纳米复合Ti(C,N)基金属陶瓷及涂层制备技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文在制备出高性能的纳米复合Ti(C,N)基金属陶瓷基体表面上利用多弧离子镀技术分别沉积了(Ti,Al)N涂层和纳米多层膜。
     本文首先综述了Ti(C,N)基金属陶瓷的发展概况和研究进展,总结了Ti(C,N)基金属陶瓷的制备技术和成分对Ti(C,N)基金属陶瓷组织和性能的影响;介绍了多弧离子镀技术及其特点;对(Ti,Al)N涂层及复合涂层的研究状况进行了总结和评述。在此基础上指出了本文研究的目的和意义。
     采用扫描电镜(SEM)、X射线能谱(EDS)等实验手段系统地研究了Ti(C,N)基金属陶瓷成分、组织结构和性能之间的关系,得出如下实验结论:当C含量为0.7wt%时,可以获得较佳的微观组织和较高的力学性能;当Mo添加量为16wt%时,Ti(C,N)基金属陶瓷的抗弯强度和硬度分别可达1930Mpa和89.5HRA,Mo的添加量对硬度的影响不明显;Ni含量对粘结相中合金元素的溶解度有较大的影响,随金属陶瓷中Ni添加量的增加,粘结相中Ti、W、Mo等合金元素的含量均降低,且W、Mo含量变化不明显。
     采用多弧离子镀技术在Ti(C,N)基金属陶瓷基体上制备了(Ti, Al)N涂层。研究了沉积工艺参数如靶材电流、基底偏压、氮气分压等对(Ti,Al)N涂层成份、相结构方面的影响规律,以及对(Ti,Al)N涂层的硬度、结合力和摩擦磨损性能的影响。结果表明:(Ti,Al)N涂层在常温磨损主要为磨粒磨损,随着基体偏压或者氮气分压的增大,(Ti,Al)N涂层的摩擦系数均减小。基体温度400℃,靶材电流IAl/ITi=70/80,基体偏压-100V,氮气分压1.0Pa,(Ti,Al)N涂层具有最佳的综合性能。
     最后在沉积(Ti,Al)N涂层工艺的基础上分别制备了两种不同调制周期的TiN/AlN纳米多层膜和TiN/(Ti,Al)N纳米多层膜。研究了调制周期对纳米多层膜的组织和性能的影响。结果表明:载物台转速为12rpm时,AlN以亚稳态立方结构的形式存在,改善了TiN/AlN纳米多层膜的力学性能,膜/基结合力达到41.0N,显微硬度为3429Hv;调制周期越小,TiN/(Ti,Al)N纳米多层膜的(111)晶面择优取向愈加强烈,并且TiN/(Ti,Al)N多层膜硬度值比单层(Ti,Al)N的硬度值高。
(Ti,Al)N coating and nano-multilayers were deposited by multi-arc ion plating on the nano-composite Ti(C,N)-based cermets with high mechanical properties.
     In the first part of the dissertation, the development and present research situation of Ti(C,N)-based cermets have been critically overviewed, which include the influence of manufacturing process and composition on the microstructures and properties of Ti(C,N)-based cermets. The multi-arc plating process and its characteristics have been introduced. The development of (Ti,Al)N coating and multilayers has been summarized. Based on above work, the purpose and significance of the dissertation have been pointed out.
     The relationship among composition, microstructure and properties of Ti(C,N)-based cermets has been systematically investigated by scanning electron microscopy (SEM), energy dispersive X-ray analysis(EDS) and etc. The conclusions were obtained as follows: When the amount of C was 0.7wt%, the cermet had better microstructures and mechanical properties. The highest transverse rupture strength and hardness were found in the cermet with 16wt% Mo addition, which reached 1930MPa and 89.5 HRA, respectively. But the variation of hardness was not apparent. The influence of the addition amount of Ni on the solubility of metal elements in the binder phase has been studied, and there was a decrease of Ti, W and Mo, the variation of W and Mo was not obvious. (Ti,Al)N coating was deposited on the Ti(C,N)-based cermets by multi-arc ion plating. The influence of the deposition parameters such as target power, bias voltage and gas pressure on composition, phase structure, hardness, cohesion and friction wear of (Ti,Al)N coating. The results revealed that the abrasion of (Ti,Al)N coating was grain-abrasion at room temperature. The friction coefficient reduced with the increase of bias voltage or gas pressure. When the substrates temperature was 400℃, the ratio of target power of IAl/ITi=70/80, the bias voltage was -100V and the gas pressure was 1.0Pa, the properties of (Ti,Al)N coating was excellent.
     Finally, the TiN/AlN and TiN/(Ti,Al)N nano-multilayers were deposited with different modulation periods by multi-arc ion plating, and the effects of modulation periods on the microstructures and mechanical properties of the nano-multilayers were also investigated. Some conclusions were drawn as follows: When the rotational speed of object stage was 12rpm, AlN was metastable cubic structure, which improved the mechanical properties of TiN/AlN nano- multilayers. The cohesion and hardness reached 41.0N and 3429HV, respectively. The less the modulation period varied, the stronger of the TiN/(Ti,Al)N phase grew along (111) crystal face by preferential orientation became. The hardness of TiN/(Ti,Al)N nano-multilayers was higher than that of (Ti,Al)N coating at the same processing condition.
引文
[1]王珺,孙建仁.干式加工刀具设计及刀具材料的选择[J].机械研究与应用, 2004, 17(2): 30~31.
    [2]肖诗纲.刀具材料及其合理选择[M].北京:机械工业出版社(第二版), 1990.
    [3]晏鲜梅. Ti(C,N)基金属陶瓷功能梯度材料制备的研究[D].武汉:华中科技大学, 2005.
    [4]林庆文.离子镀氮化钛超硬涂层的工艺研究及应用[J].机械开发, 1998, (1): 14~18.
    [5]王宝友,崔丽华.涂层刀具的涂层材料、涂层方法及发展方向[J].机械, 2002, 29(4): 63~65.
    [6] Ettmayer P, Lengauer W. The story of cermets [J]. Powder Metallurgy International, 1989, 21(2): 37~38.
    [7] Tinklepaugh J R, Crandall W B.金属陶瓷(施今译)[M].上海:上海科技出版社, 1964.
    [8] Ettmayer P. Hardmetals and cermets [J]. Annual review of material science, 1989, 19: 145~164.
    [9] Parikh N M, Humenik M. Cermets:Ⅱ, Wettability and microstructure studies in liquid phase sintering [J]. Journal of the American Ceramic Society, 1957, 40 (9): 315~320.
    [10] Kieffer R, Ettmayer P, Freudhofmeier M. New sintered nitride and carbonitride hard metals [J]. Metall, 1971, 25: 1335~1341.
    [11]铃木寿,林宏尔,松原秀彰. TiC基サメットの进步と现状[J].日本金属学会会报, 1983, 22 (4): 312~319.
    [12]松原秀彰,富士原由雄.硬质.超硬质材料にわける先端材料の应用[J].日本金属学会会报, 1990, 29 (12): 1008~1018.
    [13] Ettmayer P, Kolaska H, Lengauer W, et al. Ti(C,N) cermets-metallurgy and properties [J]. International Journal of Refractory Metals and Hard Materials, 1995, 13: 343~351.
    [14]贺从训,夏志华,汪有明,等. Ti(C,N)基金属陶瓷的研究[J].稀有金属, 1999, 23 (1): 4~12.
    [15]李汶霞,鲁燕萍,果世驹.等离子烧结和等离子活化烧结[J].真空电子技术, 1998 (1): 17~23.
    [16]朱心昆,赵昆渝,程抱昌,等.高能球磨制备纳米TiC粉末[J].中国有色金属学报, 2001, 11(2): 269~272.
    [17]黄金昌.碳氮化钛基金属陶瓷[J].稀有金属与硬质合金, 1994, 11(9): 43~48.
    [18]刘寿荣,周金亭,马岚. TaC、Cr3C2对WC-Co硬质合金组织和性能的影响[J].硬质合金, 1997, 14 (1): 22~27.
    [19] Bolognini S, Feusier G, Mari D, et al. High temperature mechanical behaviour of Ti(C,N)-Mo-Co cermets [J]. International Journal of Refractory Metals and Hard Materials, 1998, 16: 257~268.
    [20] Lindahl P, Gustafson P, Rolander U, et al. Microstructure of model cermets with high Mo or W content [J]. International Journal of Refractory Metals and Hard Materials, 1999, 17: 411~421.
    [21] Kim S, Min K-h, Kang S. Rim Structure in Ti(C0.7N0.3)–WC–Ni Cermets [J]. Journal of the American Ceramic Society, 2003, 86 (10): 1761~1766.
    [22] Lindahl P, Rolander U, Andren H O. Atom-probe analysis of the binder phase in TiC-TiN-Mo2C-(Ni,Co) cermets [J]. International Journal of Refractory Metals and Hard Materials, 1993-1994, 12 (3): 115~119.
    [23] Laoui T, Zou H, Vander Biest O. Analytical electron microscopy of the core/rim structure in titanium carbonitride cermets [J]. International Journal of Refractory Metals and Hard Materials, 1992, 11: 207~212.
    [24]熊维皓,胡镇华,崔昆. Ti(C,N)基金属陶瓷的相界面过渡层[J].金属学报, 1996, 32(10): 1075~1080.
    [25]黄培云.粉末冶金原理[M].北京:冶金工业出版社, 1997.
    [26] Ungar T, Borbely A, Goren-Muginstein G R, et al. Particle-size, size distribution and dislocations in nano-crystalline tungsten-carbide [J]. Nanostructured Materials, 1999, 11(1): 103~113.
    [27] Liu L, Li B, Ding X Z, et al. Formation of nano-crystalline metal-carbides by mechanical alloying [J]. Chinese Science Bulletin, 1994, 39 (14): 1166~1170.
    [28] Kaidash O N. Activated sintering and interaction in the titanium nitride-nickel system [J]. Ceramics International, 1998, 24 (2): 157~162.
    [29] Richerson D W. Modern Ceramic Engineering [M]. New York: Marcel Dekker Press, 1982.
    [30] Ehira M, Egami A. Mechanical properties and microstructures of submicron cermets [J]. International Journal of Refractory Metals and Hard Materials, 1995, 13(5): 313~319.
    [31]果世驹.粉末烧结理论[M].北京:冶金工业出版社, 1998.
    [32] Waldron M B, Daniell B L. Sintering [M]. London: Heyden, 1978.
    [33]印红羽,盛挺,汪海宽.硬质合金低压热等静压烧结工艺[J].粉末冶金技术, 1997, 15 (4): 299~302.
    [34] Westerlund J. Four decades of HIP progress [J]. Metal Powder Report, 2000, 55 (2): 14~21.
    [35] Han J C, Zhang X H, Wood J V. In-situ combustion synthesis and densification of TiC-xNi cermets [J]. Materials Science and Engineering A, 2000, 280 (2): 328~333.
    [36] Rodiger K, Dreyer K, Gerdes T, et al. Microwave sintering of hardmetals [J]. International Journal of Refractory Metals and Hard Materials, 1998, 16 (4-6): 409~416.
    [37] Moriguchi H, Tsuduki K, Ikegaya A. Ultrafine grained cemented carbides sintered by pulse current process [J]. Powder Metallurgy, 2000, 43 (1): 17~19
    [38] Alvarez M, Sánchez J M. Spark plasma sintering of Ti(C, N) cermets with intermetallic binder phases [J]. International Journal of Refractory Metals and Hard Materials, 2007, 25 (1): 107~118.
    [39] Yamazaki K. PAS (plasma activated sintering): transient sintering process control for rapid consolidation of powders [J]. Journal of Materials Processing Technology, 1996, 56 (1-4): 955~965.
    [40] Laoui T, Froyen L, Kruth J -P. Effect of mechanical alloying on selective laser sintering of WC-9Co powder [J]. Powder Metallurgy, 1999, 42 (3): 203~205.
    [41]张国军. Ti(C,N)基金属陶瓷[J].机械工程材料, 1990, (3): 4~9.
    [42] Zackrisson J, Andrén H -O. Effect of carbon content on the microstructure and mechanical properties of (Ti, W, Ta, Mo) (C, N)-(Co, Ni) cermets [J]. International Journal of Refractory Metals and Hard Materials, 1999, 17: 265~273.
    [43]罗巴克B,吉M G.第十二届国际普兰西难溶金属和硬金属会议论文集[C].株洲:中国有色金属工业总公司硬质合金情报网出版, 1991.
    [44] Russias J, Cardinal S, Aguni Y, et al. Influence of titanium nitride addition on the microstructure and mechanical properties of TiC-based cermets [J]. International Journal of Refractory Metals and Hard Materials, 2005, 23 (4-6): 358~362.
    [45]丰平,郑勇,刘文俊,等. N含量对超细Ti(C,N)基金属陶瓷显微组织和力学性能的影响[J].稀有金属材料与工程, 2005, 34: 479~481.
    [46]李沐山.八十年代世界硬质合金技术进展[M].株洲:《硬质合金》编辑部出版, 1991.
    [47]刘宁,刘灿楼,赵兴中,等. Mo、Ni含量与Ti(C,N)基金属陶瓷组织、性能之间的关系[J].硬质合金, 1994, 11(2): 74~78.
    [48]曾德麟.粉末冶金材料[M].北京:冶金工业出版社, 1989.
    [49]铃木寿,林宏尔,寺田修. TiC-Mo2C-Ni合金における周边组织形成机构[J].日本金属学会志, 1971, 35 (9): 936~941.
    [50]赵兴中,郑勇,胡镇华,等.含氮金属陶瓷的发展现状与展望[J].材料导报, 1994, 8 (1): 17~21.
    [51] Kang S. Some issues in Ti (CN)-WC-TaC cermets [J]. Materials Science and Engineering A, 1996, 209 (1-2): 306~312.
    [52] Qi F, Kang S. A study on microstructural changes in Ti(CN)-NbC-Ni cermets [J]. Materials Science and Engineering A, 1998, 251(1-2): 276~285.
    [53] Zheng Y, Liu W J, Yuan Q, et al. Effect of grain growth inhibitor on the microstructure and mechanical properties of Ti(C,N)-based cermet [J]. Key Engineering Materials, 2005, 280-283: 1413~1416.
    [54]郑勇.细晶粒Ti(C,N)基金属陶瓷复合材料的研究[D].武汉:华中科技大学, 2002.
    [55] Kulkarni K, Srivastava A, Shivpuri R, et al. Thermal cracking behavior of multi-layer LAFAD coatings on nitrided die steels in liquid aluminum processing [J]. Surface and Coatings Technology, 2002, 149 (2-3): 171~178.
    [56] Mattox D M. Handbook of Physical Vapor Deposion (PVD) [M]. New York: Noyes Publications, 1998: 396~408.
    [57]王福贞.离子镀技术的发展[J].国外金属热处理, 1997, 18(2): 27~31.
    [58] Randhawa H, Johnson P C. Technical note: A review of cathodic arc plasma deposition processes and their applications [J]. Surface and Coatings Technology, 1987, 31(4): 303~318.
    [59]马胜利,徐可为.等离子体化学气相沉积硬质膜成膜理论[J].兵器材料科学与工程, 2000, 23(2): 39~43.
    [60] Ducros C, Benevent V, Sanchette F. Deposition, characterization and machining performance of multilayer PVD coatings on cemented carbide cutting tools [J]. Surface and Coatings Technology, 2003, 163-164: 681~688.
    [61]王茂祥,吴宗汉,孙承休.多弧离子镀技术中的真空放电过程[J].物理, 1997, 26(7): 431~434.
    [62]姜雪峰,刘清才,王海波.多弧离子镀技术及其应用[J].重庆大学学报, 2006, 29(10): 55~57.
    [63]吴玉广,陈福砦.离子镀膜中的弧电流对膜层质量的影响[J].真空科学与技术, 1999, 19 (5): 392~394.
    [64]徐新乐.多弧离子镀用于制备高质量的Ti-N膜[J].材料保护, 2000, 33 (8): 28~30.
    [65] Munz W D. Titanium aluminum nitride films: a new alternative to TiN coatings [J]. Journal of Vacuum Science and Technology, 1986, 4 (6): 2717~2725.
    [66]吴玉广,徐新乐,李杰.多弧离子镀在刀具镀膜上的应用[J].新技术新工艺, 1997, (1):
    [67] Paldey S, Deevi S C. Single layer and multilayer wear resistant coatings of (Ti, Al)N: a review [J]. Material Science and Engineering A, 2003, 342: 58~79.
    [68] Ichimura H, Kawana A. High-temperature oxidation of ion-plated TiN and TiAlN films [J]. Journal of Materials Research, 1993, 8 (5): 1093~1100.
    [69] Lugscheider E, Knotek O, L?ffler F, et al. Deposition of arc TiAlN coating with pulsed bias [J]. Surface and Coatings Technology, 1995, 76-77: 700~705.
    [70] H?kansson G, Sundgren J -E, McIntyre D, et al. Microstructure and physical properties of polycrystalline metastable Ti0.5Al0.5N alloys grown by d. c. magnetron sputter deposition [J].Thin Solid Films, 1987, 153 (1-3): 55~65.
    [71] Wahlstr?m U, Hultman L, Sundgren J -E, et al. Crystal growth and microstructure of polycrystalline Ti1?xAlxN alloy films deposited by ultra-high-vacuum dual-target magnetron sputtering [J]. Thin Solid Films, 1993, 235 (1-2): 62~70.
    [72] Jarms C, Stock H -R, Mayr P. Mechanical properties, structure and oxidation behavior of Ti1-xAlxN-hard coatings deposited by pulsed d. c. plasma-assisted chemical vapor deposition [J]. Surface and Coatings Technology, 1998, 108-109 (1-3): 206~210.
    [73]彭红瑞,石玉龙,谢广文,等.用PCVD法制备抗高温氧化涂层的研究[J].青岛化工学院学报, 1999, 20 (3): 245~247.
    [74]赵军,田野,于文馨,等.多弧离子镀沉积氮化钛铝超硬膜的研究[J].真空, 2002, (1): 8~11.
    [75]王永康,熊仁章,雷廷权,等. Al含量对Ti1-XAlXN涂层组织结构的影响[J].材料工程, 2002, (8): 24~25.
    [76]陈建国,尹瑞洁,乔学亮,等. TiAlN薄膜的性能及应用[J].热加工工艺, 2001, (2): 50~51.
    [77]李戈扬,许俊华,姚应红,等.纳米多层膜调制结构的成分分析法表征[J].微细加工技术, 2001, (1): 57~61.
    [78]康昌鹤,杨树人.半导体超晶格材料及其应用[M].北京:国防工业出版社, 1995.
    [79] Barnett S A, Shinn M. Plastic and elastic properties of compositionally modulated thin films [J]. Annual Review of Materials Science, 1994, 24 (5): 481~511.
    [80] Miao Q, Cui C E, Pan J D. CrN/TiN multilayer coating on magnesium alloy AZ91 by arc-glow plasma depositing process [J]. Surface and Coatings Technology, 2007, 201(9-11): 5077~5080.
    [81] Suresha S J, Bhide R, Jayaram V, et al. Processing, microstructure and hardness of TiN/(Ti,Al)N multilayer coatings [J]. Materials Science and Engineering A, 2006, 429(1-2): 252~260.
    [82] Su Y L, Kao W H. Optimum multilayer TiN-TiCN coatings for wear resistance and actual application [J]. Wear, 1998, 223 (1-2): 119~130.
    [83] Smolik J, Zdunek K. Effect of interlayer composition on the tribological properties of TiC/Ti(Cx,N1-x)/TiN anti-abrasive multi-layer coatings [J]. Vacuum, 1999, 55 (2): 147~151.
    [84] Zhang S, Fu Y Q, Du H J, et al. Magnetron sputtering of nano-composite (Ti, Cr)CN/DLC coatings [J]. Surface and Coatings Technology, 2003, 162 (1): 42~48.
    [85] Tavares C J, Rebouta L, Alves E J. Structure determination of (Ti,Al)N/Mo multi-layers [J]. Thin Solid Films, 2000, 373 (1-2): 287~292.
    [86] Liu Z -J, Vyas A, Lu Y H, et al. Structural properties of sputter-deposited CNx/TiN multilayer films [J]. Thin Solid Films, 2005, 479 (1-2): 31~37.
    [87] Mendibide C, Steyer P, Fontaine J, et al. Improvement of the tribological behaviour of PVD nano-stratified TiN/CrN coatings?An explanation [J]. Surface and Coatings Technology, 2006, 201 (7): 4119~4124.
    [88] Karimi A, Allidi G, Sanjines R. Relative orientation of the constituents on the degree of crystallographic coherence in AlN/TiN super-lattices [J]. Surface and Coatings Technology, 2006, 201(7): 4062~4067.
    [89] Wrzesińska H, Grabiec P, Rymuza Z, et al. Influence of substrate on mechanical properties of TiN/NbN super-lattices [J]. Microelectronic Engineering, 2002, 61-62: 1009~1014.
    [90]熊仁章,夏立芳,白羽,等. TiAlN/Ti多元复合涂层的界面结构[J].材料科学与工艺, 2000, 8 (2): 55~57.
    [91]宫秀敏,孙伟,叶卫平. TiN多弧离子镀过渡层的组成及其对涂层结合力的影响[J].新技术新工艺, 2000, 9: 35~37.
    [92] Wang D Y, Chang C L, Wong K W, et al. Improvement of the interfacial integrity of (Ti,Al)N hard coatings deposited on high speed steel cutting tools [J]. Surface and Coatings Technology, 1999, 120-121: 388~394.
    [93] Major L, Morgiel J, Major B, et al. Crystallographic aspects related to advanced tribological multilayers of Cr/CrN and Ti/TiN types produced by pulsed laser deposition (PLD) [J]. Surface and Coatings Technology, 2006, 200 (22-23): 6190~6195.
    [94] Shtansky D V, Lobova T A, Fominski V Yu, et al. Structure and tribological properties of WSex, WSex/TiN, WSex/TiCN and WSex/TiSiN coatings [J]. Surface and Coatings Technology, 2004, 183 (2-3): 328~336.
    [95] Carvalho N J M, Zoestbergen E, Kooi B J, et al. Stress analysis and microstructure of PVDmonolayer TiN and multilayer TiN/(Ti,Al)N coatings [J]. Thin Solid Films, 2003, 429 (1-2): 179~189.
    [96] Tavares C J, Rebouta L, Ribeiro E, et al. HRTEM interfacial analysis on superhard TiAlN/Mo multilayers [J]. Surface and Coatings Technology, 2003, 174-175: 273~280.
    [97] Nix W D. Elastic and plastic properties of thin films on substrates: nanoindentation techniques [J]. Materials Science and Engineering A, 1997, 234-236: 37~44.
    [98]许俊华,顾明元,李戈扬.纳米多层膜力学性能研究进展[J].宇航材料工艺, 1999, 29(3): 7~11.
    [99] Wadsworth I, Smith I J, Donohue L A, et al. Thermal stability and oxidation resistance of TiAlN/CrN multilayer coatings [J]. Surface and Coatings Technology, 1997, 94-95: 315~321.
    [100] Lembke M I, Lewis D B, Munz W -D. Localised oxidation defects in TiAlN/CrN superlattice structured hard coatings grown by cathodic arc unbalanced magnetron deposition on various substrate materials [J]. Surface and Coatings Technology, 2000, 125 (1-3): 263~268.
    [101] Zhou Z, Rainforth W M, Lewis D B. Oxidation behaviour of nanoscale TiAlN/VN multilayer coatings [J]. Surface and Coatings Technology, 2004, 177-178: 198~203.
    [102] Barshilia H C, Prakash M S, Jain A, et al. Structure, hardness and thermal stability of TiAlN and nanolayered TiAlN/CrN multilayer films [J]. Vacuum, 2005, 77 (2): 169~179.
    [103] Yao S H, Su Y L, Kao W H, et al. Tribology and oxidation behavior of TiN/AlN nano-multilayer films [J]. Tribology International, 2006, 39(4): 332~341.
    [104] Mei F H, Shao N, Dai J W, et al. Coherent growth and superhardness effect of AlN/TiN nanomultilayers [J]. Materials Letters, 2004, 58(27-28): 3477~3480.
    [105] Chen L, Lengauer W, Ettmayer P, et al. Fundamentals of liquid phase sintering for modern cermets and functionally graded cemented carbonitrides (FGCC)[J]. International Journal of Refractory Metals and Hard Materials, 2000, 18 (6): 307~322.
    [106] Kenneth C, Russell S -Y, Figueredo A. Theoretical and experimental studies of ceramic: Metal wetting [J]. MRS Bulletin, 1991, 4: 46~52.
    [107] Andrén H -O. Microstructures development during sintering and heat-treatment of cemented carbides and cermets [J]. Materials Chemistry and Physics, 2001, 67(1-3): 209~213.
    [108] Almond E A. More realistic methods for mechanical testing of hard materials [J]. Powder Metallurgy, 1987, 30(1): 23~28.
    [109] Park J K, Park S T. Densification of TiN-Ni cermets by improving wettability of liquid nickel on TiN grain surface with addition of Mo2C [J]. International Journal of Refractory Metals and Hard Materials, 1999, 17 (4): 295~298.
    [110] Ahn S Y, Kang S. Formation of core/rim structures in Ti(C,N)-WC-Ni cermets via a dissolution and precipitation process [J]. Journal of the American Ceramic Society, 2000, 83 (6): 1489~1494.
    [111] Yoshimura H, Sugizawa T, Nishigaki K. Reaction occurring during sintering and the characteristics of TiC-20TiN-15WC-10TaC-9Mo-5.5Ni-11Co cermets [J]. International Journal of Refractory Metals and Hard Materials, 1983, 2 (4): 170~174.
    [112]王永康.多弧离子镀Ti1-xAlxN涂层的组织结构及性能[D].哈尔滨:哈尔滨工业大学, 2001.
    [113]金犁.多弧离子镀制备Ti1-xAlxN薄膜的工艺及其性能研究[D].武汉:武汉科技大学, 2006.
    [114]华敏奇,袁振海.划痕试验法对特殊薄膜系结合力的检测与评价[J].分析测试技术与仪器, 2002, 8 (4): 218~225.
    [115]张伟,高晓蓉.金属维氏硬度试验方法探讨[J].机械传动, 2007, 31(5): 107~109.
    [116] Sangwal K. On the reverse indentation size effect and micro-hardness measurement of solids [J]. Materials Chemistry and Physics, 2000, 63 (2): 145~152.
    [117]蔡殉,张兮,周平南.显微硬度的压痕尺寸效应[J].理化检验一物理分册, 1993, 29 (4): 19~22.
    [118]王玉魁,韩会民.等离子增强磁控溅射离子镀TiN涂层的研究[J].真空, 1996, (1): 24~28.
    [119] Carvalho S, Ribeiro E, Rebouta L, et al. PVD grown (Ti,Si,Al)N nano-composite coatings and (Ti,Al)N/(Ti,Si)N multilayers: structural and mechanical properties [J]. Surface and Coatings Technology, 2003, 172 (2-3): 109~116.
    [120]肖兴成,江伟辉,宋力昕,等.超硬膜的研究进展[J].无机材料学报, 1999, 14(5): 705~710.
    [121] Helmersson U, Todorova S, Barnett S A, et al. Growth of single-crystal TiN/VN strained-lay super-lattices with extremely high mechanical hardness [J]. Journal of Applied Physics, 1987, 62 (2): 481~484.
    [122] Setoyama M, Nakayama A, Tanaka M, et al. Formation of cubic-AlN in TiN/AlN superlattice [J]. Surface and Coatings Technology, 1996, 86-87(1-3): 225~230.
    [123]李戈杨,施晓蓉,吴亮,等. TiN/AlN纳米多层膜的研究[J].材料工程, 1999, (11):6~9.
    [124] Grinfeld M A, Hazzledine P M, Shoykhet B, et al. Coherency stresses in lamellar Ti-Al [J]. Metallurgical and Materials Transactions A, 1998, 29(13): 937~942.
    [125] Koehler J S. Attempt to design a strong solid [J]. Physical Review B, 1970, 2(2): 547~551.
    [126]彭志坚,苗赫濯,刘亮,等.低温PVD法制备多组分超硬薄膜相组成研究[J].材料科学与工程学报, 2003, 21(5): 759~762.