地基GPS遥感大气可降水量及其在气象中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
常规大气水汽探测手段的时空分辨率极大地制约了人们对水汽时间变化和空间分布的认识,使我们对局地和全球水汽分布和水份循环缺乏详尽的了解,水汽信息的欠缺影响了灾害性天气预报特别是暴雨短时临近预报的水平,也限制了数值天气预报中降水量预报的精度。因此,水汽是大气中人们了解和认识得不够充分的大气成分之一,如何用新的技术手段精确测量大气水汽含量,是当今气象学所面临的一项重要任务。
     作为GPS大地测量学的反演问题,GPS技术为探测大气水汽提供了一种全新的手段,它具有实时、连续、不受天气状况影响、精度高、成本低等优点,是传统大气水汽观测手段的有力补充。本论文从GPS遥感水汽的理论及气象学应用的角度,全面分析了GPS反演水汽技术在气象中的应用领域,研讨了地基GPS技术反演大气可降水量的计算方案及主要步骤,讨论了GPS遥感大气水汽的主要误差源。
     本论文的研究内容主要分为以下四个部分:
     (1)研究无线电探空气象资料计算大气可降水量的方法、误差及其改进。应用探空气象资料分析并评估地基GPS遥感大气可降水量技术的精度。评估了对流层水汽加权平均温度的计算公式在成都和华北地区的适用性及其改进方案,特别讨论了估算加权平均温度的几种方法及其对高精度反演可降水量的影响。
     根据成都和华北地区的气象探空资料,采用数值积分法,计算出相应时刻的对流层加权平均温度,分析了成都和华北地区应用Bevis经验公式计算加权平均温度的适用性及其所产生的误差。通过线性回归分析得到成都和华北地区利用地面气温等气象参数计算加权平均温度的拟合公式,初步探索了Bevis公式的局地修正方案。研究表明,反演大气可降水量所用到的加权平均温度及其拟合公式具有明显的地域和时间特征。因此在地基GPS气象研究和业务试验中,应该利用当地长期气象资料建立适宜的加权平均温度的计算模型,这对于提高GPS反演大气水汽可降水量的精度具有重要作用。
     (2)根据成都和华北地区无线电探空资料,计算出地面水汽压与大气柱中的可降水量,并分析了两者之间的关系,结果表明大气可降水量与地面水汽压存在较好的数值对应关系。由此为在缺乏气象探空资料或GPS遥感水汽缺测的情况下,利用地面水汽压估算大气可降水量提供了一种简便易行的替补方法,拟合出的经验关系式在大气水汽研究与应用工作中具有较大的实用价值。
     (3)进行成都地区利用地基GPS观测网遥感区域大气可降水量的首次试验。利用首个成都地区地基GPS观测网2004年7~9月的测量数据,通过Bernese GPS Software V4.2解算出天顶总延迟量,结合自动气象站获得的气象资料计算出GPS遥感的大气可降水量。与根据气象探空站资料算出的可降水量进行了统计对比,确定出本次GPS遥感可降水量试验的精度为3.09mm,两种可降水量时间序列呈现高度的一致性。同时验证了计算对流层加权平均温度的Bevis回归公式在成都地区的适用性。试验结果确认了在成都地区应用GPS技术探测大气可降水量的可行性,为多学科综合研究大气水汽的时空变化以及在短时临近天气预报、空中水资源开发、人工影响天气等多方面的应用奠定了基础。
     (4)研究了不同地形作用下、不同气候区中GPS大气可降水量的时间变化及空间差异,分析了大气可降水量与气压、气温、水汽压和降雨量等地面气象要素以及降雨天气过程的关系。重点研究了GPS遥感的可降水量的日循环特征以及与局地环流、局地降水特点的联系。
     以日本中部地区作为第一试验区,利用GPS遥感的大气可降水量资料和地面气象资料研究了海洋性季风气候下大气可降水量的日变化特征,并将其变化特征归纳为山区、盆地和平原-海岸三类。研究表明,日本中部大气可降水量具有明显的日循环特征,白天大气可降水量变幅的最大值出现在盆地,最小值出现在平原。测站周围地形产生的局地热力环流对大气可降水量的日变化有显著影响。大气可降水量日变化最明显的特征就是最大值出现在夜间,而降水峰值出现在午后或夜间,夜雨频率很高,这说明实际降水量和大气可降水量的日变化存在很好的关联。
     以成都平原作为第二试验区,利用首个成都地区地基GPS观测网解算出的大气可降水量数据,对青藏高原大地形下盆地气候区中的成都、郫县夏季可降水量的日循环特征进行了合成分析。结果表明:可降水量同样呈现明显的日循环特征,最小值出现在早上,最大值出现在下午。白天可降水量的变化较大,夜间相对稳定。降水日变化的一个显著特点是降水主要发生在夜间,当可降水量在下午达到最大之后,主降水阶段开始;当可降水量下降到一个稳定状态后,主降水过程随之结束。可降水量的积累和释放与地面降水有较好的对应关系,可降水量的持续性递增和持续性递减分别预示着降水的开始和结束。
     最后还利用成都和华北地区地基GPS遥感的可降水量和自动气象站测得的实际降水量资料,对几次暴雨天气过程中GPS可降水量的演变特征进行了初步分析,其结果有助于归纳出GPS可降水量用于各种降水天气的预报指标,尤其对暴雨天气的短时临近预报具有重要的参考价值。
The resolution of conventional observation for atmospheric water vapor extremely restricts the level of our understanding for the spatial and temporal distribution of water vapor, thus the detailed knowledge of local and global distribution of water vapor and cycle of water vapor is poor. The lack information of water vapor affects the level of forecast of severe weather especially for the nowcasting of heavy rainfall, and limits the accuracy of numerical prediction about amount of rainfall. Thus the water vapor is one of atmospheric composition we have to know more. It is an urgent task for meteorology today that atmospheric water content should be measured more accurately by a new technology.
     As an inverse problem of GPS (Global Positioning System) geodesy, the technology of detecting atmospheric water vapor based on GPS provides a new means for remote sensing atmosphere with many advantages such as real-time, continuity, high precision, low cost and unaffected by weather, which has become a powerful supplementation for routine atmospheric sounding system. In the view of the theories of remote sensing water vapor based on GPS and applications in meteorology, the applied fields of GPS technology in meteorology are analyzed comprehensively, the computational scheme and basic steps are studied, and main error resources in the computation of atmospheric water vapor by using ground-based GPS data are discussed in this thesis.
     The main contents of this thesis include following four parts:
     (1) The method, error analysis and improvement in the computation of atmospheric water vapor are studied. The accuracy of estimating atmospheric precipitable water vapor by ground-based GPS is evaluated by using radiosonde meteorological data. The suitability and improvement of the formula for calculating the mean weighted tropospheric temperature in Chengdu and North China are discussed; some methods of estimating mean weighted temperature and their influences on high precise precipitable water vapor derived from GPS are compared.
     The sequence of mean weighted temperature using integral method is obtained using the data of radiosonde in Chengdu and North China, and the suitability and error of Bevis's regression formula to estimate mean weighted temperature using surface air temperature are analyzed. The linear regression formulas of estimating mean weighted temperature in different types are established, and some modified Bevis's formulas available in Chengdu and North China are suggested. There is difference of Bevis's formula in different months and different areas, thus for high precise precipitable water vapor derived from ground-based GPS, it is very important for ground-based GPS meteorology to determinate local regression formula for estimating mean weighted temperature based on the long-term radiosonde data.
     (2) According to the meteorological sounding data from the radiosonde stations in Chengdu and North China, the precipitable water vapor and surface water-vapor pressure are computed and the relationships between these two factors are analyzed. The results indicate that the relationship between precipitable water vapor and the corresponding ground water is highly linear. From this, it is possible to calculate the precipitable water content of the entire atmosphere only by using the ground water, which can be as a simple spare method under the condition of no radiasonde data or GPS data. Therefore, this replacement and related empirical formulas have good actual values in the research and application of atmospheric water.
     (3) The first experiment of remote sensing local precipitable water vapor by using ground-based GPS network in Chengdu area has been finished. The estimates of total zenith delay are available using Bernese GPS Software V4.2 based on GPS data every 30 second from the first measurement experiment of a ground-based GPS network in Chengdu Plain of southwest China during the period of July to September 2004. Then estimates of 0.5 hourly precipitable water vapor derived from GPS are obtained using meteorological data from automatic weather stations. The comparison of precipitable water vapor derived from GPS and those from radiosonde observations is given at Chengdu station, with RMS (Root Mean Square) differences of 3.09 mm. The consistency of precipitable water vapor derived from GPS to those from radiosonde is very good. It is concluded that Bevis empirical formula for estimating the weighted atmospheric mean temperature can be basically applicable in Chengdu areas because the relationship of GPS PWV with Bevis' formula between GPS PWV with radiosonde method shows a high correlation. The results of this GPS measurement experiment are helpful both for accumulating the study of precipitable water vapor derived from GPS in Chengdu areas located at the eastern flank of the Tibetan Plateau and for studying spatial-temporal variations of regional atmospheric water vapor and for applying in nowcasting, usage of atmospheric water resources and weather modification through many disciplines cooperatively.
     (4) The temporal variation and spatial difference of GPS-derived precipitable water in different climatic regions or under the influence of different topography, the relationships among GPS PWV and surface pressure, air temperature, vapor pressure and precipitation, and the variation features of GPS PWV in rainfall processes are studied deeply. The emphasis is on the diurnal cycle of GPS PWV and the relations to the peculiarity of local circulation and rainfall.
     The diurnal variations of water vapor in Kanto Plain of central Japan (as the first experimental region in this study) under the background of ocean monsoon climate are investigated with GPS-derived precipitable water and surface meteorological data as classified to three kinds of locations (mountainous area, basin, and plain-coast). The GPS PWV shows a clear diurnal cycle. The daily amplitude of GPS PWV is the largest in basin and the smallest in plain. A typical feature of the diurnal variation of GPS PWV in central Japan is a maximum appearing in the evening. The results suggest that the diurnal variation of GPS PWV seems to be strongly affected by the local thermal circulations generated by the topography around these stations. The moisture transport causes the differences in phase of the diurnal cycle of GPS PWV between different locations as well as the phase difference in precipitation. The precipitation observed frequently in the evening also shows a similar diurnal variation to that of the GPS PWV, indicating the peak of precipitation appearing in late afternoon or in the evening over central Japan. Meanwhile, the GPS PWV reaches its nocturnal maximum. There is a good relationship between the diurnal cycle of observed precipitation and that of the GPS PWV.
     Moreover, the diurnal variations of water vapor in Chengdu Plain (as the second experimental region in this study) under the influence of subtropical monsoon humid climate are preliminarily investigated with surface meteorological data and GPS PWV from the first experiment of remote sensing local precipitable water vapor by using ground-based regional GPS network. The diurnal variations of GPS PWV and some surface meteorological elements are composite during the warm days at Chengdu and Pixian in the basin climatic region in the eastern flank of the Tibetan Plateau. The GPS PWV in the midsummer stable weather shows a clear diurnal cycle with the amplitude and changes obviously in day and little at night. A typical feature of the diurnal variation at Chengdu and Pixian is a maximum appears in late afternoon, a minimum appears in early morning. The comparison of GPS PWV and rainfall shows that there is a good correlation between them in calm warm season. The precipitating is observed frequently in the evening. After GPS PWV reaches its maximum in the late afternoon, main rainfall process will occur, which leads to a remarkable decrease of GPS PWV and a rapid rise of surface water vapor. When the drop of GPS PWV is stable, the main rainfall process will stop. The accumulating and releasing processes of GPS PWV is also well related with rainfall, its increase or decrease continuously suggests the beginning or end of rainfall, respectively.
     Finally, based on the data of PWV derived from ground-based GPS networks and rainfall data from AWS in Chengdu and North China, the variational features of GPS PWV in several typical cases of heavy rainfall processes are analyzed, the results are help to obtain some index which can be used in the forecast of rainy weather, especially for the short forecast and nocasting of heavy rain.
引文
[1] Ahmad B, G L Tyler. Systematic errors in atmospheric profiles obtained from Abelian inversion of radio occultation data: Effects of large-scale horizontal gradients. J. Geophys. Res., 1999,104, (D4):3971- 3992
    [2] Askne J, H Nordius. Estimation of tropospheric delay for microwaves from surface weather data. Radio Sci., 1987,22:379-386
    [3] Baker H C, A H Dodson, N T Penna,et al. Ground-based GPS water vapour estimation: potential for meteorological forecasting. Journal of Atmospheric and Solar-Terrestrial Physics., 2001, 63:1305-1314
    [4] Balling R C. Warm season nocturnal precipitation in the Great Plains of the United States. J. Climate Appl. Meteor., 1985,24:1381-1387
    [5] Barros A P, M Joshi, J Putkonen, et al. A study of the 1999 monsoon rainfall in a mountainous region in central Nepal using TRMM products and rain gauge observations. Geophys. Res. Lett. 2000,27:3683-3686
    [6] Bevis M, S Businger, T A Herring, et al. GPS Meteorology: Remote sensing ofatmospheric water vapor using the Global Positioning System. J. Geophys. Res.,1992,97: 15787-15801
    [7] Bevis M, S Businger, S Chiswell, et al. GPS Meteorology: Mapping zenith wet delays onto precipitable water. J. Appl. Meteor., 1994,33:379-386
    [8] Boudouris G. On the index of refraction of air, the absorption and dispersion of centimeter waves in gases. J. Res. Natl. Bur. Stand., 1963,67:631-684
    [9] Bouma H R, B Stoew. GPS observations of daily variations in the atmospheric water vapor content. Phys.Chem.Earth.(A),2001,26(6-8):389-392
    [10] Braun J, C Rocken, R Ware. Validation of line-of-sight water vapor measurements with GPS.Radio Sci., 2001,36:459-472
    [11] Braun J, C Rocken. Water vapor tomography within the planetary boundary layer using GPS. International Worhshop on GPS Meteorology, 14-17 Jan 2003,Tsukuba Japan.
    [12] Businger S, R Chiswel, M Bevis.et al.The promise of GPS in atmospheric monitoring. Bull. Amer. Met. Soc.,1997,77(1):5-7
    [13] Chen Y L, A J Nash. Diurnal variation of surface airflow and rainfall frequencies on the island of Hawaii. Mon. Wea. Rev., 1994,122: 34-56
    [14] Coster A J. M Buonsanto. E M Gaposchkin, et al. Ionospheric and tropospheric path delay obtained from GPS integrated phase. Adv. Space Res., 1990, 10(8): 105-108
    [15] Dai A, F Giorgi, K E Trenberth. Observed and model simulated precipitation diurnal cycle over the contiguous United States. J. Geophys. Res., 1999,104: 6377-6402
    [16] Davis J L, T A Herring, I I Shaprio, et al. Geodesy by radio inter-ferometry:Effects of atmospheric modeling errors on estimates of baseline length. Radio Sci., 1985,20: 1593-1607
    [17] Dodson A H,H C Baker. Accuracy of orbit for GPS atmospheric water vapor estimation. Phy.Chem.Earth,1998,23(1):119-124
    [18] Duan Jingping, M Bevis, Fang Peng, et al. GPS meteorology: Direct estimation of the absolute value of precipitable water. J. Appl. Meteor., 1996, 35:830-838
    [19] Elgered G, J L Davis , T A Herring, et al. Geodesy by radio inter-ferometry: Water vapor radiometry for estimates of the wet delay. J. Geophys. Res., 1991,95: 6541-6555
    [20] Emardson T, G E Range, J M Johansson. Three months of continuous monitoring of atmospheric water vapor with a network of Global Positioning System receiver. J. Geophys. Res., 1998,103(D2):1807-1820
    
    [21] Feng D D, B M Herman. Remote sensing the Earth's atmosphere using the Global Positioning System (GPS)-The GPS/MET data analysis. J. Atmos. Oceanic Tech., 1999,16:989-1002
    [22] Flores A,G Ruffini,A Rius. 4D tropospheric tomography using GPS slant wet delays. Ann.Geophysicae,2000,18:223-234
    
    [23] Foelsche U, G Kirchengast.Troposphere water vapor imaging by combination of ground-based and spaceborne GNSS sounding data.J.Geophys.Res., 2001,106:27221 -27231
    [24] Fujibe F. Diurnal variations of precipitation and thunderstorm frequency in Japan in the warm season, Pap. Meteor. Geophys., 1988,39: 79-94
    [25] Galina D,G Gendt,C Reigber. Operational water vapor estimation in a dense German network. IGS 1999 Technical Report, 1999,375-384
    [26] Ge M, E Calais. Reducing satellite orbit error effects in near real-time GPS zenith tropospheric delay estimation for meteorology.Geophys. Res. Lett., 2000,27:1915
    [27] Gendt G, G Dick, C Reigber.et.al. Near real time GPS water vapor monitoring for numerical weather prediction in Germany. J. Meteor. Soc. Japan,2004,82(1B):361-370
    [28] Guo Y, Y H Kuo, J Dudhia et al. Four-dimensional variational data assimilation of heterogeneous mesoscale observations for a strong convective case. Mon.Wea. Rev., 2000,128:619-643
    [29] Gutman S I, S G Benjamin. The role of ground-based GPS meteorological observations in numerical weather prediction. GPS Solutions, 2001,4(4): 16-24
    
    [30] Ha S Y, Y H Kuo, Y R Guo. Assimilation of ground-based GPS slant-path water vapor measurements and its impact on short-range prediction of pre-frontal squall line: An OSSE study. Proceedings of Third US-Korea Joint workshop on Storm Scale and Mesoscale Weather Analysis and Prediction. Boulder, CO, 2002,2: 20-22
    [31] Henk K B,H Van der Marel, G A Andre, et al. Integrated atmospheric water vapor estimates from a regional GPS network.J. Geophys. Res., 2002,107, 10.1029/2000JD000094
    
    [32] Herring T A. Modeling atmospheric delays in the analysis of space geodetic data. Symposium on Refraction of Transatmospheric siginals in Geodesy. 1992,36:243-248
    [33] Hopfield H S. Tropospheric effect on electromagnetically measured range: prediction from surface weather data. Radio Science, 1971,6:357-367
    [34] Hugentobler U, S Schaer, P Fridez. Bernese GPS software version 4.2, Astronomical Institute, University of Berne,2001
    [35] Ingold T, R Peter, N Kampfer. Weighted mean tropospheric temperature andtransmittance determination at millimeter-wave frequencies for ground-based applications. Radio Sci., 1998, 33(4): 905-918
    [36] Iwabuchi T, I Naito, N Mannoji. A comparison of Global Positioning System retrieved precipitable water vapor with the numerical weather prediction analysis data over the Japanese Islands.J.Geophys.Res., 2000, 105:4573-4585
    [37] Iwabuchi T, Y Shoji, S Shimada et al. Tsukuba GPS dense net campaign observations:Comparison of the stacking maps of post-fit phase residuals estimated from three software packagesr. J. Meteor. Soc. Japan, 2004,82(1B):315-330
    
    [38] Iwasaki H, T Mik. Observational study on the diurnal variation in precipitable water associated with the thermally induced local circulation over the "Semi-Basin" around Maebashi using GPS data. J. Meteor. Soc. Japan, 2001,79:1077-1091
    [39] Iwasaki H, T Miki. Diurnal variation of convective activity and precipitable water over the "Semi-Basin"-Preliminary study on the mechanism responsible for the evening convective activity maximum. J. Meteor. Soc. Japan, 2002,80: 439-450
    [40] Iwasaki H. Diurnal variation with dual maxima of precipitable water and convective activity in summer season around Mt. Tanigawa in the north Kanto district, Japan. J. Meteor. Soc. Japan, 2004,82:805-816
    [41] James F, M Bevis, et al. El Nino.water vapor.and the Global Positioning System. Geophys. Res. Lett.,2000,27(17):2697-2700
    [42] James L D,G Elgered,A E Niell,et al. Ground-based measurement of gradients in the "wet" radio refractivity of air.Radio Sci., 1993,28:1003-1018
    [43] Janes H W, R B Langley. Analysis of troposheric delay prediction models: comparisons with ray-tracing and implications for GPS relative positioning. Bull.Geod.,1991,65:151-161
    [44] Kimura F, T Kuwagata. Horizontal heat fluxes over complex terrain computed using a simple mixed-layer model and a numerical model. J. Appl. Meteor., 1995,34:549-558
    [45] Kondo H. A numerical experiment of the "extended sea breeze" over the Kanto Plain. J.Meteor. Soc. Japan, 1990,68:419-434
    [46] Kondo H. A numerical experiment on the interaction between sea breeze and valley wind to generate the so-called "extended sea breeze." J.Meteor. Soc. Japan, 1990,68: 435-446
    [47] Kubota H, T Nitta. Diurnal variations of tropical convection observed during the Toga-Coast. J. Meteor. Soc. Japan, 2001,79, 815-830
    
    [48] Kuo Y H, X Zou, Y R Guo.Variational assimilation of precipitable water using a nonhydrostatic mesoscale adjoint model, Part I:Mositure retrieval and sensitivity experiments. Mon. Wea. Rev., 1996, 148:122-147
    [49] Kuo Y H, Y R Guo, E R Westerwater. Assimilation of precipitable water vapor into mesoscale numerical model.Mon.Wea.Rev.,1993,121:1215-1238
    [50] Liou Y A, C Y Huang, Y T Teng. Precipitable water observed by ground-based GPS receivers and microwave radiometry. Earth, Planets, and Space, 2000,52(6), 445-450
    [51] Liou Y A, C Y Huang. GPS observation of PW during the passage of a typhoon. Earth, Planets, and Space, 2000,52(10):709-712
    [52] Liou Y A, Y T Teng, T Van Hove, et al. Comparison of precipitable water observations in the near tropics by GPS, microwave radiometer, and radiosondes. J. Appl. Meteor.,2001,40(1): 5-15
    [53] Lubomir P, P JarLemark. Ground-based GPS tomography of water vapor: Analysis of simulated and real data. J. Meteor. Soc. Japan, 2004, 82(1B): 551-560
    [54] MacMillan D S. Atmospheric gradients from very long baseline interferometry observations.Geophys. Res. Lett., 1995,22:1041-1044
    [55] Mendes V B,R B Langley. Tropospheric zenith delay prediction accuracy for high-precesion GPSpositioning and navigation. Navigation, 1999,46(1):25-33
    [56] Murata F M, D Yamanaka, M Fujiwara, et al. Relationship between wind and precipitation observed with UHF radar, GPS rawinsondes and surface meteorological instruments at Koto Tabang, West Sumatra during September-October 1998. J. Meteor. Soc. Japan, 2002,80:347-360
    [57] Niell A E. Global mapping functions for the atmosphere delay at radio wavelengths.J. Geophys. Res., 1996,101(B2):3227-3246
    [58] Ohasawa T, H Ueda, T Hayashi, et al. Diurnal variation of convective activity and rainfall in tropical Asia. J. Meteor. Soc. Japan, 2001,79:333-352
    
    [59] Ohtani R. Detection of water vapor variations driven by thermally-induced local circulations using the Japanese continuous GPS array. Geophys. Res. Let., 2001,28:151-154
    [60] Ohtani R, I Naito. Comparisons of GPS-derived precipitable water vapors with radiosonde observations in Japan. J. Geophys. Res., 2000, 105:26917-26929
    [61] Oki T, K Musiake. Seasonal change of the diurnal cycle of precipitation over Japan and Malaysia. J.Appl. Meteor., 1994,33:1445-1463
    [62] Parsons D, J Machol, et al. Preliminary progress on improving the characterization of water vapor. National Center for Atmospheric Research, 1999,(5):89-92
    [63] Reigber C. Water Vapor Monitoring for Weather Forecast. GPS World,2002,13(1): 18-27
    [64] Riley G T, M G Landin, L F Bosart. The diurnal variability of precipitation across the central Rockies and adjacent Great Plains. Mon. Wea. Rev., 1987,115:1161-1172
    [65] Rocken C R, R H Ware. T Van Hove, et al. Sensing atmospheric water vapor with theGlobal Positioning System. Geophys. Res. Lett.,1993,23 (20): 2631-2634
    [66] Rocken C, T Van Hove, M Johnson, et al. GPS/STORM-GPS sensing of atmospheric water vapor for meteorology. J.Atmos. and Ocean. Tech., 1995, 12: 468-478
    [67] Rocken C, R Anthes, M Exner,et al. Analysis and validation of GPS/MET data in the neutral atmosphere. J. Geophys. Res., 1997,102: 29849
    [68] Rocken CS.J Sokolovskiy, M Johnson, et al. Improved mapping of tropospheric delays. J.Atmos. Oceanic Technol., 2001,18: 1205-1213
    [69] Ross R J, S Rosenfeld. Estimating mean weighted temperature of the atmosphere for Global Positioning System applications. J. Geophys. Res., 1997,102:21719-21730
    [70] Ross R J, S Rosenfeld. Correction to "Estimating mean weighted temperature of the atmosphere for Global Positioning System applications". J. Geophys. Res., 1999,104: 27625
    
    [71] Saastamoinen J. Atmospheric correction for the troposphere and stratosphere in radio ranging of satellites. The Use of Artificial Satellites for Geodesy, Geophys. Monogr., 1975,Ser. 15, 247-251
    [72] Sato T, F Kimura. A two-dimensional numerical study on diurnal cycle of mountain lee precipitation. J. Atmos. Sci., 2003,60, 1992-2003
    [73] Sato T, F Kimura. Diurnal cycle of convective instability around the central mountains in Japan during the warm season. J. Atmos. Sci.,2005, 62, 1626-1636
    [74] Seko H, S Shimada, H Nakamura,et al. Three-dimensional distribution of water vapor estimated from tropospheric delay of GPS data in a mesoscale precipitation system of the Baiu front.Earth, Planets, and Space, 2000,52:927-933
    [75] Shoji Y, H Nakamura, T Iwabuchi, et.al. Tsukuba GPS dense net campaign observation : Improvement in GPS analysis of slant path delay by stacking one-way postfit phase residuals. J. Meteor. Soc. Japan,2004,82(1B): 301-314
    [76] Smith T L, S G Benjamin, B E Schwartz, et al. Using GPS-IPW in a 4-D data assimilation system. Earth, Planets and Space, 2001(51): 101-105
    [77] Stoew B, G Elgered. Characterization of atmospheric parameters using a ground based GPS network in north Europe. J. Meteor. Soc. Japan,2004,82(1B): 587-596
    [78] Takagi T, F Kimura, S Kono. Diurnal variation of GPS precipitable water at Lhasa in premonsoon and monsoon periods. J. Meteor. Soc. Japan, 2000,78:175-179
    [79] Thayer G D. An improved equation for the radio refractive index of air. Radio Sci.,1974, 9: 803-807.
    [80] Tregoning P, R Boers, D O'Brien. Accuracy of absolute precipitable water vapor estimates from GPS observations. J. Geophys. Res., 1998,103 (28):701710
    [81] Tsuda T, K Heki, S Miyazaki, et al. GPS meteorology project of Japan-Exploring frontiers of geodesy. Earth, Planets, and Space, 1998,50:1-5
    [82] Wallace J M. Diurnal variations in precipitation and thunderstorm frequency over the conterminous United States. Mon. Wea. Rev., 1975,103:406-419
    [83] Wang J, L Zhang, A Dai. Global estimates of water-vapor-weighted mean temperature of the atmosphere for GPS applications. J. Geophys. Res., 2005,110(D21): 21101 10.1029/2005JD006215
    [84] Ware R H, D W Fulker, S A Stein, et al. Suomi Net: A real-time national GPS network for atmospheric research and education. Bull. Amer. Meteor. Soc, 2000,81:677-694
    [85] Ware R, M Exner, D Feng,et.al. GPS sounding of the atmosphere from low earth orbit: preliminary results. Bull. Amer. Met. Soc, 1996,77(1): 19-40
    [86] Wu P, J I Hamada, S Mori, et al. Diurnal variation of precipitable water over a mountainous area of Sumatra Island. J. Appl. Meteor., 2003,42:1107-1115.
    [87] Yuan L L, A Richard,et al. Sensing climate change using the global positioning system.J. Geophys. Res., 1993,98:14925-14937
    
    [88] Zou X, F Vandenberghe, B Wang,et al. A ray-tracing operator and its adjoint for the use of GPS/MET refraction angle measurements. J. Geophys. Res.,1999,104(D18): 22301 -22318
    [89] Saitoh T, F Kimura. Diurnal variation of convective precipitation in Chubu-Kanto area in the summer, Tenki, 1998, 45, 541-549 (in Japanese)
    [90] Sasaki T, F Kimura. Diurnal variation of water vapor content over the Kanto area during clear summer days observed through GPS precipitable water. Tenki, 2000, 48, 65-74(in Japanese)
    [91] 神田学.首都圈局地对流性暴雨和GPS可能降水量的时空变化.天气,2000,47(1):7-15(日文)
    [92] 新村典子.首都圈GPS可能降水量和降水之间的统计关系.天气,2000,47(9):635-642(日文)
    [93] 毕研盟,毛节泰,李成才,等.利用GPS的倾斜路径观测暴雨过程中水汽空间分布.大气科学,2006,30(6):1169-1176
    [94] 毕研盟,毛节泰,刘晓阳,等.用地基GPS遥感倾斜路径方向大气水汽总量.地球物理学报,2006,49(2):335-342
    [95] 毕研盟,毛节泰,杨光林等.地基GPS遥感观测安徽地区水汽特征.气象科技,2004,32(4):225-228
    [96] 曹云昌,陈永奇,李炳华,等.利用地基GPS测量大气水汽廓线的方法.气象科技,2006,34(3):241-245
    [97] 曹云昌,方宗义,李成才,等.利用GPS和云图资料监测北京地区中小尺度降水的研究.高原气象,2005,24(1):91-96
    [98] 曹云昌,方宗义,夏青.地空基GPS探测应用研究进展.南京气象学院学报,2004,27(4):565-572
    [99] 曹云昌,方宗义,夏青.轨道误差对近实时GPS遥感水汽的影响研究.气象科技,2004,32(4):229-232
    [100] 曹云昌,方宗义,夏青.GPS遥感的大气可降水量与局地降水关系的初步分析.应用气象学报,2005,16(1):54-59
    [101] 陈俊平,王解先,陆彩萍.GPS监测水汽与水汽辐射计数据的对比研究.大地测量与 地球动力学,2005,25(3):125-128
    [102] 陈俊勇.利用GPS反解大气水汽含量.测绘工程,1998,7(2):6-8
    [103] 陈俊勇.地基GPS遥感大气水汽含量的误差分析.测绘学报.1998,27(2):113-118
    [104] 陈洪滨,吕达仁.GPS测量中的大气路径延迟订正.测绘学报,1996,2:127-132
    [105] 陈世范.GPS气象观测应用的研究进展与展望.气象学报,1999,57(2):242-252
    [106] 程晓,徐冠华,周春霞,等.应用GPS资料反演南极大气可降水量的试验分析.极地研究,2002,14:136-144
    [107] 何平,徐宝祥,周秀骥,等.地基GPS反演大气水汽总量的初步试验.应用气象学报,2002,13(2):179-183
    [108] 党亚民,王权,冯金涛.利用GPS资料反演大气水汽含量的研究.测绘科技动态,1999,(3):2-5
    [109] 丁金才,叶其欣,黄炎,等.2002年汛期长江三角洲地区GPS观测大气可降水量的统计分析.大气科学研究与应用,2003,(1):26-35
    [110] 丁金才,黄炎,叶其欣,等.2002年台风Ramasun影响华东沿海期间可降水量的GPS观测和分析.大气科学,2004,28(4):613-624
    [111] 丁继新,成英燕,王权,等.利用GPS技术遥感大气对流层水汽含量的研究.测绘科学,2002,27(2):16-19
    [112] 杜瑞林,乔学军,王琪,等.用地基GPS资料分析大气可降水汽总量.大地测量与地球动力学,2005,25(3):121-124
    [113] 谷晓平,王长耀,王汶.GPS水汽遥感中的大气干延迟局地订正模型研究.热带气象学报,2004,20(6):697-704
    [114] 谷晓平,王长耀,吴登秀.GPS水汽遥感中的大气加权平均温度的变化特征及局地算式研究.气象科学,2005,25(1):79-83
    [115] 谷晓平 王长耀 蒋国华.地基GPS遥感大气水汽含量及在气象上的应用.气象科学,2005,25(5):543-550
    [116] 黄栋,黄瑚,李金岭,等.GPS无线电掩星技术监测地球大气.地球科学进展,1997, 12(3):217-223
    [117] 蒋虎.空基GPS遥感地球大气参数方法研究.测绘学报,2001,30(3):238-242
    [118] 蒋虎,等.无线电掩星反演大气参数误差分析及应用进展,地球物理学报,2001,16(1):82-88
    [119] 卡普兰(Kaplan E D).GPS原理与应用.邱致和,王万义译.北京:电子工业出版社,2002
    [120] 李成才,毛节泰,李建国,等.全球定位系统遥感水汽总量.科学通报,1999,44(3):333-336
    [121] 李成才,毛节泰.GPS地基遥感大气水汽总量分析.应用气象学报,1998,9(4):470-477
    [122] 李成才,毛节泰.地基GPS遥感大气水汽总量中的“静力延迟”和“湿延迟”.大气科学,2004,28(5):795-800
    [123] 李黄.全球定位系统气象参数探测(GPS/MET)技术讲座.中国气象报,2006年3月30日-6月15日
    [124] 李建国,毛节泰,李成才.使用全球定位系统遥感水汽分布原理和中国东部地区加权“平均温度”的回归分析.气象学报,1999,57(3):283-292
    [125] 李国平,黄丁发.GPS遥感区域大气水汽总量研究的回顾与展望.气象科技,2004,32(4):201-205
    [126] 李国平,黄丁发.GPS气象学研究及应用的进展与前景.气象科学,2005,25(6):651-661
    [127] 李国平,黄丁发,刘碧全.地基GPS遥感的成都地区夏季可降水量的日循环合成分析.水科学进展.2006,17(2):160-163
    [128] 李国平,黄丁发,刘碧全.成都地区地基GPS观测网遥感大气可降水量的初步试验,武汉大学学报(信息科学版),2006,31(12):1086-1089
    [129] 李天文.GPS原理及应用.北京:科学出版社,2003
    [130] 李延兴,徐宝祥,胡新康,等.用地基GPS观测站遥测大气含水量和可降雨量的理论基础与试验结果.中国科学(A辑),2000,30(增刊):107-110
    [131] 李延兴,徐宝祥,胡新康,等.应用地基GPS技术遥感大气柱水汽量的试验研究.应用气象学报,2001,12(1):61-69
    [132] 李延兴.应用GPS技术监测可降雨量试验研究.大地形变测量,2000,(1):14-23
    [133] 李征航,徐晓华,罗佳等.利用GPS观测反演三峡地区对流层湿延迟的分布及变化.武汉大学学报(信息科学版),2003,28(4):393-396
    [134] 梁丰,李成才,王迎春,等.应用区域地基全球定位系统观测分析北京地区大气总水汽量.大气科学,2003,27(2):236-244
    [135] 梁宏,刘晶淼,李世奎.青藏高原及周边地区大气水汽资源分布和季节变化特征分析.自然资源学报,2006,21(4):526-534
    [136] 林文鹏,石婧,王长耀.滨江流域GPS降水预报系统的研究与实现.长江科学院院报,2005,22(3):25-28
    [137] 刘基余,李征航,王跃虎,等.全球定位系统原理及其应用.北京:测绘出版社,1993
    [138] 刘基余.GPS卫星导航原理与方法.北京:科学出版社,2003
    [139] 刘说安,杨名.GPS估计可降水量:WVR约束法.大气科学(台),1999,27(2):131-140
    [140] 刘旭春,王艳秋,张正禄.利用GPS技术遥感哈尔滨地区大气可降水量的分析.测绘通报,2006,(4):10-12
    [141] 刘旭春,王艳秋,张正禄,等.地基GPS遥感大气水汽含量中加权平均温度获取方法的比较分析.北京建筑工程学院学报,2006,22(2):38-40
    [142] 刘焱雄.地基GPS技术遥感香港地区大气水汽含量.武汉测绘科技大学学报,1999,28(3):245-248
    [143] 刘焱雄,陈永奇,H.B.Iz.可降水份的误差分析.武汉测绘科技大学学报,2000,25(5):105-107
    [144] 刘焱雄,陈永奇,刘经南.利用地面气象观测资料确定对流层加权平均温度.武汉测绘科技大学学报,2000,25(5):400-404
    [145] 刘焱雄,H.B.IZ.,陈永奇.GPS气象学中垂直干分量延时的精确确定,测绘学报, 2000,29(2):172-180
    [146] 刘志赵,刘经南,李征航.GPS技术在气象学中的应用.测绘通报,2000,(2):7-8
    [147] 刘志权,方宗义,徐建平,等.探测大气参数的GPS/MET方法.气象科技,1996,146(2):1-7
    [148] 毛节泰.GPS的气象应用.气象科技,1993,21(2):45-49
    [149] 刘国纬.水文循环的大气过程.北京:科学出版社,1997,66-98
    [150] 刘世祥,王遂缠,刘碧,等.兰州市空中水汽含量和水汽通量变化研究.干旱气象,2006,24(1):18-22
    [151] 曲建光.由Saastamoinen和Hopfied模型推算水汽含量的比较与分析.测绘工程,1999,(4):22-27
    [152] 曲建光,吴壮.从GPS推算大气水汽的误差分析.测绘工程,2001,10(4):24-26
    [153] 曲建光,刘基余.利用GPS数据推算大气水汽含量动态模型的研究.测绘通报,2004,(2):5-7
    [154] 盛峥,黄思训,张流青,等.利用GPS技术探测大气中的水汽含量.沈阳师范大学学报(自然科学版),2005,23(1):33-37
    [155] 宋淑丽,朱文耀,丁金才等.上海GPS综合应用网对2002年长江三角洲地区入梅过程的监测.天文学进展,2003,21(2):180-184
    [156] 宋淑丽,朱文耀,丁金才,等.上海GPS综合应用网对可降水汽量的实时监测及其改进数值预报初始场的试验,地球物理学报,2004,47(4):631-638
    [157] 宋淑丽,朱文耀,程宗颐等.GPS信号斜路径方向水汽含量的计算方法,天文学报,2004,45(3):338-346
    [158] 宋淑丽,朱文耀.区域GPS网实时计算可降水量的若干问题,上海天文台台刊,2003,24:20
    [159] 宋淑丽,朱文耀,等.地基GPS气象学研究的主要问题及最新进展,地球科学进展,2004,19(2):250-251
    [160] 宋淑丽,朱文耀,丁金才,等.上海GPS网层析水汽三维分布改善数值预报湿度场. 科学通报,2005,50(20):2271-2277
    [161] 王柏春,彭洪淼,顾大权,等.COSMIC及其在气象领域的应用.气象科学,2002,22(2):247-252
    [162] 王斌,李树勇,程强.GPS气象资料同化展望.气象科技,2002,22(2):237-240
    [163] 王小亚,朱文耀,严豪建.地面GPS观测探测大气可降水量的方法和前景.天文学进展,1998,16(2):136-142
    [164] 王小亚,朱文耀,严豪健,等.地面GPS探测大气可降水量的初步结果.大气科学,1999,23(5):605-612
    [165] 王鑫,薛震刚,杜晓勇,等.利用无线电掩星观测数据反演大气水汽剖面.电波科学学报,2003,18(4):462-465.
    [166] 王勇,柳林涛,梁洪有,等.基于GPS技术的高原与平原地区可降水量的研究.大地测量与地球动力学,2006,26(1):88-91
    [167] 王勇,柳林涛,刘根友.基于水汽辐射计与GPS湿延迟的对比研究.大地测量与地球动力学,2005,25(4):110-113
    [168] 汪俊寰,史天元.以全球定位系统估算大气湿延迟量.测量工程(台),2000,42(3):3-16
    [169] 严豪健,郭鹏,张贵霞,等.上海天文台GPS掩星技术研究现状.上海天文台刊,2003,24:39-47
    [170] 杨光林,刘晶淼,毛节泰.西藏地区水汽GPS遥感分析.气象科技,2002,30(5):266-272
    [171] 杨红梅,等.用单站探空资料分析对流层气柱水汽总量.气象,1998,24(9):8-11
    [172] 杨红梅,徐宝样,周秀骥.GPS资料在天气分析中的应用.气象科技,2000(4):32-34
    [173] 杨红梅,何平,徐宝祥.用GPS资料分析华南暴雨的水汽特征.气象.2002,28(5):17-21
    [174] 杨景梅,等.我国可降水量同地面水汽压的经验表达式.大气科学,1996,20(5):620-626
    [175] 杨景梅,等,用地面湿度参数计算我国整层大气可降水量及有效水汽含量方法的研究,大气科学,2002,26(1):9-22
    [176] 杨力,大气对GPS测量影响的理论与研究,博士学位论文,2001
    [177] 杨露华,叶其欣,邬锐等,基于GPS/Pwv资料的上海地区2004年一次夏末暴雨的水汽输送分析,气象科学,2006,26(5):502-508
    [178] 姚建群,丁金才,王坚捍,等.用GPS可降水量资料对一次大~暴雨过程的分析.气象,2005,31(4):48-52
    [179] 袁野,王成章,蒋年冲,等.不同云天条件下水汽含量特征及其变化分析.气象科学.2005,25(4):394-398
    [180] 袁招洪,丁金才,陈永林.中尺度数值预报模式预报水汽与GPS观测的比较研究.大气科学,2004,28(3):433-440
    [181] 袁招洪,丁金才,陈敏.GPS观测资料应用于中尺度数值预报模式的初步研究.气象学报,2004,62(2):200-212
    [182] 岳迎春,吴北平,李征航.地基GPS技术探测大气水汽含量的误差分析.全球定位系统,2003,(5):14-17
    [183] 赵峰,戴连君,聂志锋,等.GPS水汽含量自动处理系统的研究及应用.测绘科学,2006,31(6):63-64
    [184] 赵玲,梁宏,崔彩霞.乌鲁木齐地基GPS数据的解算和应用.干旱区研究,2006,23(4):654-657
    [185] 章红平,刘经南,朱文耀,等.利用地基GPS技术反演武汉地区大气可降水分.天文学进展.2005,23(2):169-179
    [186] 张家诚,林之光.中国气候.上海:上海科学技术出版社,1985,196-222
    [187] 张学文.新疆的空中水.新疆气象,1988,(7):1-7
    [188] 张学文.可降水量与地面水汽压力的关系.气象,2004,30(2):9-11
    [189] 张瑜,魏山城.Hopfield大气模型的精度分析.河南师范大学学报(自然科学版), 2005,33(4):46-49
    [190] 郑作亚.Bernese GPS 4.2版本数据处理软件的介绍与探讨.中国科学院上海天文台年刊,2003(1):143-149
    [191] 周国君,潘雄.GPS水汽遥感中加权平均温度获取方法研究.测绘与空间地理信息.2006,29(4):14-16