LOX-1介导ox-LDL导致eNOS去磷酸化的新机制:内质网应激的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
内皮功能紊乱是动脉粥样硬化(AS)发生过程中最早和最有决定性的事件之一。氧化低密度脂蛋白(ox-LDL)通过降低eNOS的活性,NO产生减少从而导致内皮功能紊乱是不争的事实。凝集素样氧化低密度脂蛋白受体(LOX-1)是内皮细胞膜上特异性识别摄取ox-LDL的最主要受体,LOX-1在介导ox-LDL导致内皮功能紊乱的过程中起关键作用。蛋白激酶Akt磷酸化eNOS的丝氨酸1179/1177(牛/人)位点是调控eNOS活性的关键因素。最新研究显示:ox-LDL可促发内皮细胞的内质网应激反应(ER stress),从而引起内皮功能紊乱。然而,ox-LDL导致eNOS活性下降的具体分子机制仍不十分清楚,是否与ox-LDL促发内质网应激反应有关,仍有待进一步研究。
     因此,在本研究中我们采用ox-LDL(200μg/ml)孵育人脐静脉内皮细胞(HUVEC), Western blotting检测内质网应激标志物PERK(PRK-like endoplasmic reticulum kinase)的磷酸化程度逐渐上升,特别是ox-LDL孵育半小时后。p-PERK的磷酸化程度和葡萄糖调节蛋白78(GRP78)的蛋白表达水平,以此来评估内质网应激反应的发生。研究发现,ox-LDL孵育HUVEC0.5小时即可诱发内质网应激反应(P<0.01,n=3)。进一步评估eNOS的磷酸化程度发现,ox-LDL可致eNOS的Ser1177位点的磷酸化程度显著降低,并呈时间依赖性,而eNOS的Thr 497位点的磷酸化程度以及eNOS的蛋白表达水平均无改变。这一结果提示:ox-LDL导致的eNOS的Ser1177位点的去磷酸化具有显著位点特异性。同时,我们也检测了eNOS的酶活性,结果显示,和对照组相比,ox-LDL可显著降低eNOS的酶活性(P<0.05,n=3),且呈时间依赖性,该结果与ox-LDL导致的eNOS的Ser1177位点的去磷酸化程度一致。同时我们发现:ox-LDL处理组的Akt的Thr308和Ser473位点的磷酸化程度也显著下降,该结果提示:Akt的活性显著降低。而细胞总蛋白抽提物中蛋白磷酸酶PP2A和PP1的表达均无改变。我们进一步采用Pull-down技术证明,在ox-LDL短期孵育的HUVEC中,Akt失活导致eNOS Ser1177位点去磷酸化与PP2A和PP1与eNOS的相互作用程度无关。
     我们进一步采用化学伴侣分子PBA(可降低ER stress)预处理HUVEC14小时,再用ox-LDL孵育0-4小时。结果显示,PBA处理组可显著降低ox-LDL诱导的p-PERK和GRP78的表达(P<0.01),即PBA降低了HUVEC的内质网应激反应。同时,PBA可显著逆转ox-LDL导致的eNOS Ser1177位点和Akt Thr308、Akt Ser473位点的去磷酸化程度。为进一步证明内质网应激在ox-LDL导致的eNOS活性下降中起关键作用,我们采用内质网应激诱导剂BFA(5μg/ml)处理HUVEC,结果发现:Akt和eNOS的磷酸化程度显著下降,且呈时间依赖性。这一结果证明:内质网应激可导致Akt和eNOS Ser1177位点的去磷酸化。
     我们进一步探讨内质网应激反应是否通过PI3K/Akt信号通路下调eNOS的磷酸化程度,我们采用PI3K抑制剂LY294002(0.5nM)和PI3K激活剂IGF-1(100ng/ml)分别处理HUVEC,结果显示:内质网应激诱导剂BFA可直接影响PI3K/Akt信号通路,进而导致eNOS Ser1177位点的去磷酸化。
     我们也检测了是否是LOX-1介导ox-LDL促发内质网应激反应。我们采用LOX-1封闭抗体JTX20处理细胞,结果发现:JTX20预处理HUVEC可显著逆转ox-LDL导致的eNOS和Akt的去磷酸化。我们进一步评估HUVEC内质网应激反应的程度,发现JTX20也逆转了细胞内p-PERK和GRP78的表达(P<0.01),即JTX20可降低HUVEC的内质网应激反应。
     上述结果提示:ox-LDL经LOX-1介导可促发内质网应激反应,并通过Akt信号途径下调eNOS的磷酸化程度,从而导致eNOS的功能下降。
Endothelial dysfunction is one of the early and decisive event in the development of the atherosclerosis. There is no doubt that the ox-LDL can cause the endothelial dysfunction via the reduced activity of eNOS and the reduced production of NO. LOX-1 was identified from endothelial cells as the main receptor specially recognizing and uptaking the ox-LDL, LOX-1 plays a key role in the endothelial dysfunction triggered by ox-LDL. Phosphorylation of endothelial nitric oxide synthase (eNOS) serine 1179/1177(bovine/human) by protein kinase Akt is a central mechanism of eNOS regulation. Recently, the report showed:ox-LDL can cause ER stress of the endotheliocyte, so cause the endothelial dysfunction. However, the molecular mechanism of the reduced activity of eNOS caused by ox-LDL is not clear, we donot know whether there is a connection with the ER stress caused by ox-LDL, so we need to do research to clarify these questions.
     To address these issues, we treated the human umbilical venous endothelial cells (HUVEC) with ox-LDL(200μg/ml). The ER stress reaction was estimated by the phosporylation of the PERK(one of the ER stress marker) and the expression level of the glucose-regulated protein 78 (GRP78, ER stress marker) via Western blotting method. The result showed, the ER stress reaction can be caused by ox-LDL just after 0.5hrs treatment(P<0.01, n=3). Further detection of the phosphorylation of eNOS revealed that ox-LDL induced a rapid reduced phosphorylation of eNOS Ser1177 site, and it is time-dependent. This time-dependent action of ER stress reaction was highly specific because neither eNOS Thr 497 phosphorylation nor the total eNOS level in HUVECs was changed. At the same time, we also detected the enzymatic activity of the eNOS, the result showed:Compared with the control group, the enzymatic activity of the eNOS could be markedly reduced by the treatment of ox-LDL(P<0.05, n=3), and it was time-dependent, this result is consistent with the dephosphorylation of the eNOS Ser1177 site caused by ox-LDL. We also found:the phosphorylation of the Thr308 and Ser473 sites of Akt was markedly reduced by the treatment of ox-LDL, this result indicated the activity of Akt was markedly reduced. But the expression of the protein phosphatase 2A(PP2A)and protein phosphatase 1(PP1) in the total proteins of the HUVEC wasn't changed. We further utilized Pull-down technology to prove that in the ox-LDL-treated HUVEC, the de-phosphorylation of eNOS Ser1177 site was caused by the inactivation of Akt, not due to the elevated association of PP2A and PP1 with eNOS.
     We further utilized the chemical chaperone PBA (which can decrease the ER stress) to pretreat the HUVEC for 14 hours, then incubated cells with ox-LDL for 0-4 hours. The result indicated:PBA treatment group could markedly decrease the expression of the p-PERK and GRP78 caused by the ox-LDL (P<0.01), that is to say the PBA reduced the ER stress reaction of HUVEC. At the same time, PBA could markedly reverse the dephosphorylation of the eNOS Ser1177 site and the Akt Thr308、Akt Ser473 sites caused by ox-LDL. In order to further prove the key role of the ER stress in the process of the reduced activity of eNOS caused by ox-LDL, we used the inducer of ER stress BFA(5μg/ml) to treat the HUVEC, we found that the phosphorylation of Akt and eNOS were markedly reduced, and it was time-dependent. This result proves:The ER stress can cause the dephosphorylation of Akt and eNOS Ser1177 site.
     We further investigated whether the ER stress reduced the phosphorylation of eNOS through the PI3K/Akt signal transduction pathway, so we used PI3K inhibitor LY294002(0.5nM) or PI3K inducer IGF-1(100ng/ml) to treat the HUVEC, the result indicated:the ER stress inducer BFA can directly influnce the PI3K/Akt signal transduction pathway, so caused the dephosphorylation of eNOS Ser1177 site.
     We also detected whether the LOX-1 mediated the ER stress reaction caused by ox-LDL. We used LOX-1 blocking antibody JTX20 to treat the cells, the result proved: the JTX20 pretreatment could markedly reverse the dephosphorylation of the eNOS and Akt caused by ox-LDL. We further estimated the ER stress reaction in HUVEC, we found JTX20 could also reverse the expression of the p-PERK and GRP78(P<0.01), that is to say JTX20 can decrease the ER stress reaction.
     So, our result indicated:ox-LDL can cause the ER stress reaction via LOX-1, and can reduce the phosphorylation of eNOS through the Akt signal transduction pathway, so reduce the function of eNOS.
引文
1. Ross R. The pathogenesis of atherosclerosis:a perspective for the 1990s. Nature 1993;362:801-809.
    2. Stocker R, Keaney JF Jr. Role of oxidative modifications in atherosclerosis. Physiol Rev 2004;84:1381-1478.
    3. Fleming I, Mohamed A, Galle J, Turchanowa L, Brandes RP, Fisslthaler B, Busse R: Oxidized low-density lipoprotein increases superoxide production by endothelial nitric oxide synthase by inhibiting PKCa. Cardiovasc Res 2005;65:897-906.
    4. Boo YC, Jo H:Flow-dependent regulation of endothelial nitric oxide synthase:role of protein kinases. Am J Physiol 2003;285:C499-C508.
    5. Griffith, O. W., and Steuhr, D. J. (1995) Nitric oxide synthases:properties and catalytic mechanism. Annu. Rev. Physiol.57,707-736
    6. Cheng J, Ou JS, Singh H, Falck JR, Narsimhaswamy D, Pritchard KA Jr, Schwartzman ML.20-hydroxyeicosatetraenoic acid causes endothelial dysfunction via eNOS uncoupling. Am J Physiol Heart Circ Physiol.2008;294(2):H1018-26.
    7. Aicher A, Heeschen C, Mildner-Rihm C, Urbich C, Ihling C, Technau-Ihling Z, Zeiher AM, Dimmeler S:Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells. Nat Med 2003;9:1370-1376.
    8. Alderton WK, Cooper CE, Knowles RG:Nitric oxide synthases:structure, function and inhibition. Biochem J 2001;357:593-615.
    9. Sawamura T, Kume N, Aoyama T, Moriwaki H, Hoshikawa H, Aiba Y et al. An endothelial receptor for oxidized low-density lipoprotein. Nature 1997;386:73-77.
    10. Mehta JL, Li DY. Identification and autoregulation of receptor for Ox-LDL in cultured human coronary artery endothelial cells. Biochem Biophys Res Commun 1998; 248:511-4
    11. Sugimoto K, Ishibashi T, Sawamura T, Inoue N, Kamioka M, Uekita H, Ohkawara H, Sakamoto T, Sakamoto N, Okamoto Y, Takuwa Y, Kakino A, Fujita Y, Tanaka T, Teramoto T, Maruyama Y, Takeishi Y. LOX-1-MT1-MMP axis is crucial for RhoA and Racl activation induced by oxidized low-density lipoprotein in endothelial cells. Cardiovasc Res.2009 Oct 1;84(1):127-36.
    12. Li DY, Sawamura T, Mehta JL. Upregulation of endothelial receptor for oxidized low-density lipoprotein(Lox-1) in cultured human coronary artery endothelial cells by angiotensin II type-1 receptor activation. Circ Res 1999; 84:1043-9
    13. Ogura S, Kakino A, Sato Y, Fujita Y, Iwamoto S, Otsui K, Yoshimoto R, Sawamura T. Lox-1:the multifunctional receptor underlying cardiovascular dysfunction. Circ J. 2009 Nov;73(11):1993-9.
    14. Li DY, Chen HJ, Mehta JL. Statins inhibit oxidized-LDL-mediated LOX-1 expression, uptake of oxidized-LDL and reduction in PKB phosphorylation. Cardiovasc Res 2001; 52:130-135.
    15. David Fulton, Jean-Philippe Gratton, Timothy J. McCabe, Jason Fontana, Yasushi Fujio, Kenneth Walsh, Thomas F. Franke, Andreas Papapetropoulos & William C. Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. 1999 Nature 399:597-601.
    16. Stefanie Dimmeler, Ingrid Fleming, Beate Fisslthaler, Corinna Hermann, Rudi Busse& Andreas M. Zeiher Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation.1999 Nature 399:601-605
    17. Salvayre R, Auge N, Benoist H, Negre-Salvayre A. Oxidized low-density lipoprotein-induced apoptosis. Biochin Biophys Acta.2002; 1585:213-221
    18. Sanson M, Auge N, Vindis C, Muller C, Bando Y, Thiers JC, Marachet MA, Zarkovic K, Sawa Y, Salvayre R, Negre-Salvayre A. Oxidized low-density lipoproteins trigger endoplasmic reticulum stress in vascular cells:prevention by oxygen-regulated protein 150 expression. Circ Res.2009 Feb 13;104(3):328-36.
    19. Tu BP, Weissman JS. Oxidative protein folding in eukaryotes:mechanisms and consequences. J Cell Biol 2004; 164:341-6.
    20. Ba'nhegyi G, Csala M, Szarka A, Varsa nvi M, Benedetti A, Mandl J. Role of ascorbate in oxidative protein folding. Biofactors 2003;17:37-46.
    21. McAlpine CS, Bowes AJ, Werstuck GH. Diabetes, Hyperglycemia and Accelerated Atherosclerosis:Evidence Supporting a Role for Endoplasmic Reticulum (ER) Stress Signaling. Cardiovasc Hematol Disord Drug Targets.2010 Mar 1.
    22. Zhou J, Werstuck GH, Lhotak S, de Koning AB, Sood SK, Hossain GS, M(?)ller J, Ritskes-Hoitinga M, Falk E, Dayal S, Lentz SR, Austin RC. Association of multiple cellular stress pathways with accelerated atherosclerosis in hyper homocysteinemic apolipoprotein E-deficient mice. Circulation.2004; 110:207-213.
    23. Myoishi M, Hao H, Minamino T, Watanabe K, Nishihira K, Hatakeyama K, Asada Y, Okada K, Ishibashi-Ueda H, Gabbiani G, Bochaton-Piallat ML, Mochizuki N, Kitakaze M. Increased endoplasmic reticulum stress in atherosclerotic plaques associated with acute coronary syndrome. Circulation.2007; 116:1226-1233.
    24. Khan MI, Pichna BA, Shi Y, Bowes AJ, Werstuck GH. Evidence supporting a role for endoplasmic reticulum stress in the development of atherosclerosis in a hyperglycaemic mouse model. Antioxid Redox Signal.2009 Sep;11(9):2289-98.
    25. Xu C, Bailly-Maitre B, Reed JC:Endoplasmic reticulum stress:cell life and death decisions. J Clin Invest 115:2656-2664,2005
    26. Civelek M, Manduchi E, Riley RJ, Stoeckert CJ Jr, Davies PF. Chronic endoplasmic reticulum stress activates unfolded protein response in arterial endothelium in regions of susceptibility to atherosclerosis. Circ Res.2009 Aug 28;105(5):453-61. Epub 2009 Aug 6.
    27. Dong Y, Zhang M, Wang S, Liang B, Zhao Z, Liu C, Wu M, Choi HC, Lyons TJ, Zou MH. Activation of AMP-activated Protein Kinase Inhibits oxidized Low Density Lipoprotein-triggered Endoplasmic Reticulum (ER) Stress in vivo. Diabetes.2010. Mar 18.
    28. Dong Y, Zhang M, Liang B, Xie Z, Zhao Z, Asfa S, Choi HC, Zou MH.Reduction of AMP-activated protein kinase alpha2 increases endoplasmic reticulum stress and atherosclerosis in vivo. Circulation.2010 Feb 16;121(6):792-803.
    29. Um HJ, Bae JH, Park JW, Suh H, Jeong NY, Yoo YH, Kwon TK. Differential effects of resveratrol and novel resveratrol derivative, HS-1793, on endoplasmic reticulum stress-mediated apoptosis and Akt inactivation. Int J Oncol.2010 Apr;36(4):1007-13.
    30. Hyoda K, Hosoi T, Horie N, Okuma Y, Ozawa K, Nomura Y.PI3K-Akt inactivation induced CHOP expression in endoplasmic reticulum-stressed cells. Biochem Biophys Res Commun.2006 Feb 3;340(1):286-90.
    31. Aoyama T, Fujiwara H, Masaki T, Sawamura T. Induction of lectin-like oxidized LDL receptor by oxidized LDL and lysophosphatidylcholine in cultured endothelial cells. J Mol Cell Cardiol.1999 Dec;31(12):2101-14
    32. Tatsuya Sawamura, Noriaki Kume, Takuma Aoyama, Hideaki Moriwaki, Hajime Hoshikawa, Yuichi Aiba, Takeshi Tanaka, Soichi Miwa, Yoshimoto Katsura, Toru Kita, et al. An endothelial receptor for oxidized low-density lipoprotein. Nature 386 (1997), pp.73-77
    33. Sessa W. C., Harrison J. K., Luthin D. R., Pollock J. S., Lynch K. R. Genomic analysis and expression patterns reveal distinct genes for endothelial and brain nitric oxide synthase. (1993) Hypertension 21:934-938.
    34. Sessa W. C., Barber C. M., Lynch K. R. Mutation of N-myristoylation site converts endothelial cell nitric oxide synthase from a membrane to a cytosolic protein. (1993) Circ. Res.72:921-924.
    35. Rosenkranz-Weiss P., Sessa W. C.,Milstien S., Kaufman S., Watson J. A., Pober J. S. Regulation of nitric oxide synthesis by proinflammatory cytokines in human umbilical vein endothelial cells. Elevations in tetrahydrobiopterin levels enhance endothelial nitric oxide synthase specific activity. (1994) J. Clin. Invest. 93:2236-2243
    36. Wei, Q., and Xia, Y. Proteasome inhibition down-regulates endothelial nitric-oxide synthase phosphorylation and function. (2006) J. Biol. Chem.281,21652-21659
    37. Li D, Mehta JL. Upregulation of endothelial receptor for oxidized LDL (LOX-1) by oxidized LDL and implications in apoptosis of human coronary artery endothelial cells: evidence from use of antisense LOX-1 mRNA and chemical inhibitors. Arterioscler Thromb Vasc Biol 2000;20:1116-22.
    38. Kume N, Sawamura T, Moriwaki H, Aoyama A, Nishi E, Ueno Y, et al. Inducible expression of LOX-1, a novel lectin-like receptor for oxidized low density lipoprotein, in vascular endothelial cells. Circ Res 1998;83:322-7.
    39. Chen M, Masaki T, Sawamura T. LOX-1, the receptor for oxidized low-density lipoprotein identified from endothelial cells:implications in endothelial dysfunction and atherosclerosis. Pharmacol Ther 2002;95:89-100.
    40. Mehta JL, Chen J, Yu F, Li DY. Aspirin inhibits ox-LDL-mediated LOX-1 expression and metalloproteinase-1 in human coronary endothelial cells. Cardiovasc Res 2004;64:243-9.
    41. Zhang K, Kaufman RJ. The unfolded protein response:a stress signaling pathway critical for health and disease. Neurology.2006 Jan 24;66(2 Suppl 1):S102-9.
    42. Xiaohua Shen, Kezhong Zhang and Randal J. Kaufman. The unfolded protein response--a stress signaling pathway of the endoplasmic reticulum. J Chem Neuroanat. 2004 Sep; 28(1-2):79-92
    43. Mount PF, Kemp BE, Power DA. Regulation of endothelial and myocardial NO synthesis by multi-site eNOS phosphorylation. J Mol Cell Cardial.2007 Feb;42(2):271-9.
    44. Ingrid Fleming and Rudi Busse. Molecular mechanisms involved in the regulation of the endothelial nitric oxide synthase. Am J Physiol Regul Integr Comp Physiol 284: Rl-R12,2003.
    45. Daniel M. Greif, Ruqin Kou, and Thomas Michel et al. Site-Specific Dephosphorylation of Endothelial Nitric Oxide Synthase by Protein Phosphatase
    2A:Evidence for Crosstalk between Phosphorylation Sites Biochemistry,2002,41 (52), pp 15845-15853
    46. Greif, D. M., Kou, R., and Michel, T. Proteasome Inhibition Down-regulates Endothelial Nitric-oxide Synthase Phosphorylation and Function. (2002) Biochemistry 41,15845-15853
    47. Wu KK. Regulation of endothelial nitric oxide synthase activity and gene expression. Ann N Y Acad Sci.2002 May; 962:122-30
    48. B.J. Michell, J.E. Griffiths, K.I. Mitchelhill, I. Rodriguez-Crespo, T. Tiganis, S. Bozinovski, P.R.Ortiz de Montellano, B.E. Kemp and R.B. Pearson. The Akt kinase signals directly to endothelial nitric oxide synthase. Current Biology, Volume 9, Issue 15, 845,12 August 1999
    49. Urbich C, Reissner A, Chavakis E, Dernbach E, Haendeler J, Fleming I, Zeiher AM, Kaszkin M, Dimmeler S. Dephosphorylation of endothelial nitric oxide synthase contributes to the anti-angiogenic effects of endostatin. FASEB J.2002 May;16(7):706-8. Epub 2002 Mar 12.
    50. Brostrom MA, Prostko CR, Gmitter D & Brostrom CO (1995) Independent signaling of grp78 gene transcription and phosphorylation of eukaryotic initiator factor 2 alpha by the stressed endoplasmic reticulum. J Biol Chem 270,4127-4132.
    51. Schroder M, Kaufman RJ 2006 Divergent roles of IRE 1 a and PERK in the unfolded protein response. Curr Mol Med 6:5-36
    52. Ron D, Walter P 2007 Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8:519-529
    53. Giannotti G, Landmesser U. Endothelial dysfunction as an early sign of atherosclerosis. Herz.2007 Oct; 32(7):568-72
    54. Nakagami H, Kaneda Y, Ogihara T, Morishita R. Endothelial dysfunction in hyperglycemia as a trigger of atherosclerosis. Curr Diabetes Rev.2005 Feb; 1(1):59-63
    55. Mehta JL, Sanada N, Hu CP, Chen J, Dandapat A, Sugawara F, Satoh H, Inoue K, Kawase Y, Jishage K, Suzuki H, Takeya M, Schnackenberg L, Beger R, Hermonat PL, Thoman M, Sawamura T. Deletion of LOX-1 reduces atherogenesis in LDLR knockout mice fed high cholesterol diet. Circ Res.2007 Jun 8; 100(11):1634-42. Epub 2007 May 3.
    56. R.J. Kaufman, Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls, Genes Dev.13 (1999), pp. 1211-1233.
    57. Cominacini L, Rigoni A, Pasini AF, Garbin U, Davoli A, Campagnola M, Pastorino AM, Lo Cascio V, Sawamura T. The binding of oxidized low density lipoprotein(ox-LDL) to ox-LDL receptor-1 reduces the intracellular concentration of nitric oxide in endothelial cells through an increased production of superoxide. J Biol Chem.2001 Apr 27; 276(17):13750-5
    58. Sawamura T, Kume N, Aoyama T, Moriwaki H, Hoshikawa H, AibaY, et al. An endothelial receptor for oxidized low-density lipoprotein. Nature 1997; 386:73-77.
    59. Mehta JL. The role of LOX-1, a novel lectin-like receptor for oxidized low density lipoprotein, in atherosclerosis. Can J Cardiol.2004 Aug; 20 Suppl B:32B-36B.
    60. Sugimoto K, Ishibashi T, Sawamura T, Inoue N, Kamioka M, Uekita H, et al. LOX-1-MT1-axis is crucial for RhoA and Racl activation induced by oxidized low-density lipoprotein in endothelial cells. Cardiovasc Res 2009; 84:127-136
    61. Sawamura T, Kume N, Aoyama T, Moriwaki H, Hoshikawa H, Aiba Y et al. An endothelial receptor for oxidized low-density lipoprotein. Nature 1997; 386:73-77.
    62. Aoyama T, Sawamura T, Furutani Y, Matsuoka R, Yoshida MC, Fujiwara H, et al. Structure and chromosomal assignment of the human lectin-like oxidized low-density-lipoprotein receptor-1 (LOX-1) gene. Biochem J 1999; 339:177-184.
    63. Li DY, Chen HJ, Mehta JL. Statins inhibit oxidized-LDL-mediated LOX-1 expression, uptake of oxidized-LDL and reduction in PKB phosphorylation. Cardiovasc Res 2001,52:130-135.
    64. Li, D. Y., Yang, B. C., and Mehta, J. L. (1999) Ox-LDL induces apoptosis in human coronary artery endothelial cells:Role of PKC, PTK, bcl-2, and Fas. Am. J. Physiol.275, H568-H576
    65. Li D, Liu L, Chen H, Sawamura T, Mehta JL. LOX-1, an oxidized LDL endothelial receptor, induces CD40/CD40L signaling in human coronary artery endothelial cells. Arterioscler Thromb Vasc Biol 2003; 23:816-821
    66. Cominacini L. Pasini AF, Garbin U, Davoli A, Tosetti ML, Campagnola M, et al. Oxidized low density lipoprotein(ox-LDL) binding to ox-LDL receptor-1 in endothelial cells induces the activation of NF-kappaB through an increased production of intracellular reactive oxygen species. J Biol Chem 2000; 275:12633-12638.
    67. Li, D., and Mehta, J. L. (2000) Upregulation of endothelial receptor for oxidized LDL (LOX-1) by oxidized LDL and implications in apoptosis of human coronary artery endothelial cells:Evidence from use of antisense LOX-1 mRNA and chemical inhibitors. Arterioscler. Thromb. Vasc. Biol.20,1116-1122.
    68. Oka, K., Sawamura, T., Kikuta, K., Itokawa, S., Kume, N., Kita, T., and Masaki, T. (1998) Lectin-like oxidized low-density lipoprotein receptor 1 mediates phagocytosis of aged/apoptotic cells in endothelial cells. Proc. Natl. Acad. Sci. USA 95,9535-9540.
    69. Peng XQ, Damaria M, Skirball J, Nonas S, Wang XY, Han EJ, Hasan EJ, Cao X, Boueiz A, Damico R, Tuder RM, Sciuto AM, Anderson DR, Garcia JG, Kass DA, Hassoun PM, Zhang JT. Protective role of PI3-kinase/Akt/eNOS signaling in mechanical stress through inhibition of p38 mitogen-activated protein kinase in mouse lung. Acta Pharmacol Sin.2010 Feb; 31(2):175-83
    70. Lee SH, Byun JS, Kong PJ, Lee HJ, Kim DK, Kim HS, Sohn JH, Lee JJ, Lim SY, Chun W, Kim SS. Inhibition of eNOS/sGC/PKG Pathway Decrease Akt Phosphorylation Induced by Kainic Acid in Mouse Hippocampus. Korean J Pharmacol. 2010 Feb; 14(1):37-43.
    71. Cale JM, Bird IM. Inhibition of MEK/ERK1/2 signaling alters endothelial nitric oxide synthase activity in an agonist-dependent manner. Biochem J.2006 Sep 1; 398(2): 279-88
    72. Wagner L, Laczy B, Tamasko M, Mazak I, Marko L, Molnar GA, Wagner Z, Mohas M, Cseh J, Fekete A, Wittmann I. Cigarette smoke-induced alterations in endothelial nitric oxide synthase phosphorylation:role of protein kinase C. Endothelium.2007 Jul-Oct; 14(4-5):245-55.
    73. Mehta, J. L., and Li, D. Y. (1998) Identification and autoregulation of receptor for Ox-LDL in cultured human coronary artery endothelial cells. Biochem. Biophys. Res. Commun.248,511-514.
    74. Staal SP, Huebner K, Croce CM, Parsa NZ, Testa JR. The AKT1 proto-oncogene maps to human chromosome 14, band q32. Genomics 1988; 2:96-98.
    75. Staal SP. Molecular cloning of the akt oncogene and its human homologues AKT1 and AKT2:Amplification of AKT1 in a primary human gastric adenocarcinoma. Proc Natl Acad Sci USA.1987; 84:5034-7.
    76. Franke TF, Yang SI, Chan TO, Datta K, Kazlauskas A, Morrison DK, Kaplan DR, Tsichis PN. The protein kinase encoded by the Akt proto-oncogene is a target of the PDGF-activated phosphatidylinositol 3-kinase. Cell 1995; 81:727-36.
    77. Wang X, Robbins J. Heart failure and protein quality control. Circ Res. 2006;99:1315-1328.
    78. Glembotski CC. Endoplasmic reticulum stress in the heart. Circ Res. 2007;101:975-984.
    79. Lai E, Teodoro T, Volchuk A. Endoplasmic reticulum stress:signaling the unfolded protein response. Physiology (Bethesda).2007;22:193-201.
    80. Yamaguchi H, Wang HG. CHOP is involved in endoplasmic reticulum stress-induced apoptosis by enhancing DR5 expression in human carcinoma cells. J Biol Chem.2004; 279:45495-45502
    81. Ma Y, Brewer JW, Diehl JA, Hendershot LM. Two distinct stress signaling pathways converge upon the CHOP promoter during the mammalian unfolded protein response. J Mol Biol.2002; 318:1351-1365.
    82. Ron D, Habener JF. CHOP, a novel developmentally regulated nuclear protein that dimerizes with transcription factors C/EBP and LAP and functions as a dominant-negative inhibitor of gene transcription. Genes Dev.1992; 6:439-453.
    83. Schroder M, Kaufman RJ. The mammalian unfolded protein response. Annu Rev Biochem.2005; 74:739-78
    1. Marciniak SJ, Ron D. Endoplasmic reticulum stress signaling in disease. Physiol Rev,2006,86(4):1133-1149.
    2. Meusser B, Hirsch C, Jarosch E, Sommer T.2005. ERAD:the long road to destruction. Nat. Cell. Biol.7(8):766-72
    3. Lai E, Teodoro T, Volchuk A. Endoplasmic reticulum stress:signaling the unfolded protein response. Physiology(Bethesda),2007,22:193-201.
    4. Myoishi M, Hao H, Minamino T, Watanabe K, Nishihira K, Hatakeyama K, Asada Y, Okada K, Ishibashi-Ueda H, Gabbiani G, Bochaton-Piallat ML, Mochizuki N, and Kitakaze M. Increased endoplasmic reticulum stress in atherosclerotic plaques associated with acute coronary syndrome. Circulation 116:1226-1233,2007.
    5. Takatsuki A, Arima K & Tamura G (1971) Tunicamycin, a new antibiotic. I. Isolation and characterization of tunicamycin. J Antibiot (Tokyo) 24,215-223.
    6. Price BD, Mannheim-Rodman LA & Calderwood SK (1992) Brefeldin A, thapsigargin, and AIF4-stimulate the accumulation of GRP78 mRNA in a cycloheximide dependent manner, whilst induction by hypoxia is independent of protein synthesis. J Cell Physiol 152,545-552.
    7. Brostrom MA, Prostko CR, Gmitter D & Brostrom CO (1995) Independent signaling of grp78 gene transcription and phosphorylation of eukaryotic initiator factor 2 alpha by the stressed endoplasmic reticulum. J Biol Chem 270,4127-4132.
    8. Fernandez F, Jannatipour M, Hellman U, Rokeach LA & Parodi AJ (1996) A new stress protein:synthesis of Schizosaccharomyces pombe UDP-Glc:glycoprotein glucosyltransferase mRNA is induced by stress conditions but the enzyme is not essential for cell viability. EMBO J 15,705-713.
    9. Ikeda J, Kaneda S, Kuwabara K, Ogawa S, Kobayashi T, Matsumoto M, Yura T & Yanagi H (1997) Cloning and expression of cDNA encoding the human 150 kDa oxygen-regulated protein, ORP150. Biochem Biophys Res Commun 230,94-99.
    10. Pahl HL. Signal transduction from the endoplasmic reticulum to the cell nucleus. Physiol Rev,1999,79-683-701.
    11. Cox JS, Shamu CE,Walter P.1993. Transcriptional induction of genes encoding endoplasmic reticulum resident proteins requires a transmembrane protein kinase. Cell 73(6):1197-206
    12. Tirasophon W, Welihinda AA, Kaufman RJ.1998. A stress response pathway from the endoplasmic reticulum to the nucleus requires a novel bifunctional protein kinase/ endoribonuclease (Irelp) in mammalian cells. Genes Dev.12(12):1812-24
    13. Zhang K, Wong HN, Song B, Miller CN, Scheuner D, Kaufman RJ.2005. The unfolded protein response sensor IRE1α is required at 2 distinct steps in B cell lymphopoiesis.J. Clin. Invest.115(2):268-81
    14. Bertolotti A, Wang X, Novoa I, Jungreis R, Schlessinger K, et al.2001. Increased sensitivity to dextran sodium sulfate colitis in IRE1 β-deficient mice. J. Clin. Invest. 107(5):585-93
    15. Kaufman RJ, Scheuner D, Schroder M, Shen X, Lee K, Liu CY, ArnoldSM 2002. The unfolded protein response in nutrient sensing and differentiation. Nat Rev Mol Cell Biol 3:411-421
    16. Schroder M, Kaufman RJ 2006 Divergent roles of IRE1 α and PERK in the unfolded protein response. Curr Mol Med 6:5-36
    17. Ron D, Walter P 2007 Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8:519-529
    18. Bertolotti A, Zhang Y, Hendershot LM, Harding HP, Ron D 2000. Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat Cell Biol 2:326-332
    19. Liu CY, Schroder M, Kaufman RJ 2000 Ligand-independent dimerization activates the stress response kinases IRE1 and PERK in the lumen of the endoplasmic reticulum. J Biol Chem 275:24881-24885
    20. Shen J, Chen X, Hendershot L, Prywes R 2002 ER stress regulationof ATF6 localization by dissociation of BiP/GRP78 binding and unmasking of Golgi localization signals. Dev Cell 3:99-111
    21. Harding HP, Zhang Y, Ron D.1999. Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 397:271-74
    22. Jiang HY, Jiang L, Wek RC.2007. The eukaryotic initiation factor-2 kinase pathway facilitates differential GADD45 a expression in response to environmental stress. J. Biol. Chem.282:3755-65
    23. Wek RC, Jiang HY, Anthony TG.2006. Coping with stress:eIF2 kinases and translational control. Biochem. Soc. Trans.34:7-11
    24. Novoa I, Zeng H, Harding HP, Ron D.2001. Feedback inhibition of the unfolded protein response by GADD34-mediated dephosphorylation of eIF2α.J. Cell Biol. 153:1011-1022
    25. Harding HP, Novoa I, Zhang Y, Zeng H, Wek R, et al.2000. Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol. Cell 6:1099-1108
    26. Harding HP, Zhang Y, Bertolotti A, Zeng H, Ron D.2000. Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol. Cell 5:897-904
    27. Wu J, Rutkowski DT, Dubois M, Swathirajan J, Saunders T, Wang J, Song B, Yau GD, Kaufman RJ 2007 ATF6 a optimizes long-term endoplasmic reticulum function to protect cells from chronic stress. Dev Cell 13:351-364
    28. Yamamoto K, Sato T, Matsui T, Sato M, Okada T, Yoshida H, Harada A, Mori K 2007 Transcriptional induction of mammalian ER quality control proteins is mediated by single or combined action of ATF6 a and XBP1. Dev Cell 13:365-376
    29. Wu J, Rutkowski DT, Dubois M, Swathirajan J, Saunders T, Wang J, Song B, Yau GD, Kaufman RJ 2007 ATF6 a optimizes long-term endoplasmic reticulum function to protect cells from chronic stress. Dev Cell 13:351-364
    30. Yamamoto K, Sato T, Matsui T, Sato M, Okada T, Yoshida H, Harada A, Mori K 2007 Transcriptional induction of mammalian ER quality control proteins is mediated by single or combined action of ATF6 a and XBP1. Dev Cell 13:365-376
    31. Niwa M, Patil CK, DeRisi J,Walter P.2005. Genome-scale approaches for discovering novel nonconventional splicing substrates of the Irel nuclease. Genome Biol.6(1):R3
    32. Yoshida H, Matsui T, Yamamoto A, Okada T, Mori K.2001. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response toERstress to produce a highly active transcription factor. Cell 107(7):881-91
    33. Hollien J, Weissman JS 2006 Decay of endoplasmic reticulumlocalized mRNAs during the unfolded protein response. Science 313:104-107
    34. Pirot P, Naamane N, Libert F, Magnusson NE, Orntoft TF, Cardozo AK, Eizirik DL 2007 Global profiling of genes modified by endoplasmic reticulum stress in pancreatic β cells reveals the early degradation of insulin mRNAs. Diabetologia 50:1006-1014
    35. Averous J,BruhatA, Jousse C, et al. Induction of CHOP expression by amino acid limitation requires both ATF4 exp ression and ATF2 phosphorylation[J]. J Biol Chem, 2004,279 (7):5288-5297.
    36. SmithMI,DeshmukhM. Endop lasmic reticulum stress-induced apoptosis requires bax for commitment and Apaf-1 for execution in primary neurons [J]. Cell Death Differ,2007,14 (5):1011-1019.
    37. McCullough KD, Martindale JL, Klotz LO, Aw TY, Holbrook NJ (2001) Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state. Mol Cell Biol 21:1249-1259.
    38. Puthalakath H, O'Reilly LA, Gunn P et al (2007) ER stress triggers apoptosis by activating BH3-only protein Bim. Cell 129:1337-1349.
    39. Marciniak SJ, Yun CY, Oyadomari S et al (2004) CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum. Genes Dev 18:3066-3077.
    40. OhokaN, Yoshii S, Hattori T, et al. TRB3, a novel ER stress-inducible gene, is induced via ATF4-CHOP pathway and is involved in cell death[J]. EMBO J,2005,24 (6):1243-1255.
    41. Urano F, Wang X, Bertolotti A, Zhang Y, Chung P, Harding HP, Ron D (2000) Coupling of stress in the ER to activation of JNK protein kinase by transmembrane protein kinase IRE1. Science 287:664-666.
    42. Nishitoh H, Matsuzawa A, Tobiume K, Saegusa K (2002) Takeda. ASK1 is essential for endoplasmic reticulum stressinduced neuronal cell death triggered by expanded polyglutamine repeats. Genes Dev 16:1345-1355.
    43. Mendes CS, Levet C, Chatelain G, et al. (2009) ER stress protects from retinal degeneration. EMBO J,
    44. YokouchiM, Hiramatsu N, Hayakawa K, et al. Involvement of selective reactive oxygen species up stream of proapoptotic branches of unfolded p rotein response [J]. J Biol Chem,2008,283 (7):4252-4260.
    45. Roy S, Sharom JR, Houde C, et al. Confinement of caspase-12 proteolytic activity to autoprocessing [J]. PNAS,2008,105 (11):4133-4138.
    46. Cheung HH, Lynn Kelly N, Liston P, et al. Involvement of caspase-2 and caspase-9 in endoplasmic reticulum stress-induced apoptosis:a role for the IAPs[J]. Exp Cell Res, 2006,312 (12):2347-2357.
    47. Yoneda T, Imaizumi K, Oono K, Yui D, Gomi F, et al.2001. Activation of caspase-12, an endoplastic reticulum (ER) resident caspase, through tumor necrosis factor receptorassociated factor 2-dependent mechanism in response to the ER stress. J. Biol. Chem.276:13935-40
    48. Nakagawa T, Zhu H, Morishima N, Li E, Xu J, et al.2000. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-β. Nature 403:98-103
    49. Saleh M, Mathison JC,Wolinski MK, Bensinger SJ, Fitzgerald P, et al.2006. Enhanced bacterial clearance and sepsis resistance in caspase-12-deficient mice. Nature 440:1064-68
    50. Hitomi J, Katayama T, Eguchi Y, Kudo T, Taniguchi M, et al.2004. Involvement of caspase-4 in endoplasmic reticulum stress-induced apoptosis and Aβ-induced cell death. J. Cell Biol.65:347-56
    51. Pizzo P, Pozzan T (2007) Mitochondria-endoplasmic reticulum choreography: structure and signaling dynamics. Trends Cell Biol 17:511-517.
    52. Scorrano L, Oakes SA, Opferman JT et al (2003) BAX and BAK regulation of endoplasmic reticulum Ca2+:a control point for apoptosis. Science 300:135-139.
    53. Hetz C, Bernasconi P, Fisher J et al (2006) Proapoptotic BAX and BAK modulate the unfolded protein response by a direct interaction with IRE1alpha. Science 312:572-576.
    54. Chami M, Oules B, Szabadkai G, Tacine R, Rizzuto R, Paterlini Brechot P (2008) Role of SERCA1 truncated isoform in the proapoptotic calcium transfer from ER to mitochondria during ER stress. Mol Cell 32:641-651.
    55. Rutkowski DT, Arnold SM, Miller CN et al (2006) Adaptation to ER stress is mediated by differential stabilities of pro-survival and pro-apoptotic mRNAs and proteins. PLoS Biol 4:e374.
    56. Majors AK, Austin RC, de la Motte CA, et al. Endop lasmic reticulum stress induces hyaluronan deposition and leukocyte adhesion. J Biol Chem,2003,278 (47): 47223-47231.
    57. Li Y, Schwabe RF, DeVries2Seimon T, et al. Free cholesterol21oaded macrophages are an abundant source of tumor necrosis factor-alpha and interleukin-6:model of NF-kappaB and map kinase-dependent inflammation in advanced atherosclerosis. J Biol Chem,2005,280 (23):21763-21772.
    58. Gargalovic PS, Gharavi NM, Clark MJ, et al. The unfolded p rotein response is an important regulator of inflammatory genes in endothelial cells. Arterioscler Thromb Vasc Biol,2006,26 (11):2490-2496.
    59. Ron D, Oyadomari S. Lipid phase perturbations and the unfolded protein response[J]. Dev Cell,2004,7 (3):287-288
    60. Devries2Seimon T, Li Y, Yao PM, et al. Cholesterol2induced macrophage apop tosis requires ER stress pathways and engagement of the type A scavenger recep tor. J Cell Biol,2005,171 (1):61-73
    61. Ricci R, Sumara G, Sumara I, et al. Requirement of JNK2 for scavenger recep tor A2mediated foam cell formation in atherogenesis. Science,2004,306 (5701):1558-1561.
    62. Myoishi M, Hao H, Minamino T, et al. Increased endop lasmic reticulum stress in atherosclerotic p laques associated with acute coronary syndrome. Circulation,2007, 116(11):1226-1233.
    63. Outinen, P.A., et al.1999. Homocysteine-induced endoplasmic reticulum stress and growth arrest leads to specific changes in gene expression in human vascular endothelial cells. Blood.94:959-967.
    64. Kokame, K., Agarwala, K.L., Kato, H., and Miyata, T.2000. Herp, a new ubiquitin-like membrane protein induced by endoplasmic reticulum stress. J. Biol. Chem.275:32846-32853.
    65. Zhou J, Werstuck GH, Lhotak S, et al. Association of multiple cellular stress pathways with accelerated atherosclerosis in hyperhomocysteinemic apolipoprotein E-deficient mice [J]. Circulation,2004,110 (2):207-213
    66. Werstuck GH, Lentz SR, Dayal S, et al. Homocysteine-induced endoplasmic reticulum stress causes dysregulation of the cholesterol and triglyceride biosynthetic pathways. J Clin Invest.2001 May; 107(10):1263-73.
    67. McDowell IF, Lang D:Homocysteine and endothelial dysfunction:A link with cardiovascular disease. J Nutr,2000; 130(2S suppl):369S-372S
    68. Jiang-jiao Xie, Xian Yu et al:Poly(ADP-ribose) polymerase inhibition attenuate atherosclerotic plaque development in apoE-/- mice with hyperhomocysteinemia. Journal of Atherosclerosis and Thrombosis.2009, Vol.16:641-653
    69. Zhang C, Cai Y, Adachi MT, Oshiro S, Aso T, Kaufman RJ and Kitajama S (2001) Homocysteine induces programmed cell death in human vascular endothelial cells through activation of the unfolded protein response. J. Biol. Chem.276:35867-35874
    70. Huang RFS, Huang SM, Lin BS, Wei JS and Liu T-Z (2001) Homocysteine thiolactone induces apoptotic DNA damage mediated by increased intracellular hydrogen peroxide and caspase 3 activation in HL-60 cells. Life Sci.68:2799-2811
    71. Austin RC, Lentz SR, Werstuck GH. Role of hyperhomocysteinemia in endothelial dysfunction and atherothrombotic disease [J]. Cell Death Differ,2004,11(1):56-64