventional sampling system. The sampling tube could be sealed and shut off timely by sampling valve, so the sampling process could be completed without shutting down the engine.
     2) The two key factors which affected the intensity of sampling mechanism were the structure of sampling valve and the impact energy.
     3) The smaller valve head’s diameter, the shorter valve length, the bigger valve staff’s diameter, and the heavier impact anvil were chosed, the higher reliability of the sampling mechanism could be obtained satisfied with three conditions: sampling more than 80% mass of cylinder contents, the maximal impact force less than the value that sampling valve could endure, and the maximal height during valve rising period more than 3mm.
     4) If the valve head’s diameter is 26mm, the valve staff’s diameter is 10mm, the valve length is 158.4mm, the impact anvil’s mass is 3kg, the gas’s pressure is 10MPa, the gas’s temperature is 2000K, the impact velocity is 2.1m·s~(-1), then the safety factor of sampling mechanism is 2.1 according to the simulation results.
     3. Performance analysis of developed total in-cylinder sampling system
     The performances of the developed sampling system were obtained by two kinds of tests: simulative cylinder tests and engine bench tests. The simulative cylinder tests were operated with a fixed volume cylinder under atmosphere temperature. The engine bench tests referred to the sampling actions on diesel engine under the conditions of 1500r·min-1/30N·m and 1500r·min-1/50N·m.
     1) The maximal difference of sampling system’s delay time is 9ms and the mean square error (MSE) is 2.18ms. They are 1.125 times and 1.5 times of the conventional sampling systems respectively.
     2) The results of simulative cylinder tests showed that the maximal height of valve rise, and the duration of valve open were enlarged with the decreasing of initial gas pressure under the conditions of same impact energy, but the duration of pressure drop to 50% and 80% of its initial pressure were almost steady, they were 1.4ms and 3.4ms respectively.
     3) The results of engine bench tests showed that the sampling process was different from simulative cylinder tests because of the changing cylinder volume and temperature during sampling process. The mass ratio of cylinder contents decreased from 80% to 50% when the blowdown angle increased from 0°CA ATDC (Crank Angle After Top Dead Center) to 35°CA ATDC. The half decay period of pressure drop was 10 to 20 degrees of crank angle when the blowdown angle just between 0°CA ATDC to 60°CA ATDC, it was 2~3 times of the conventional sampling systems.
     4) The sampling process had a little affect on engine’s speed. The speed dropped nearly 3% but could return to the same level a short time later.
     5) The tests proved the high reliability of the sampling system.
     4. Experiment study on emission formation histories
     The experimental study was carried out to produce cylinder histories of particulate, nitrogen oxides and total hydrocarbon.
     1) The mass-averaged histories of PM (Particulate Matter) and DS (Dry Soot) had the shapes of one peak value. DS appeared when the combustion starts. At about 20°CA ATDC, DS reached its peak value, then largely decreased after that. Compared to the fuel of 0# diesel, GTL (Gas to Liquid) diesel could produce less PM and DS emissions, but EGR (Exhaust Gas Recirculation) made the PM and DS emissions worse. Compared to the fuel of 0# diesel, the peak values of DS forming histories were both reduced when the GTL or EGR techniques were used.
     2) The histories of particulate quantity, surface area, and volume concentration had the shapes of one peak value. The position of the peak at about 30°CA ATDC. When engine’s load increased from 30N·m to 50N·m, the total particulate quantity, surface area, and volume increased 2.3, 1.7, and 1.7 times respectively.
     3) In this research, the distribution of particulate quantity had two peak values within 0.01~1.0μm. The first one was not evident, but the second one occurred when the particulate diameter was 0.133μm. The second peak value was much smaller than the first one. The distributions of particulate surface area and volume had one peak value within 0.01~1.0μm. The peak value of surface area occurred when the particulate diameter within 0.075~0.237μm, and the peak value of volume occurred when the particulate diameter was 0.237μm. The concentration of particulates which emerged in the metaphase of combustion was higher than that emerged in the prophase and anaphase of combustion. The concentration of middle-scale particulates which emerged in the anaphase of combustion was higher than that emerged in the prophase of combustion, while the concentration of large-scale particulates which emerged in the anaphase of combustion was on the contrary.
     4) The volume concentration of HC (Hydrocarbon) and CO (Carbon Monoxide) had the shapes of one peak value while NOx (Nitrogen Oxides) had the“S”shape. When the load was 30N.m, the emission value was about 9% relative to peak value of CO, while the load was 50N.m, the ratio was 11%. Most NOx were produced within 20°CA after the combustion began. The emission of NOx increased with the increasing of load.
     5) The mass-averaged histories of PM and DS were different between transient operating conditions and steady operating conditions. The peak values of PM and DS were lower while the emission of DS was higher at transient operating conditions than that of the corresponding steady operating conditions. The HC, CO and NOx emissions were reduced appreciably at transient operating conditions. The differences of boundary conditions had greater effects on prophase than anaphase of transient operating conditions.
引文
〔1〕 程继夏.城市汽车保有量与大气环境污染控制.西安:陕西科学技术出版社,2004
    〔2〕 王祖德.中国汽柴油车产品结构——一个值得及早关注的问题.北京汽车,2005.3,P17
    〔3〕 中国汽车工业年鉴.中国汽车技术研究中心、中国汽车工业协会编,2004
    〔4〕 罗红梅.浅析城考指标“汽车尾气达标率”.环境技术,2004,(6),P11-14
    〔5〕 吴卫.汽车交通事故分析.世界汽车,1996,(3),P12-14
    〔6〕 欧阳明高.我国节能与新能源汽车发展战略与对策.汽车工程,2006,28(4),P317-321
    〔7〕 傅立新,郝吉明等.北京市机动车污染物排放特征.环境科学,2000,21(3),P68-70
    〔8〕 陈长虹,方翠贞,戴利生.上海市机动车排污状况与污染控制战略.上海环境科学,1997,16(1),P28-31
    〔9〕 冯滨等.广州市机动车污染分担率分析[J].广州环境科学,1999,14(2),P33~36
    〔10〕 黄肇义,杨东援.城市机动车尾气污染控制的综合对策体系研究.上海环境科学,2002,21(4),P237-240,260
    〔11〕 黄健敏,王应红,龙炳清等.城市机动车尾气污染控制.甘肃环境研究与监测,2002,15(2),P131-134,147
    〔12〕 刘巽俊.内燃机的排放与控制.北京:机械工业出版社,2002.11
    〔13〕 刘向阳.柴油机的技术变迁.上海汽车,2005,(6),P44-45
    〔14〕 裴毅强,苏万华,林铁坚.一种基于稀扩散燃烧的 BUMP 燃烧室及其对柴油机碳烟和 NOx 排放影响的实验研究.内燃机学报,2002,20(5),P381-386
    〔15〕 Su Wanhua, Lin Tiejian, Pei Yiqiang. A compound technology for HCCI combustion in a DI diesel engine based on the multi-pulse injection and the BUMP combustion chamber. SAE paper, 2003-01-0741, 2003
    〔16〕 C. J. Brace. Transient investigation of two variable geometry turbochargers for passenger vehicle diesel engines. SAE paper, 1999-01-1241, 1999
    〔17〕 赵佳佳,刘忠长,牛志明,刘巽俊.可变喷嘴涡轮增压器电控系统设计.汽车工程,2005,(5),P525-527,536
    〔18〕 汪洋,谢辉,苏万华等.共轨式电控喷射系统控制参数对柴油机燃烧过程及排放的影响.燃烧科学与技术,2002,8(3),P258-261
    〔19〕 Joel Michelin. Optimized diesel particulate filter system for diesel exhaust aftertreatment. SAE paper, 2000-01-0475, 2000
    〔20〕 Brad Edgar, A framework for evaluating aftertreatment PM control strategies, SAE paper, 2003-01-2306, 2003
    〔21〕 S.P. Edward, G.R. Fr?nkle, K. Binder, F. Wirbeleit. Strategic analysis of technologies for future truck engines. SAE paper 2000-01-3458, 2000
    〔22〕 R.Allansson,C.Goersmann,M.Lavenius,et al. The Development and In-Field Performance of Highly Durable Particulate Control Systems. SAE paper 2004-01-0072, 2004
    〔23〕 王忠恕.边界条件对柴油机瞬态工况下燃烧的影响及数值模拟.长春:吉林大学,博士学位论文.2006.6
    〔24〕 Piotr Bielaczyc, Jerzy Merkisz and Jacek Pielecha. Investigation of exhaust emissions from DI diesel engine during cold and warm start. SAE paper 2001-01-1260, 2001
    〔25〕 Peter Wuensche, Franz X. Moser, Rolf Dreisbach and Theodor Sams. Can the Technology for Heavy Duty Diesel Engines be Common for Future Emission Regulations in USA, Japan and Europe? SAE paper 2003-01-0344, 2003
    〔26〕 李勤.现代内燃机排气污染物的测量与控制.北京:机械工业出版社,1998.12
    〔27〕 刘宜,周校平,乔信起,黄震.我国柴油机迎接欧-Ⅲ排放限值的技术准备.内燃机工程,2005,26(2),P54-57
    〔28〕 Peter Fl?rchinger,Marcos G.Ortiz,Roychelle Ingram-Ogunwumi. Comparative Analysis of Different Heavy Duty Diesel Oxidation Catalysts Configurations. SAE paper 2004-01-1419, 2004
    〔29〕 刘江唯.“车用柴油机瞬态工况排放特性研究”.长春:吉林大学,博士学位论文.2003.3
    〔30〕 D. H. Gerke. Real-time measurement of diesel particulate emissions with a light extinction opacity meter. SAE paper 830183, 1983
    〔31〕 Noboru Miyamoto, et al. Time series analysis of diesel exhaust gas emissions under transient operation. SAE paper 930976, 1993
    〔32〕 Iman K. Reksowardojo, et al. Time-resolved nature of exhaust gas emissions and piston wall temperature under transient operation in a small diesel engine. SAE paper 960031, 1996
    〔33〕 Akram R. Zahdeh, et al. Diesel engine cold starting: white smoke. SAE paper 920032, 1992
    〔34〕 David B.Kittleson. Variability in Particle Emission Measurement in the Heavy Duty Transient Test. SAE paper 910738, 1991
    〔35〕 Noboru Miyamoto, et al. Cycle-to-Cycle Transient Characteristics of Exhaust Gas Emissions from a Diesel Engine With Different Increasing and Decreasing Load Patterns, SAE paper 970750, 1997
    〔36〕 Bi Xiaoping, et al. Prediction of transient exhaust soot for a turbocharged diesel engine. SAE paper 952434, 1995
    〔37〕 Imad A. Khalek. Characterization of Particle Size Distribution of a Heavy-Duty Diesel Engine During FTP Transient Cycle Using ELPI. SAE paper 2000-01-2001, 2000
    〔38〕 Christopher A. Sharp, Steve A. Howell, Joe Jobe. The Effect of Biodiesel Fuels on Transient Emissions from Modern Diesel Engines, Part I Regulated Emissions and Performance. SAE paper 2000-01-1967, 2000
    〔39〕 Christopher A. Sharp, Steve A. Howell, Joe Jobe. The Effect of Biodiesel Fuels on Transient Emissions from Modern Diesel Engines, Part II Unregulated Emissions and Chemical Characterization. SAE paper 2000-01-1968, 2000
    〔40〕 Hitoshi Yokomura, Susumu Kouketsu, Seijiro Kotooka, et al. Transient EGR Control for a Turbocharged Heavy Duty Diesel Engine. SAE paper 2004-01-0120, 2004
    〔41〕 Yuichi Goto and Terunao Kawai. Real-Time Measurement of Particle Size Distribution From Diesel Engines Equipped With Continuous Regenerative DPF Under a Transient Driving Condition. SAE paper 2004-01-1984, 2004
    〔42〕 Amrita R. Wadhwa, John Abraham. An Invertigation of the Dependence of NO and Soot Formation and Oxidation in Transient Combusting Jets on Injection and Chamber Conditions. SAE paper 2000-01-0507, 2000
    〔43〕 William Wangard, Aleksandra Egelja, Hossam Metwally. CFD Simulations of Transient Soot Trapping and Regeneration in a Diesel Particulate Filter. SAE paper 2004-01-2658, 2004
    〔44〕 刘忠长,张兆合,宋崇林,刘巽俊.车用直喷柴油机变工况下的微粒排放特性.内 燃机学报,1998,16(2),P139-144
    〔45〕 刘忠长.车用柴油机变工况下的微粒排放的测量.汽车工程,1997,19 (6),P342-346
    〔46〕 刘忠长,刘巽俊,张兆合.进气涡流对车用直喷式柴油机瞬态工况下微粒排放的影响.内燃机学报,2000,18(2),P153-156
    〔47〕 刘江唯,刘忠长,刘巽俊,刘晓明.车用直喷柴油机加速工况下进气、供油及微粒排放的动态响应.燃烧科学与技术,2003,9(1),P49-53
    〔48〕 韩永强,刘忠长,程鹏,刘巽俊.柴油机恒转矩增转速瞬态工况的烟度及燃烧特性分析.内燃机学报,2003,21(5),P293-297
    〔49〕 韩永强、刘忠长、刘晓明、刘巽俊.柴油机恒转速增转矩瞬态工况的燃烧过程分析及其对烟度的影响.燃烧科学与技术,2004,(10),P23-27
    〔50〕 韩永强.车用增压柴油机的瞬态燃烧及其性能改善.长春:吉林大学,博士学位论文,2003.12
    〔51〕 许允、刘江唯、刘忠长、刘巽俊.车用直喷柴油机瞬态工况控制及微粒排放测量.燃烧科学与技术,2003,(9),P88-92
    〔52〕 苏岩,刘忠长,朱昌吉.直喷式柴油机起动过程燃烧分析.燃烧科学与技术,2006,12(2),P126-130
    〔53〕 苏岩,刘忠长,郭亮.利用瞬时转速对柴油机起动过程的分析.汽车工程,2006,28(4),P340-342
    〔54〕 苏岩,刘忠长,孙万臣,郭亮,杜宝程.柴油机起动测控系统的开发及初步应用.吉林大学学报:工学版,2007,37(1),P60-64
    〔55〕 苏岩,刘忠长,许允,郭亮,王永军.冷却液温度对柴油机起动首循环燃烧及排放的影响研究.中国内燃机学会 2006 年学术年会暨燃烧、测试分会联合学术年会,2006 年 10 月,天津,P456-460
    〔56〕 刘忠长、王忠恕、李骏、李文喜.CA6DE1-21K 柴油机瞬态工况 NOx 的排放特性.燃烧科学与技术,2004,10(3),P193-196
    〔57〕 刘忠长、王忠恕、李骏、王永红.CA6DE1-21K 柴油机瞬态工况下的烟度排放特性.燃烧科学与技术,2004,10(6),P484-488
    〔58〕 王忠恕、刘忠长、郭永田、王永红.柴油机瞬态工况微粒排放特性及影响因素.农业机械学报,2004,35(6),P19-21
    〔59〕 肖宗成、王忠恕、金文华、刘忠长.进气温度对车用柴油机排放性能的影响.吉林大学学报(工学版),2005,35(3),P263-266
    〔60〕 王忠恕、刘忠长、戈非.柴油机瞬态工况烟度排放特性及分析.内燃机学报,2005,23(5),P404-409
    〔61〕 崔毅,邓康耀,邬静川.车用柴油机瞬变工况排放测试方法与控制措施初探.内燃机工程,2001,22(4),P1-5
    〔62〕 崔毅,邬静川,邓康耀.车用增压柴油机瞬态性能及排放模拟.内燃机工程,2001,22(1),P11-14
    〔63〕 李德桃,单春贤,贾大锄,范永忠.涡流室式柴油机冷起动时非稳态燃烧分析.内燃机学报,1994,12(l),P29-35
    〔64〕 李德桃,朱章宏,贾大锄,范永忠.涡流室式柴油机冷起动过程的若干特征.内燃机学报,1992,10(4),P359-363
    〔65〕 李德桃,杨文明,姜树李,刘桃英,卢伯林.涡流室式柴油机冷起动时的准维燃烧模拟计算.内燃机学报,2001,19(2),P113-116
    〔66〕 王振锁,苏岩,邓宝清,刘巽俊,李理光.发动机排放数据实时采集与显示系统的开发与应用.小型内燃机与摩托车,2004,(4),P26-28
    〔67〕 王振锁.电控 LPG 发动机系统集成及其燃烧与排放的研究.长春:吉林大学,博士学位论文,2003.12
    〔68〕 孙万臣、刘巽俊、刘忠长、李骏.柴油机燃烧过程的分析诊断方法.燃烧科学与技术,2001,7(1),P57-59
    〔69〕 David R. Nightingale. A Fundamental Investigation into the Problem of NO Formation in Diesel Engines. SAE paper 750848, 1975
    〔70〕 K. T. Rhee, P. S. Myers, O. A. Uyehara. Time and Space-Resolved Species Determination in Diesel Combustion using Continuous Flow Gas Sampling. SAE paper 780226, 1978
    〔71〕 Kei Miwa,Makoto Ikegami. Combustion and Pollutant Formation in an Indirect Injection Diesel Engine. SAE paper 800026, 1980
    〔72〕 Hang Xu, P. S. Myers, O. A. Uyehara. In-Cylinder Measurement of Particulate Number Density and Size. SAE paper 820462, 1982
    〔73〕 Yasuhiro Fujiwara, Shiochi Fukazawa, Shigeru Tosaka. Formation of Soot Particulates in the Combustion Chamber of a Precombustion Chamber Type Diesel Engine. SAE paper 840417, 1984
    〔74〕 Makoto Ikegami, Masanori Fukuda, Yoshinobu Yoshihara, et al. Combustion Chamber Shape and Pressurized Injection in High-Speed Direct-Injection Diesel Engines. SAE paper 900440, 1990
    〔75〕 Mei Ning, Zhu Yuan-Xian, Hu Guo-dong, et al. Soot Formation, Oxidation and Its Mechanism in Different Combustion Systems and Smoke Emission Pattern in DI Diesel Engines. SAE paper 910230, 1991
    〔76〕 Nicos Ladommatos, Razmik Balian, Roy Horrocks, et al. The Effect of Exhaust Gas Recirculation on Combustion and NOx Emissions in a High-Speed Direct-Injection Diesel Engine. SAE paper 960840, 1996
    〔77〕 H. Zhao, G. Lowry, N. Ladommatos. Time-Resolved Measurements and Analysis of In-Cylinder Gases and Particulates in Compression-Ignition Engines. SAE paper 961168, 1996
    〔78〕 刘仪.柴油机全气缸取样系统开发及缸内微粒形成过程研究.长春:吉林大学,博士学位论文,1989.12
    〔79〕 马凡华,许忠厚.内燃机燃烧的光学测试方法.车用发动机,1999,(6),P8-11
    〔80〕 Xiaobin Li, James S. Wallace. In-Cylinder Measurement of Temperature and Soot Concentration Using the Two-Color Method. SAE paper 950848, 1995
    〔81〕 Marco Bakenhus, Rolf D. Reitz. Two-Color Combustion Visualization of Single and Split Injections in a Single-Cylinder Heavy-Duty D.I. Diesel Engine Using an Endoscope-Based Imaging System. SAE paper 1999-01-1112, 1999
    〔82〕 F. J. Struwe, D. E. Foster. In-Cylinder Measurement of Particulate Radiant Heat Transfer in a Direct Injection Diesel Engine. SAE paper 2003-01-0072, 2003
    〔83〕 陈硕,刘明安,潘克煜等.柴油机气缸内局部瞬态碳粒浓度、火焰温度改进双色法测量系统.内燃机工程,2001,(1),P38-41,47
    〔84〕 陈硕,刘明安,潘克煜等.多参数对柴油机缸内局部瞬态火焰温度及碳粒浓度的影响.内燃机学报,2001,19(2),P128-132
    〔85〕 田辛,何邦全,王建昕等.用双色法研究进气道喷射乙醇柴油引燃时的燃烧过程.内燃机学报,2004,22(1),P39-44
    〔86〕 魏建勤,赵奎翰,张惠明等.双色法测试精度影响因素分析.燃烧科学与技术,1996,2(1),P54-57
    〔87〕 Takaaki Sato, Naotaka Shirabe, Yukinobu Anezaki, et al. Spatial Distribution of Droplet Diameter of Wall-impinging-spray for Direct Injection Gasoline Engines. SAE paper 2003-01-0063, 2003
    〔88〕 高剑,蒋德明.柴油机喷雾特性的测试方法.柴油机,2002,(6),P4-7,12
    〔89〕 林其钊,颜富纯,高希彦等.应用激光双曝光全息干涉原理测定柴油机压缩过程缸内温度分布的研究[J].内燃机学报,1990,8(4),P365~371
    〔90〕 Hisashi Akagawa, Takeshi Miyamoto, Akira Harada, et al. Approaches to Solve Problems of the Premixed Lean Diesel Combustion. SAE paper 1999-01-0183, 1999
    〔91〕 赵奎翰,魏建勤,息树和等.小缸径直喷式柴油机喷雾、燃烧和碳粒生成过程试验研究.内燃机学报,1997,15(2),P151-158
    〔92〕 G. G. M. Stoffels, E. J. van den Boom,C. M. I. Spaanjaars, et al. In-Cylinder Measurements of NO Formation in a Diesel Engine. SAE paper 1999-01-1487, 1999
    〔93〕 Frank Hildenbrand, Christof Schulz, Matthias Hartmann, et al. In-Cylinder NO-LIF Imaging in a Reallistic GDI Engine Using KrF Excimer Laser Excitation. SAE paper 1999-01-3545, 1999
    〔94〕 John E. Dec, Peter L. Kelly-Zion. The Effects of Injection Timing and Diluent Addition on Late-Combustion Soot Burnout in a DI Diesel Engine Based on Simultaneous 2-D Imaging of OH and Soot. SAE paper 2000-01-0238, 2000
    〔95〕 Dae Choi, Makoto Iwamuro, Yuta Shima, et al. The Effect of Fuel-Vapor Concentration on the Process of Initial Combustion and Soot Formation in a DI Diesel Engine Using LII and LIEF. SAE paper 2001-01-1255, 2001
    〔96〕 Eric Stevens, Richard Steeper. Piston Wetting in an Optical DISI Engine: Fuel Films, Pool Fires, and Soot Generation. SAE paper 2001-01-1203, 2001
    〔97〕 于善颖,刘德新,王天友等.火花点火发动机激光诱导荧光及散射测量技术应用研究.小型内燃机与摩托车,2003,32(3),P17-19
    〔98〕 汪洋,谢辉,苏万华等.激光诱导荧光法研究柴油机新概念燃烧中的喷雾混合过程.燃烧科学与技术,2002,8(4),P338-341
    〔99〕 苏万华,汪洋,余皎等.限流沿燃烧室中实现柴油喷雾稀扩散燃烧的混合气形成过程.燃烧科学与技术,2002,8(4),P364-368
    〔100〕 雷卫,苏万华.一种新的 HCCI 柴油机燃油喷雾特性的 PLIF 法测试装置.汽车工程,2004,26(4),P405-408,491
    〔101〕 C. R. Stone, E. P. Lim, P. Ewart, et al. Temperature and Heat Flux Measurements in a Spark Ignition Engine. SAE paper 2000-01-1214, 2000
    〔102〕 Borje Grandin, Ingemar Denbratt, Joakim Bood, et al. The Effect of Knock on the Heat Transfer in an SI Engine: Thermal Boundary Layer Investigation using CARS Temperature Measurements and Heat Flux Measurements. SAE paper 2000-01-2831, 2000
    〔103〕 沈俊,傅立敏,黎妹红,王靖宇.CFD 软件及其在汽车领域的应用.汽车研究与开发,2000,(5),P26-28
    〔104〕 王锡斌,蒋德明,董学尧.内燃机工作过程数值模拟中的 CFD.拖拉机与农用运输车,2002,(4),P32~34
    〔105〕 Gerhard Meister, Simon Grilc, et al. CFD application in compact engine development. SAE paper 982016, 1998
    〔106〕 W. Bauer, H. Ehrenreich, H. Reister. Design of cooling systems with computer simulation and underhood flow analysis using CFD. SAE paper 954061, 1995
    〔107〕 Marshall Bare. Improving CFD Modelling Using Rapid Prototype Testing. SAE paper, 2004-01-3195, 2004
    〔108〕 M. Auriemma. Fluid-dynamic analysis of the intake system for a HDDI diesel engine by STAR-CD code and LDA technique, SAE paper 2003-01-0002, 2003
    〔109〕 Ronald J. Donahue, Gary L. Borman, and Glenn R. Bower. Cylinder-Averaged Histories of Nitrogen Oxide in a D.I. Diesel with Simulated Turbocharging. SAE paper 942046, 1994
    〔110〕 I. A. Voiculescu, G. L. Borman. An Experimental Study of Diesel Engine Cylinder-Averaged NOX Histories. SAE paper 780228, 1978
    〔111〕 Tung Tat Chan, Gary L. Borman. An Experimental Study of Swirl and EGR Effects on Diesel Combustion by Use of the Dumping Method. SAE paper 820359, 1982
    〔112〕 Heddin G H, Kittelson D B, Scherrer H, Liu X and Dolan D F. Total Cylinder Sampling from a Diesel Engine(Part Ⅰ). SAE paper 810257, 1981
    〔113〕 Liu X and Kittelson D B. Total Cylinder Sampling from a Diesel Engine(Part Ⅱ). SAE paper 820360, 1982
    〔114〕 Cao-Jian Du, David B. Kittelson. Total Cylinder Sampling from a Diesel Engine: Part Ⅲ-Particle Measurements. SAE paper 830243, 1983
    〔115〕 Cao-Jian Du, David B. Kittelson, Roy B. Zweidinger. Measurements of Polycyclic Aromatic Compounds in the Cylinder of an Operating Diesel Engine. SAE paper 840364, 1984
    〔116〕 Pipho Michael J, Ambs Jeffrey L and Kittelson David B. In-Cylinder Measurements of Particulate Formation in an Indirect Injection Diesel Engine. SAE paper 860024, 1986
    〔117〕 David B. Kittelson, Michael J. Pipho, Jeffrey L. Ambs, D. C. Siegla. Particle Concentrations in a Diesel Cylinder: Comparison of Theory and Experiment. SAE paper 861569, 1986
    〔118〕 David B. Kittelson, Michael J. Pipho, Jeffrey L. Ambs, Lang Luo. In-Cylinder Measurements of Soot Production in a Direct-Injection Diesel Engine. SAE paper 880344, 1988
    〔119〕 Luo Lang, Pipho Michael J, et al. Particle Growth and Oxidation in a Direct Injection Diesel Engin. SAE paper 890580, 1989
    〔120〕 Michael J. Pipho, David B. Kittelson, Darrick D. Zarling. NO2 Formation in a Diesel Engine. SAE paper 910231, 1991
    〔121〕 Michael J. Pipho, David B. Kittelson, Lang Luo, Darrick D. Zarling. Injection Timing and Bowl Configuration Effects on In-Cylinder Particle Mass. SAE paper 921646, 1992
    〔122〕 Hiroyuki Hiroyasu, Keiya Nishida, Mamoru Suzuki, et al. Total In-Cylinder Sampling Experiment on Emission Formation Processes in a D.I. Diesel Engine. SAE paper 902062, 1990
    〔123〕 刘仪, 季雨, 郭英男, 刘巽俊.柴油机全气缸取样系统及其缸内微粒形成过程研究中的应用.内燃机学报,1990, 8(2),P125-130
    〔124〕 刘仪、白翎、马怀矣、袁中庄、刘巽俊.用现象学燃烧模型计算非直喷式柴油机微粒、NOx 和 CO 的形成历程.小型内燃机,1994,23(2),P58-62
    〔125〕 袁中庄,刘仪,季雨,刘巽俊.非直喷式柴油机气态污染物形成历程研究.内燃机学报,1991,9(2),P131-136
    〔126〕 刘仪,臧仲冬,白翎,刘巽俊,马怀矣.直喷式柴油机燃烧过程气体全量取样系统开发及其在缸内微粒形成过程研究中的应用.内燃机学报,1995,13(1),P71-76
    〔127〕 刘仪,郭英男,刘巽俊,王佐.柴油机全气缸采样系统执行机构同步性研究.吉林工业大学学报,1989,(1),P44-52
    〔128〕 刘仪,刘巽俊,白翎.柴油机全气缸取样技术存在的几个问题.内燃机学报,1995,13(3),P237-243
    〔129〕 裴毅强,董素荣,宋崇林等.基于电控燃油喷射技术的柴油机全气缸取样系统的设计与开发.燃烧科学与技术,2006,12(2),P115-120
    〔130〕 裴毅强,董素荣,宋崇林等.现代柴油机排气微粒生成历程及理化特性.天津大学学报,2006,39(6),P47-50
    〔131〕 徐玉桥、顾园、于梅.撞击式冲击阀气冲造型过程的数值模拟.沈阳工业大学学报,2006,28(5),P501-504
    〔132〕 郭安萍,洪嘉振,杨辉.柔性多体系统接触碰撞子结构动力学模型.中国科学, 2002, 32(6),P765-770
    〔133〕 钱伟长,叶开沅.弹性力学.北京:科学出版社,1956.10
    〔134〕 郑建荣.ADAMS——虚拟样机技术入门与提高.北京:机械工业出版社,2001.11
    〔135〕 廖伟志.多刚体系统下碰撞动力学模型的建立.台湾科技大学机械工程研究所, 2004/10/6
    〔136〕 机械工程材料手册:金属材料.中国第一汽车集团公司编写组编.北京,机械工业出版社,1998.12
    〔137〕 内燃机设计.吉林大学自印教材
    〔138〕 初日德,聂毓琴.材料力学(上册).吉林:吉林科学技术出版社,1995.12
    〔139〕 赵佳佳,韩永强.基于碰撞机理的全气缸取样机构设计.汽车技术,2007,(8),P45-49
    〔140〕 赵佳佳,刘忠长,韩永强.碰撞式全气缸取样机构及其初步应用碰撞式全气缸取样机构及其初步应用.车用发动机,2007,(6)
    〔141〕 杨献伟.基于碰撞机理的非破坏性全气缸取样机构开发.长春:吉林大学,硕士学位论文,2006.12
    〔142〕 李兴虎.汽车排气污染与控制.北京:机械工业出版社,1999.9
    〔143〕 朱庆云.天然气合成油技术.石化技术,2006,13(1),P54-58
    〔144〕 蒋德明.内燃机燃烧与排放学.西安:西安交通大学出版社,2001.7
    〔145〕 周龙保主编,刘巽俊、高宗英副主编.内燃机学.北京:机械工业出版社,1999.6
    〔146〕 Yujiro Tsukamoto, Yuichi Goto, Matsuo Odaka. Continuous Measurement of Diesel Particulate Emissions by an Electrical Low-Pressure Impactor. SAE paper 2000-01-1138, 2000
    〔147〕 Simon J. Greenwood, John E. Coxon, Trevor Biddulph, John Bennett. An Investigation to Determine the Exhaust Particulate Size Distributions for Diesel, petrol and Compressed Natural Gas Fuelled Vehicles. SAE paper 961085, 1996
    〔148〕 N. J. Khatri and John H. Hohnson,Physical Size Distribution Characterization of Diesel Particulate Matter and the Study of the Coagulation Process, SAE paper 780788, 1978
    〔149〕 何学良、詹永厚、李疏松.内燃机燃料.北京:中国石化出版社,1999.11
    〔150〕 武涛,黄震,张武高,方俊华.柴油/GTL 混合燃料特性及对柴油机排放的影响.汽车工程,2007,(5),P397-400
    〔151〕 朱昌吉.车用柴油机电控 EGR 系统设计及性能研究.长春:吉林大学,博士学位论文,2005.10
    〔152〕 方显忠,刘忠长,许允,刘巽俊.车用直喷式柴油机排气微粒与消光式烟度的关系.汽车工程,2003,25(2),P136-138
    〔153〕 刘江唯,刘忠长,刘巽俊,王忠恕.车用直喷柴油机递增负荷工况下的微粒排放特性.内燃机学报,2002,20(6),P492-496
    〔154〕 许允,刘江唯,刘忠长,刘巽俊.车用直喷柴油机瞬态工况控制及微粒排放测量.燃烧科学与技术,2003,9(1),P88-92