钛渣复合渣修补砂浆研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在当今严酷生态环境、天候与超负荷的多种不同使用环境下,诸如高速公路、海工、水工、酸雨、碳化等环境负荷与日俱增的环境下,土木工程、建筑工程中的混凝土结构,在寿命周期内,其耐久性及安全性严重不足。维护与维修费用高速倍增,与此同时,各类废渣排量大增,需要及时处理。研究高效利用废渣制备新型修补材料,可有效地解决上述问题。
     研究以利用效率低的钛渣、锂渣、石灰石粉为主要原材料,旨在提高它们的利用效率,增加其附加价值,改善环境,在满足不同使用环境条件下的混凝土结构的维护与维修,保证结构维持在使用年限的耐久性及安全性的同时,进而获得良好的经济与环境效益。本研究是在已有研究成果(如钛矿渣与超磨细石灰石粉复合掺合料可制备水泥用量少的超高强混凝土[1];以矿渣、硅灰和钛矿渣等多种材料按一定比例混磨而成的一种复合矿物超细粉,在减少水泥用量的同时,提高了混凝土的抗硫酸盐侵蚀和抗酸雨能力,是提高混凝土在恶劣环境下耐久性的有效措施[2])的基础上,采用超塑化剂和多种矿物粉体掺合料的“复掺”途径,以磨细钛渣为主要矿物掺合料,复合掺入矿渣、锂渣、粉煤灰、石灰石粉等,并针对材料的不同特点,进行超细磨及外加剂改性。采用超细粉及其复合工艺,研究了不同矿物掺合料的复合效应及复合掺合料制备工艺、外加剂等对修补砂浆工作性能、力学性能、粘结强度、耐磨性及干缩的影响。
     本研究在实验室条件下筛选了五种修补砂浆,结果表明:钛矿渣可以用作普通硅酸盐水泥基修补砂浆掺合料的有效组份。用钛渣掺合料能等量取代20%~30%的水泥,可备制出性能良好的高强度修补砂浆。钛渣与其它矿物掺合料如矿渣、锂渣、粉煤灰、石灰石粉复掺,等量取代20%~50%的水泥,也能配制出性能优良的高强度的修补砂浆。钛渣的掺入可以提高修补砂浆的抗折强度,降低修补砂浆的脆性。所制备的修补砂浆可用于混凝土的路面、建筑修补。
     以粘结抗折强度作为新老材料粘结性能的评定指标。配制的三种修补材料分别修补被折断的钛渣复合渣砂浆,粘结抗折强度测试结果表明新老砂浆具有良好的粘结性能。28d粘结抗折强度最低达到5.7 MPa,最高达到6.9 MPa。
     钛渣复合渣修补砂浆具有较好的耐久性。钛渣能减小砂浆的干缩,提高砂浆的耐磨性能。复掺锂渣能进一步提高砂浆的耐磨性能,降低干缩,且其强度较高,可用于对强度、耐磨有较高要求的道路路面的修补。
In today's harsh ecological environment, weather and use overload in various of environments such as highways, marine, hydraulic, acid rain and carbonation, the burden on the environment is increasing day and day, In the life cycle, civil engineering and construction of concrete structures is serious shortage on the durability and safety. The costs of maintenance and repair increase high-speed, at the same time, it is timely to treatment the various types of waste residue emissions. Study on the efficient use of new repair preparated by titanium can effectively solute these problems.
     Research to take advantage of low efficiency titanium Slag, lithium slag, limestone powder as the main raw materials, can improve their efficiency and increase their added value and improve the environment. At the same time, it can meet the concrete structure maintenance and repair under the conditions of the different environments, ensure the structure of the durability and safety in the life cycle and produce a good economic and environmental benefits.
     This study is on the basis of research results such as the super high strength is achieved successfully where cement can be replaced with super-fine limestone powder and titanium slag powder[1], a complex mineral superfine powder is made by grinding the mixs of slag, silica fume and titanium slag in certain proportion, the concrete's resistance to sulfate attack and acid rain is enhanced greatly, powder is an effective way to reduce environment pollution and improve durability of concrete under severe conditions[2].This study used a superplasticizer and ererted“both added”technic of various mineral powders admixtures, used grinded titanium slag as the major mineral admixture, add with slag, lithium slag, fly ash, limestone powder, modified and ultra-fine grinding admixture according to the different characteristics of materials. And this study used ultra-fine powder and ererted“both added”technic to study the impact on the repair mortar's work performance, mechanical properties, bond strength, wear resistance performance and shrinkage.
     Five kinds of repair mortars with diffetent properties had been prepared on the condition of lab, The results showed that titanium slag can be used to the effective components of the ordinary portland cement-based repair mortar. Titanium Slag admixture replace the basis of 20% to 30% of the cement can be produced repair mortar with good performance and high-strength. Even titanium Slag and other mineral admixture such as slag, lithium slag, fly ash, limestone powder-doped equivalent to replace 20 percent to 50 percent of the cement, it also can be prepared the excellent performance of high-strength mortar repair.Incorporation with titanium Slag can increase the repair mortar bending strength, reduce repair mortar brittle, and the mortar can be used to repair the concrete pavement, building repair, and so on.
     Using bend strength as appraisal index to evaluate the bond properties between the old and new material. Preparation of the three repair materials were being repaired broken Titanium Slag composite mortar residue, bonded bending strength test results showed that the new and old mortar has a good adhesive properties. 28d bond bending strength to achieve the minimum 5.7 MPa, up to 6.9 MPa.
     Added with titanium slag and other mineral powders admixtures, The repairs mortars has good durability. Titanium slag can reduce the shrinkage and improve the wear-resisting performance of the mortar. Both added with lithium, thewear-resistance performance of the mortar can be further enhanced,and the shrinkage is reduced. At the same time, the repair mortars has high strength, So it can be used to repair the road with high requirements in strength and wear-resistance.
引文
[1]陈剑雄,李鸿芳,陈寒斌,李文婷,温和.超细石灰石粉和钛矿渣粉超高强混凝土研究.建筑材料学报[J]. 2005(06):672~677.
    [2]陈寒斌,陈剑雄,肖斐.掺复合矿物超细粉混凝土的耐久性研究[J].建筑材料学报. 2006(3):353~356.
    [3]蒲心诚.论混凝土工程的超耐久性[J].混凝土. 2001.1.
    [4]陈剑雄.重庆轻轨较新线高耐久性混凝土结构耐久性技术要点(一):基本要点与设计部分[R]. 2006,9.
    [5]杨长辉,陈剑雄,李效椿.现代混凝土工程与技术[M].重庆大学出版社.近期待出版.
    [6] A.M.Vaysburd,P.H.Emmons.How to make todays durable for tomorrow-corrosion protection in concrete repair[J]. Construction and Materials 14(2000):189~197.
    [7]陈剑雄,吴建成,陈寒斌,杨长辉,吴建华,万朝均等.重庆地区影响建筑物结构耐久性环境因素的调查[R]. 2000.6.
    [8]陈肇元.建筑物的耐久性、使用寿命与评估方法.建筑物的耐久性、使用年限与安全评估课题组综述报告[R]. 2000.12.
    [9]吴中伟,廉慧珍.高性能混凝土[M].北京:1999.9
    [10]王过繁,李高峰,彭建.高性能混凝土的应用研究与展望.甘肃科技[J].2206.1第22卷第一期.
    [11] Roland Bayer,Hermann Lutz.Ullman[M].工业化学百科全书第6版.
    [12]李富山.聚合物水泥修补砂浆[J].建筑材料. 1999,No.1pp18~19.
    [13] M.Maslelehuddin,S.H.Alidi,M.Mehthel,M.Shameeem,M.Ibranhim.Performance evaluation of repair systems under varying exposue conditions.Com.Concr.Compos.27(2005):885~897.
    [14] Emmons PH,Vaysbrud AM.Factors affecting the durability of concrete repair:the contractor’s viewpoint.Construction and Building Materials 1994,8(1)5~16.
    [15] Dr M H Decter BSC(Honours)Phd Cchem MRESC,C Keely MICT.Durable concrete repair-importance of compatibility and low shrinkage.Construcion and Building and Materials[J].1997,No5-6:267~273.
    [16]张雄,张永娟.建筑功能材料[M].北京:化学工业出版社. 2006.4.
    [17]陈丽金.我国混凝土及水泥制品的修补材料与应用[J].福建建筑高等专科学校学报. Vol.3,No.1.Mar,2001.
    [18]张明飞.聚合物改性硫铝酸盐水泥修补砂浆的研究[D].武汉理工大学硕士学位论文. 2006,12.
    [19]朱炳喜.高性能修补砂浆的研制与应用[J].建筑石膏与胶凝材料. 2004(4):13~15.
    [20]李富山,白锡庆,郭景强.水泥修补砂浆及修补技术.成果集锦.
    [21]李华,缪昌文,金志强.水泥混凝土路面修补技术[M].北京,人民交通出版社. 1999,23.
    [22]张重禄,肖秋明.水泥混凝土路面快速修复技术展望[J].国外公路. 2000.1:5.
    [23]汪澜.水泥混凝土组成性能应用[M].北京:中国建材工业出版社. 2005.No.1:486~651.
    [24]李华,缪昌文,金志强.水泥混凝土路面修补技术[M].北京,人民交通出版社. 1998:44~52.
    [25]张重禄,肖秋明.水泥混凝土路面快速修复技术展望[J].国外公路. 2000(1):18~21.
    [26]袁润章.胶凝材料学[M](第二版).武汉:武汉工业大学出版社. 1996.
    [27]王燕谋,苏慕珍等.硫铝酸盐水泥[M].北京:北京工业大学出版社.
    [28]杨伯科.混凝土使用新技术手册[M].长春:吉林科学出版社. 1998.
    [29] Quanbing Yang,Xueli Wu.Factors influencing properties of phosphate cement-based hinder for rapid repair of cement.Cement and concrete Research[J].1999,29(3).
    [30] K.A.Gruber and S.L.Sarkar.Exploring the Pozzzolanic Activity of High Reactivity Metakaolin.World Cement[J].1996.27(2).
    [31] Ming-Gin Lee,Yung-Chih Wang,Chni-Te Chin.A preliminary study of reactive powder concrete as a new repair material[J].Construction and Building Materials.2005:1~8.
    [32]蒋元,韩素芳.混凝土工程病害与修补加固[M].海洋出版社. 1996pp215~241.
    [33]赵世琦,甘常林.“海岛结构”与环氧树脂的增韧[J].热固性树脂. 2003(11).
    [34]买淑芳,混凝土聚合物复合材料几其应用[M].北京:科学技术文献出版社. 1996,18.
    [35] P.Kumar Mehta.Advancements in polymer Concrete Technology[J]. Concrete International,1999.21(6):3~4.
    [36] Quanbing Yang,Xueli Wu.Factors influencing properties of phosphate cement-based hinder for rapid repair of cement.Cement and concrete Research[J].1999,29(3):5~6.
    [37] Yoshihiko Ohama.Polyner based Admixtures[J].Cement and Concrete,1999,28(2):4.
    [38] D.W.Fowler.Polyner in Concrete:a vision for the 21th cement[C].Cement and Concrete Composites.1999,21(5/6):1~5.
    [39] Wolfram G,Glbel E.Mater ResBull. 1981,16:1455.
    [40]黄从运,张明飞,曾俊杰,蔡肖,张美香.聚合物乳液改性硫铝酸盐水泥修补砂浆的试验研究[J].化学建材. 2006(5):34~36.
    [41] D.R.Morgan.Compatibility of concrete repair materials and systems.Construction and Building Materials,1996.Vol,10.No.1.pp57~67.
    [42] Emberson,N.K.and Mays,G.C.Sign nificance of Property Mismatch in the patches of structural Concrete-part 1:Properties of Repair systems.Magazine of Concrete Research. 1990.No,48.
    [43]代新祥,文梓芸.水泥混凝土路面损坏原因分析及修补材料的选择[J].公路2000.No,11.pp71~76.
    [44]葛婷.用特细山砂和机制砂C20-C40自密实混凝土的研究[D].武汉理工大学硕士论文. 2003.
    [45] K.E.Hassar,P.C.Robery,L.Al-Alawi.Effect of hot-dry enviroment on the intrinsic properties of repair materials.Cenerent and concrete Composites.2000,No.22.pp453~458.
    [46]何小龙.全高钛矿渣混凝土的研究与应用[D].重庆大学工程硕士论文. 2006.
    [47]王铁明.制约我国钛渣生产和应用的原因及对策[J].钛工业进展. 2002(1):10~12.
    [48]胡克俊,锡金,姚娟.国内钛渣科研及生产现状.稀有金属快报[J]. 2007(3):7~15.
    [49]汪镜亮.钛渣生产的发展.钛工业进展. 2002(1):6~9.
    [50]陈剑雄,肖斐,崔洪涛,陈寒斌.钛矿渣综合利用的研究[J].建筑石膏与胶凝材料.2004(6):22~25.
    [51]方荣利.高价值综合利用攀钢钛矿渣的途径[J].四川环境. 1994(2):39~42.
    [52]徐楚韶,陈光碧.钛矿渣作水泥混合材的研究[J].重庆大学学报. 1988,8(13):84-91.
    [53]肖斐.钛渣混凝土性能的研究[D],重庆大学硕士论文. 2004.
    [54]蒲心诚.超高强高性能混凝土[M].重庆:重庆大学出版社. 2004.12.
    [55]徐定华.混凝土材料学概论[M].中国标准出版社. 2002.
    [56]李小生.粉煤灰品质对大掺量粉煤灰混凝土性能的影响[J].建设科技. 2000(4):27~28.
    [57]贾祥道.水泥主要特性对水泥与减水剂适应性影响的研究[D].中国建筑材料科学研究院硕士学位论文. 2002.
    [58]王善拔.关于水泥与超塑化剂相适应的几个问题[J].水泥, 2000(1):7~11.
    [59]李文婷.新型水泥基自流平修补砂浆的研究[D].重庆大学硕士学位论文. 2007.
    [60]冯乃谦,石云兴.超细粉对水泥浆体的流化与增强效应[J].混凝土与水泥制品. 1997(2):4~7.
    [61]李志雄,陈卓利,叶琦贵.矿渣微粉等量水泥替代率对预拌混凝土性能的影响[J].广西城镇建设. 2007(1):22~27.
    [62]李鸿芳,刘晓红,陈剑雄.石粉复合渣高强高性能混凝土工作性研究[J].山西建筑, 2007(02):177~178.
    [63]张雄,吴科如,韩继红等.高性能混凝土中矿渣复合掺合料特性与作用机理[J].混凝土与水泥制品. 1997(3):15~19.
    [64]王湛,李庚英.双掺活性掺合料对高性能混凝土性能的影响[J].混凝土, 2001(6):15~18.
    [65]王怀斌,范付忠,郝建璋,张继东,敖进清.高钛高炉渣在混凝土中的作用机理[J].钢铁钒钛. 2004,(3):48~53.
    [66]王怀斌.利用攀钢高钛矿渣配制高性能混凝土的研究[J].云南大学学报, 2002(6B):93-98.
    [67]蒲心诚,王勇威.高效活性矿物掺合料与混凝土的高性能化[J].混凝土. 2002(2):3~6.
    [68]高树军,吴其胜,张少明.高能球磨矿渣的形貌及其活性[J].建筑材料学报. 2003(2):157~161.
    [69]杨华全,董维佳,王仲华.掺矿渣粉及粉煤灰混凝土的微观性能试验研究[J].长江科学学报. 2005,22(1):46~49.
    [70]曾祖亮.锂渣来源和锂渣混凝土的增强抗渗机理探讨[J].四川有色金属.2000(4):308~311.
    [71]朱永斌,楚虹.锂渣在高低水胶比中形态效应的试验研究[J].新疆农业大学学报. 1998,21(4):308~311.
    [72] B.B.ИЛЮХИН等.水化硅酸钙—单晶合成与结晶化学, Hayka,1979:142.
    [73]陈剑雄,崔洪涛,陈寒斌,肖斐.掺入超细石灰石粉的混凝土性能研究[J].施工技术. 2004(4):39~41.
    [74]何伟.新老混凝土界面粘结强度的研究.硕士论文[D].长沙:湖南大学. 2004.
    [75] B.jien and Salt.Adherence of Young Concrete to Old Concrete Development of Tools for Engineering.Adherence of Young on Old Concrete.Edited by Folker H.W.
    [76] Frebrich.M.H.Scientific Aspects of Phenomena in the Interfac Mineral Substrate-Pocrners. Adherenc of Young on Old Concrete.Edited by Folker H.W.
    [77] Emnous, P.H,A.M.Vaysburd.Factors affecting the durability of concrete repair:the contractor’s viewpoint.Construction and Building masterials. 1994(1):5~16.
    [78]谢慧才,李庚英,熊光晶.新老混凝土界面粘结力形成机理[J].硅酸盐通报.2003(3):7~10
    [79]高剑平.新旧混凝土结合面成为受力薄弱环节原因初探[J].混凝土. 2000(6).
    [80]赵志方.新老混凝土粘结机理和测试方法[D].大连理工大学博士论文. 2001,pp2~9.
    [81]竺亮.新老混凝土粘结的抗拉性能研究[D].大连理工大学博士论文. 2001,pp2~9.
    [82] E.J.Felt.Resurfacing and Patching Concrete Pavement with Bonded Conctete Proceeding of Highway Research Board.1956,pp444~479.
    [83]程红强,曾运华.新老混凝土粘结抗折强度试验分析[J].黑龙江水利科技, 2003(2):33~34
    [84]管大庆,陈章洪,石谧珠.界面处理对新老混凝土粘结性能的影响[J].混凝土. 1994(5):16~22.
    [85] J.A.Brickley,R.liscio.Repair and Protection system for parking structures.Concrete International:Design & Construction,1988(4):21~28.
    [86]田稳芩,赵志方,赵国藩,黄承逵.新老混凝土的粘结机理和测试方法研究综述. 1998Vol.20.No.1.pp85~93.
    [87]高剑平,潘景龙,王雨光.检验新旧混凝土粘结强度合适的试件形状. 2001.Vol.34No.2pp32~34.