解冻的新鲜冰冻血浆复苏失血性休克与血管保护机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一章解冻的FFP诱导内皮细胞NO分泌机制及功能研究
     失血性休克(Hemorrhagic shock, HS)是军民和居民战(创)伤死亡的主要原因。在临床治疗过程中,与传统复苏液乳酸林格氏液(lactated ringer, LR)相比,新鲜冰冻血浆(fresh frozen plasma, FFP)因其在复苏病员中提高患者生存率,具有一定的优势,被临床创伤救治广泛采用。而一氧化氮(nitric oxide, NO)是介导内皮细胞功能重要分子,我们设想FFP复苏失血性休克的疗效可能得益于诱导NO分泌和舒张血管。为了探讨FFP复苏作用分子机制,本文采用NO/Nitrite/Nitrate分析法首先检测了HS大鼠模型FFP及LR复苏后不同时间点血清中NO含量,结果发现FFP复苏后HS大鼠血清中NO含量显著增加(p<0.05)。与单独HS组大鼠相比,FFP复苏组HS大鼠血清中NO含量增加幅度大,出现时间早(p<0.05),而LR复苏却降低大鼠HS复苏后各时间检测点NO含量。同样对体外培养人肺正常微血管内皮细胞(HPMECs)和人真皮淋巴管内皮细胞(HDLECs)FFP处理后NO含量进行分析,结果FFP处理后血管内皮细胞NO生成同样增加,与对照组相比统计学有显著性差异(p<0.05)。为了探讨FFP复苏对HS大鼠血管舒张功能的影响,随后测定各组大鼠乙酰胆碱诱导内皮依赖性血管舒张反应,与单独HS组相比,结果发现FFP复苏显著增加乙酰胆碱诱发内皮依赖性血管舒张反应(分别是49±4mmHg与37±4 mmHg)(p<0.05)。进一步探讨FFP诱导内皮细胞NO分泌分子机制,采用磷酸化蛋白激酶抗体芯片和免疫印迹方法筛选和鉴定FFP处理后内皮细胞相关蛋白激酶磷酸化,结果发现为FFP显著增加两株内皮细胞12种蛋白激酶磷酸化,且在两株内皮细胞中FFP均能诱导AMPKα1,Akt1和eNOS磷酸化。FFP诱导eNOS磷酸化在FFP复苏HS大鼠的肺组织中同样得到了证实。表明FFP体内外均能激活AMPKα1/Akt1/eNOS信号转导通路。分别采用Compound C(AMPK的抑制剂),LY294002(PI3K/Akt抑制剂)或L-NAME(NOS抑制剂)预处理HPMECs细胞,阻挡AMPKα1/Akt1/eNOS信号转导通路,结果为上述三种抑制剂均能抑制FFP诱导eNOS激活和NO生成,提示AMPKα1/Akt1/eNOS信号转导通路激活介导FFP诱导NO分泌和血管舒张。
     本项目首次报道FFP诱导增加HS大鼠血清和体外培养内皮细胞上清NO含量,并进一步筛选和鉴定出AMPKα1/Akt1/eNOS信号转导通路介导FFP诱导NO分泌和血管舒张,揭示了FFP复苏保护血管内皮细胞新机制。为了进一步探讨FFP诱导血管内皮细胞增加NO抑制HS诱导血管收缩改善微循环及修复内皮细胞功能提供科学依据。
     第二章解冻的FFP对血管内皮细胞迁移的影响及机制研究
     失血性休克是创伤后死亡的首要原因。最近的临床研究表明,尽早、尽快地采用新鲜冰冻血浆(fresh frozen plasma, FFP)进行复苏能显著改善临床失血性休克复苏效果。为了满足各地救治中心对FFP日益增长的需求及快速便捷获得FFP,经批准新鲜解冻血浆4℃贮存不多于5天仍可用临床复苏。研究报道FFP中含有高浓度与内皮细胞迁移有关的转化生长因子-β(transform growth factor-β, TGF-β)。由此我们设想FFP可能促进内皮细胞迁移,贮存的FFP可能改变了生长因子水平和信号转导,从而降低FFP疗效。本项目以迁移力作为功能研究着眼点,比较新鲜解冻血浆(FFP Day 0)和4℃贮存5天FFP(FFP Day 5)在正常氧供和缺氧条件下诱导内皮细胞迁移能力及其对内皮细胞TGF-p信号转导通路影响以及FFP贮存过程中TGF-p浓度变化。FFP(Day 0)和FFP(Day 5)分别处理人肺微血管内皮细胞(Human pulmonary microvascular endothelial cells, HPMECs)和人真皮淋巴管内皮细胞(human dermal lymphatic endothelial cells, HDLECs)后,行迁移实验和Western印迹分析,结果发现:1)在正常供氧和缺氧条件下,FFP(Day 0)和FFP(Day 5)均能促进细胞迁移,而FFP(Day 5)促进细胞迁移能力显著下降(p<0.05);2)FFP(Day 0)与FFP(Day 5)相比,TGF-β1水平显著升高(p<0.05);3)抑制TGF-βI型受体ALK5的活性后,增强FFP(Day 0)和FFP(Day 5)诱导内皮细胞迁移能力;4)FFP处理后显著增加TGF-p信号转导通路关键分子Smad2/3磷酸化,预处理ALK5活性可抑制其磷酸化。在体外培养两株内皮细胞中,FFP(Day 5)诱导增加Smad2/3磷酸化幅度大,与FFP(Day 0)相比,具有显著性差异(p<0.05)。结果表明TGF-β1/ALK5/Smad2/3信号转导通路参与抑制FFP诱导内皮细胞迁移,标准贮存导致TGF-β1水平升高和增加TGF-β1/ALK5/Smad2/3信号通路转导进而削弱FFP促进内皮细胞迁移。
     本项目首次报道FFP不管是在正常供氧还是在缺氧条件下均能诱导内皮细胞迁移,贮存将增加细胞因子TGF-β1水平及增强TGF-β1/ALK5/Smad2/3信号通路转导,并降低FFP诱导内皮细胞迁移,为进一步探讨FFP通过诱导内皮细胞迁移参与失血性休克后血管内皮完整和功能的恢复提供科学依据。
Chapter One:The mechanisms and function of thawed Fresh Frozen Plasma Induces Nitric Oxide Production
     Hemorrhagic shock (HS) is the leading cause of death in civilian and military trauma. Fresh frozen plasma (FFP) has been used for HS in trauma centers with survival benefit compared to traditional resuscitation fluids such as lactated Ringer (LR). Because nitric oxide (NO) is a key mediator of normal endothelial function, we hypothesized that part of the beneficial effects of FFP is due to its ability to induce NO production and vasodilation during HS. In a standardized rat HS-resuscitation model, we found that FFP resulted a much higher and earlier NO production in the sera of FFP-resuscitated rats than HS alone rats as determined by a NO/Nitrite/Nitrate assay. On the contrary, LR suppressed HS-induced NO levels at all the time points examined. Acetylcholine induced a significant increase in vasodilation in FFP-resuscitated HS rats compared to HS alone rats (49±4 mmHg vs 37±4 mmHg). In vitro, FFP induced NO production in the conditioned media of FFP-treated human pulmonary microvascular endothelial cells (HPMECs) and dermal lymphatic endothelial cells (HDLECs). Phospho-kinase array and Western blotting revealed that FFP resulted in activation of AMPKα1, Akt1 and eNOS in both HPMECs and HDLECs. eNOS activation was confirmed in the lung tissues of FFP-resuscitated HS rats. Pretreatment with Compound C (AMPK inhibitor), LY294002 (PI3K/Akt inhibitor) or L-NAME (NOS inhibitor) inhibited AMPKα1/Akt1/eNOS cell signaling resulted in FFP-induced NO production and eNOS activation in HPMECs. Together, this study reveals a novel mechanism by which FFP exerts its vasoprotective effect.
     Chapter Two:Effect of thawed FFP on Endothelial Cell Migration and its Mechanisms
     Hemorrhagic shock (HS) is a leading cause of death after trauma. Recent clinical studies have shown that resuscitation with earlier and increased amounts of fresh frozen plasma (FFP) is associated with improved outcomes after severe HS. Many trauma centers are starting to use thawed plasma, an approved product that can be stored for up to 5 days at 4℃. FFP has been shown to contain significant levels of transforming growth factor-β(TGF-β) which is involved in endothelial cell migration. We hypothesized that FFP promotes endothelial migration, and the storage of FFP may alter its growth factor levels and signaling, thereby leading to decreased efficacy. Using migration as a functional endpoint, we examined the changes of TGF-βsignaling in response to Day 0 versus Day 5 FFP. Human pulmonary microvascular endothelial cells (HPMECs) and human dermal lymphatic endothelial cells (HDLECs) were treated with Day 0 and Day 5 FFPs and were subjected to migration assays and immunoblotting. We found that (1) Day 0 FFP induced endothelial cell migration under both normoxia and hypoxia conditions and this effect diminished significantly in Day 5 FFP; (2) TGF-β1 protein level increased significantly in Day 5 FFP compared to Day 0 FFP; (3) Inhibition of TGF-βtypeⅠreceptor ALK5 enhanced cell migration induced by both Day 0 and Day 5 FFPs; and (4) FFP induced a significant increase in phospho-Smad2/3, which was inhibited by ALK5 inhibitors. Compared to Day 0 FFP, Day 5 FFP induced greater phospho-Smad2/3 in both cell types. Our data suggest that TGF-β/ALK5/Smad2/3 signaling is involved in inhibition of FFP-induced cell migration, and standard storage of FFP may decrease the FFP efficacy on cell migration through increased TGF-P 1 level and TGF-β1/ALK5/Smad2/3 signaling.
引文
[1]Angele, M.K., C.P. Schneider, and I.H. Chaudry, Bench-to-bedside review:latest results in hemorrhagic shock. Crit Care,2008.12(4):218.
    [2]Peitzman, A.B., et al., Hemorrhagic shock. Curr Probl Surg,1995.32(11): 925-1002.
    [3]Sayeed, M.M., Ion transport in circulatory and/or septic shock. Am J Physiol, 1987.252(5 Pt 2):809-21.
    [4]Hierholzer, C. and T.R. Billiar, Molecular mechanisms in the early phase of hemorrhagic shock. Langenbecks Arch Surg,2001.386(4):302-8.
    [5]Spaniol, J.R., et al., Fluid resuscitation therapy for hemorrhagic shock. J Trauma Nurs,2007.14(3):152-60; quiz 161-2.
    [6]Matot, I., et al., Liver response to hemorrhagic shock and subsequent resuscitation:MRI analysis. Shock,2008.29(1):16-24.
    [7]Jernigan,T.W., M.A. Croce, and T.C. Fabian, Apoptosis and necrosis in the development of acute lung injury after hemorrhagic shock. Am Surg,2004. 70(12):1094-8.
    [8]Pope, A., French, G, Longnecker, DE, eds, Fluid Resuscitation. State of the Science for Treating Combat Casualties and Civilian Injuries. Washington, DC: Institute of Medicine, National Academy Press.1999.
    [9]Heckbert, S.R., et al., Outcome after hemorrhagic shock in trauma patients. J Trauma,1998.45(3):545-9.
    [10]Spinella, P.C., et al., Effect of plasma and red blood cell transfusions on survival in patients with combat related traumatic injuries. J Trauma,2008.64(2 Suppl): S69-77; discussion S77-8.
    [11]Gonzalez, E.A., et al., Fresh frozen plasma should be given earlier to patients requiring massive transfusion. J Trauma,2007.62(1):112-9.
    [12]Gunter, O.L., Jr., et al., Optimizing outcomes in damage control resuscitation: identifying blood product ratios associated with improved survival. J Trauma, 2008.65(3):527-34.
    [13]Ho, A.M., et al., A mathematical model for fresh frozen plasma transfusion strategies during major trauma resuscitation with ongoing hemorrhage. Can J Surg,2005.48(6):470-8.
    [14]Holcomb, J.B., et al., Increased plasma and platelet to red blood cell ratios improves outcome in 466 massively transfused civilian trauma patients. Ann Surg, 2008.248(3):447-58.
    [15]Maegele, M., et al., Red-blood-cell to plasma ratios transfused during massive transfusion are associated with mortality in severe multiple injury:a retrospective analysis from the Trauma Registry of the Deutsche Gesellschaft fur Unfallchirurgie. Vox Sang,2008.95(2):112-9.
    [16]Kashuk, J.L., et al., Postinjury life threatening coagulopathy:is 1:1 fresh frozen plasma:packed red blood cells the answer? J Trauma,2008.65(2):261-70; discussion 270-1.
    [17]Scalea, T.M., et al., Early aggressive use of fresh frozen plasma does not improve outcome in critically injured trauma patients. Ann Surg,2008.248(4):578-84.
    [18]Zink, K.A., et al., A high ratio of plasma and platelets to packed red blood cells in the first 6 hours of massive transfusion improves outcomes in a large multicenter study. Am J Surg,2009.197(5):565-70; discussion 570.
    [19]Teixeira, P.G., et al., Impact of plasma transfusion in massively transfused trauma patients. J Trauma,2009.66(3):693-7.
    [20]Duchesne, J.C., et al., Review of current blood transfusions strategies in a mature level I trauma center:were we wrong for the last 60 years? J Trauma,2008.65(2): 272-6; discussion 276-8.
    [21]Moore, F.A., et al., Is there a role for aggressive use of fresh frozen plasma in massive transfusion of civilian trauma patients? Am J Surg,2008.196(6): 948-58; discussion 958-60.
    [22]Sperry, J.L., et al., An FFP:PRBC transfusion ratio>/=1:1.5 is associated with a lower risk of mortality after massive transfusion. J Trauma,2008.65(5): 986-93.
    [23]Dente, C.J., et al., Improvements in early mortality and coagulopathy are sustained better in patients with blunt trauma after institution of a massive transfusion protocol in a civilian level I trauma center. J Trauma,2009.66(6): 1616-24.
    [24]Spahn, D.R. and R. Rossaint, Coagulopathy and blood component transfusion in trauma. Br J Anaesth,2005.95(2):130-9.
    [25]Achike, F.I. and C.Y. Kwan, Nitric oxide, human diseases and the herbal products that affect the nitric oxide signalling pathway. Clin Exp Pharmacol Physiol,2003.30(9):605-15.
    [26]Balligand, J.L.,O. Feron, and C. Dessy, eNOS activation by physical forces:from short-term regulation of contraction to chronic remodeling of cardiovascular tissues. Physiol Rev,2009.89(2):481-534.
    [27]Spieker, L.E. and T.F. Luscher, Protection of endothelial function. Handb Exp Pharmacol,2005(170):619-44.
    [28]Verma, S., M.R. Buchanan, and T.J. Anderson, Endothelial function testing as a biomarker of vascular disease. Circulation,2003.108(17):2054-9.
    [29]Feletou, M. and P.M. Vanhoutte, Endothelial dysfunction:a multifaceted disorder (The Wiggers Award Lecture). Am J Physiol Heart Circ Physiol,2006.291(3): H985-1002.
    [30]Ignarro, L.J., et al., Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci U S A,1987.84(24): 9265-9.
    [31]Palmer, R.M., A.G. Ferrige, and S. Moncada, Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature,1987. 327(6122):524-6.
    [32]Geiger, J., Inhibitors of platelet signal transduction as anti-aggregatory drugs. Expert Opin Investig Drugs,2001.10(5):865-90.
    [33]Lyons, D., Impairment and restoration of nitric oxide-dependent vasodilation in cardiovascular disease. Int J Cardiol,1997.62 Suppl 2:p. S101-9.
    [34]Yung, L.M., et al., Reactive oxygen species in vascular wall. Cardiovasc Hematol Disord Drug Targets,2006.6(1):1-19.
    [35]Ying, L. and L.J. Hofseth, An emerging role for endothelial nitric oxide synthase in chronic inflammation and cancer. Cancer Res,2007.67(4):1407-10.
    [36]Kukreja, R.C. and L. Xi, eNOS phosphorylation:a pivotal molecular switch in vasodilation and cardioprotection? J Mol Cell Cardiol,2007.42(2):280-2.
    [37]Bryan, N.S., K. Bian, and F. Murad, Discovery of the nitric oxide signaling pathway and targets for drug development. Front Biosci,2009.14:1-18.
    [38]Mount, P.F., B.E. Kemp, and D.A. Power, Regulation of endothelial and myocardial NO synthesis by multi-site eNOS phosphorylation. J Mol Cell Cardiol, 2007.42(2):271-9.
    [39]Chen, H., et al., Adiponectin stimulates production of nitric oxide in vascular endothelial cells. J Biol Chem,2003.278(45):45021-6.
    [40]Hu, Z., et al., Bidirectional actions of hydrogen peroxide on endothelial nitric-oxide synthase phosphorylation and function:co-commitment and interplay of Akt and AMPK. J Biol Chem,2008.283(37):25256-63.
    [41]Morrow, D., et al., Cyclic strain regulates the Notch/CBF-1 signaling pathway in endothelial cells:role in angiogenic activity. Arterioscler Thromb Vase Biol, 2007.27(6):1289-96.
    [42]Ouchi, N., et al., Adiponectin stimulates angiogenesis by promoting cross-talk between AMP-activated protein kinase and Akt signaling in endothelial cells. J Biol Chem,2004.279(2):1304-9.
    [43]Fulton, D., et al., Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature,1999.399(6736):597-601.
    [44]Levine, Y.C., G.K. Li, and T. Michel, Agonist-modulated regulation of AMP-activated protein kinase (AMPK) in endothelial cells. Evidence for an AMPK->Racl->Akt->endothelial nitric-oxide synthase pathway. J Biol Chem, 2007.282(28):20351-64.
    [45]杜成有,姚溱祥,董蒲江等异种输血对大鼠内脏功能的影响。中华微生物学和免疫学杂志。1999,19(1):51-54.
    [46]Pati S, Matijecic N, Doursout M et al. Protective effects of fresh frozen plasma on vascular endothelial permeability, coagulation, and resuscitation after hemorrhagic shock are time dependent and diminis between day0 and 5 after thaw. J Trauma.2010, DIO:10.1097/TA.0b013e3181e453d4
    [47]Madeira, S.V., et al., eNOS activation induced by a polyphenol-rich grape skin extract in porcine coronary arteries. J Vase Res,2009.46(5):406-16.
    [48]Morrow, V.A., et al., Direct activation of AMP-activated protein kinase stimulates nitric-oxide synthesis in human aortic endothelial cells. J Biol Chem,2003. 278(34):31629-39.
    [49]Cale, J.M. and I.M. Bird, Inhibition of MEK/ERK1/2 signalling alters endothelial nitric oxide synthase activity in an agonist-dependent manner. Biochem J,2006. 398(2):279-88.
    [50]Cao, Y., et al., TGF-beta repression of Id2 induces apoptosis in gut epithelial cells. Oncogene,2009.28(8):1089-98.
    [51]Cao, Y, et al., Identification of apoptotic genes mediating TGF-beta/Smad3-induced cell death in intestinal epithelial cells using a genomic approach. Am J Physiol Gastrointest Liver Physiol,2007.292(1):G28-38.
    [52]Ischiropoulos, H., et al., Peroxynitrite-mediated tyrosine nitration catalyzed by superoxide dismutase. Arch Biochem Biophys,1992.298(2):431-7.
    [53]Kooy, N.W., et al., Evidence for in vivo peroxynitrite production in human acute lung injury. Am J Respir Crit Care Med,1995.151(4):1250-4.
    [54]Kubes, P., M. Suzuki, and D.N. Granger, Nitric oxide:an endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci U S A,1991.88(11):4651-5.
    [55]Moncada, S., R.M. Palmer, and E.A. Higgs, Relationship between prostacyclin and nitric oxide in the thrombotic process. Thromb Res Suppl,1990.11:p.3-13.
    [56]Burnouf, T., Modern plasma fractionation. Transfus Med Rev,2007.21(2): 101-17.
    [57]Muthusamy, B., et al., Plasma Proteome Database as a resource for proteomics research. Proteomics,2005.5(13):3531-6.
    [58]Anderson, N.L., et al., The human plasma proteome:a nonredundant list developed by combination of four separate sources. Mol Cell Proteomics,2004. 3(4):311-26.
    [59]Feng, Y., et al., VEGF induces nuclear translocation of Flk-1/KDR, endothelial nitric oxide synthase, and caveolin-1 in vascular endothelial cells. Biochem Biophys Res Commun,1999.256(1):192-7.
    [60]Watanabe, M., et al., Sustained contraction and loss of NO production in TGFbetal-treated endothelial cells. Br J Pharmacol,2006.149(4):355-64.
    [61]Kanter, J, et al., Oncogenic and angiogenic growth factors accumulate during routine storage of apheresis platelet concentrates. Clin Cancer Res,2008.14(12): 3942-7.
    [1]Angele, M.K., C.P. Schneider, and I.H. Chaudry, Bench-to-bedside review:latest results in hemorrhagic shock. Crit Care,2008.12(4):p.218.
    [2]Holcomb, J.B., et al., Increased plasma and platelet to red blood cell ratios improves outcome in 466 massively transfused civilian trauma patients. Ann Surg, 2008.248(3):p.447-58.
    [3]Gonzalez, E.A., et al., Fresh frozen plasma should be given earlier to patients requiring massive transfusion. J Trauma,2007.62(1):p.112-9.
    [4]Ho, A.M., et al., A mathematical model for fresh frozen plasma transfusion strategies during major trauma resuscitation with ongoing hemorrhage. Can J Surg,2005.48(6):p.470-8.
    [5]Gunter, O.L., Jr., et al., Optimizing outcomes in damage control resuscitation: identifying blood product ratios associated with improved survival. J Trauma, 2008.65(3):p.527-34.
    [6]Maegele, M., et al., Red-blood-cell to plasma ratios transfused during massive transfusion are associated with mortality in severe multiple injury:a retrospective analysis from the Trauma Registry of the Deutsche Gesellschaft fur Unfallchirurgie. Vox Sang,2008.95(2):p.112-9.
    [7]Hess, J.R., et al., Giving plasma at a 1:1 ratio with red cells in resuscitation:who might benefit? Transfusion,2008.48(8):p.1763-5.
    [8]Spinella, P.C., et al., Effect of plasma and red blood cell transfusions on survival in patients with combat related traumatic injuries. J Trauma,2008.64(2 Suppl):p. S69-77; discussion S77-8.
    [9]Teixeira, P.G., et al., Impact of plasma transfusion in massively transfused trauma patients. J Trauma,2009.66(3):p.693-7.
    [10]Dente, C.J., et al., Improvements in early mortality and coagulopathy are sustained better in patients with blunt trauma after institution of a massive transfusion protocol in a civilian level I trauma center. J Trauma,2009.66(6):p. 1616-24.
    [11]Kashuk, J.L., et al., Postinjury life threatening coagulopathy:is 1:1 fresh frozen plasma:packed red blood cells the answer? J Trauma,2008.65(2):p.261-70; discussion 270-1.
    [12]Duchesne, J.C., et al., Review of current blood transfusions strategies in a mature level I trauma center:were we wrong for the last 60 years? J Trauma,2008.65(2): p.272-6; discussion 276-8.
    [13]Scalea, T.M., et al., Early aggressive use of fresh frozen plasma does not improve outcome in critically injured trauma patients. Ann Surg,2008.248(4):p.578-84.
    [14]Murthi, S.B., L.G. Stansbury, and J.R. Hess, Blood and coagulation support in trauma. Blood Rev,2009.23(4):p.149-55.
    [15]Kanter, J., et al., Oncogenic and angiogenic growth factors accumulate during routine storage of apheresis platelet concentrates. Clin Cancer Res,2008.14(12): p.3942-7.
    [16]Khan, S.Y., et al., Soluble CD40 ligand accumulates in stored blood components, primes neutrophils through CD40, and is a potential cofactor in the development of transfusion-related acute lung injury. Blood,2006.108(7):p.2455-62.
    [17]Silliman, C.C., The transfusion of pre storage leukoreduced packed red blood cells to injured patients. Crit Care Med,2008.36(5):p.1661-2.
    [18]Silliman, C.C., et al., Plasma and lipids from stored packed red blood cells cause acute lung injury in an animal model. J Clin Invest,1998.101(7):p.1458-67.
    [19]Carpenter, J.F., M.C. Manning, and T.W. Randolph, Long-term storage of proteins. Curr Protoc Protein Sci,2002. Chapter 4:p. Unit 46.
    [20]Pati S MM, D., M, Ko T, Cao Y, Deng X, Kozar R, Hartwell E, Conyers J, Holcomb JB., The Protective Effects of Fresh Frozen Plasma (FFP) on Vascular Endothelial Permeability, Coagulation, and Resuscitation after Hemorrhagic Shock are Time Dependent and Diminish Between Day 0 and Day 5 after Thaw. J Trauma 2010. (in press)
    [21]Goumans, M.J., F. Lebrin, and G. Valdimarsdottir, Controlling the angiogenic switch:a balance between two distinct TGF-b receptor signaling pathways. Trends Cardiovasc Med,2003.13(7):p.301-7.
    [22]Castanares, C., et al., Signaling by ALK5 mediates TGF-beta-induced ET-1 expression in endothelial cells:a role for migration and proliferation. J Cell Sci, 2007.120(Pt 7):p.1256-66.
    [23]Lebrin, F., et al., TGF-beta receptor function in the endothelium. Cardiovasc Res, 2005.65(3):p.599-608.
    [24]Derynck, R. and Y.E. Zhang, Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature,2003.425(6958):p.577-84.
    [25]Shi, Y. and J. Massague, Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell,2003.113(6):p.685-700.
    [26]Genis, L., et al., Functional interplay between endothelial nitric oxide synthase and membrane type 1 matrix metalloproteinase in migrating endothelial cells. Blood,2007.110(8):p.2916-23.
    [27]Lorenowicz, M.J., et al., PKA and Epacl regulate endothelial integrity and migration through parallel and independent pathways. Eur J Cell Biol,2008. 87(10):p.779-92.
    [28]Madri, J.A., L. Bell, and J.R. Merwin, Modulation of vascular cell behavior by transforming growth factors beta. Mol Reprod Dev,1992.32(2):p.121-6.
    [29]Lauder, H., et al., Quantification of the repair process involved in the repair of a cell monolayer using an in vitro model of mechanical injury. Angiogenesis,1998. 2(1):p.67-80.
    [30]Cao, Y., et al., Identification of apoptotic genes mediating TGF-beta/Smad3-induced cell death in intestinal epithelial cells using a genomic approach. Am J Physiol Gastrointest Liver Physiol,2007.292(1):p. G28-38.
    [31]Cao, Y, et al., TGF-beta repression of Id2 induces apoptosis in gut epithelial cells. Oncogene,2009.28(8):p.1089-98.
    [32]Muthusamy, B., et al., Plasma Proteome Database as a resource for proteomics research. Proteomics,2005.5(13):p.3531-6.
    [33]Anderson, N.L., et al., The human plasma proteome:a nonredundant list developed by combination of four separate sources. Mol Cell Proteomics,2004. 3(4):p.311-26.
    [34]Schenk, S., et al., A high confidence, manually validated human blood plasma protein reference set. BMC Med Genomics,2008.1:p.41.
    [35]Goumans, M.J., et al., Balancing the activation state of the endothelium via two distinct TGF-beta type I receptors. EMBO J,2002.21(7):p.1743-53.
    [36]Goumans, M.J., et al., Activin receptor-like kinase (ALK)1 is an antagonistic mediator of lateral TGFbeta/ALK5 signaling. Mol Cell,2003.12(4):p.817-28.
    [1]陈主初,肖志强。疾病蛋白质组学[M].北京:化学工业出版社,2005:167-168.Chen ZC, Xiao ZQ. Disease Proteomics[M]. Beijing:Chemical industry press,2005: 167-168
    [2]Weigel NL, Moore NL.Kinases and protein phosphorylation as regulators of steroid hormone action[J]. Nucl Recept Signal.2007,17;5:e005.
    [3]Zhang H, Zha X, Tan Y, et al. Phosphoprotein analysis using antibodies broadly reactive against phosphorylated motifs[J]. J Biol Chem.2002,277(42):39379-39387.
    [4]Schmelzle K, White FM. Phosphoproteomic approaches to elucidate cellular signaling networks[J]. Curr Opin Biotechnol.2006,17(4):406-414.
    [5]Morandell S, Stasyk T, Grosstessner-Hain K, et al.Phosphoproteomics strategies for the functional analysis of signal transduction[J]. Proteomics.2006,6(14):4047-4056.
    [6]Wunderlich W, Fialka I, Teis D, et al. A novel 14-kilodalton protein interacts with the mitogen-activated protein kinase scaffold mpl on a late endosomal/lysosomal compartment[J].J Cell Biol 2001,19; 152(4):765-776.
    [7]Teis D, Wunderlich W, Huber LA.Localization of the MP1-MAPK scaffold complex to endosomes is mediated by p14 and required for signal transduction[J]. Dev Cell.2002, 3(6):803-814.
    [8]Horbinski C, Chu CT. Kinase signaling cascades in the mitochondrion:a matter of life or death[J]. Free Radic Biol Med.2005,38(1):2-11.
    [9]Wu CC, MacCoss MJ, Mardones G, et al. Organellar proteomics reveals Golgi arginine dimethylation[J]. Mol Biol Cell.2004,15(6):2907-2919.
    [10]Camacho-Carvajal MM, Wollscheid B, Aebersold R, et al. Two-dimensional Blue native/SDS gel electrophoresis of multi-protein complexes from whole cellular lysates: a proteomics approach[J]. Mol Cell Proteomics.2004,3(2):176-182.
    [11]Hill MM, Adrain C, Duriez PJ, et al. Analysis of the composition, assembly kinetics and activity of native Apaf-1 apoptosomes[J]. EMBO J.2004,23(10):2134-2145.
    [12]Foster LJ, De Hoog CL, Mann M. Unbiased quantitative proteomics of lipid rafts reveals high specificity for signaling factors[J]. Proc Natl Acad Sci U S A.2003 100(10):5813-5818.
    [13]Insel PA, Head BP, Ostrom RS, et al.Caveolae and lipid rafts:G protein-coupled receptor signaling microdomains in cardiac myocytes[J].Ann N Y Acad Sci.2005, 1047:166-172.
    [14]Moser K, White FM. Phosphoproteomic analysis of rat liver by high capacity IMAC and LC-MS/MS[J]. J Proteome Res.2006,5(1):98-104.
    [15]Pinkse MW, Uitto PM, Hilhorst MJ, et al. Selective isolation at the femtomole level of phosphopeptides from proteolytic digests using 2D-NanoLC-ESI-MS/MS and titanium oxide precolumns[J]. Anal Chem.2004,76(14):3935-3943.
    [16]Cargile BJ, Sevinsky JR, Essader AS, et al.Immobilized pH gradient isoelectric focusing as a first-dimension separation in shotgun proteomics[J]. J Biomol Tech. 2005,16(3):181-9.
    [17]Beausoleil SA, Jedrychowski M, Schwartz D, et al. Large-scale characterization of HeLa cell nuclear phosphoproteins[J]. Proc Natl Acad Sci U S A.2004, 101(33):12130-12135.
    [18]Ballif BA, Villen J, Beausoleil SA, et al. Phosphoproteomic analysis of the developing mouse brain[J]. Mol Cell Proteomics.2004,3(11):1093-1101.
    [19]Trinidad JC, Specht CG, Thalhammer A, et al. Comprehensive identification of phosphorylation sites in postsynaptic density preparations[J]. Mol Cell Proteomics. 2006,5(5):914-922.
    [20]Olsen JV, Blagoev B, Gnad F,et al.Global, in vivo, and site-specific phosphorylation dynamics in signaling networks [J].Cell.2006,127(3):635-648.
    [21]Swatton JE, Prabakaran S, Karp NA,et al.Protein profiling of human postmortem brain using 2-dimensional fluorescence difference gel electrophoresis (2-D DIGE). Mol Psychiatry.2004,9(2):128-43.
    [22]Alfonso P, Dolado I, Swat A, et al.Proteomic analysis of p38alpha mitogen-activated protein kinase-regulated changes in membrane fractions of RAS-transformed fibroblasts[J].Proteomics.2006,6 Suppl 1:S262-71.
    [23]Kang TH, Bae KH, Yu MJ, et al.Phosphoproteomic analysis of neuronal cell death by glutamate-induced oxidative stress[J].Proteomics.2007,7(15):2624-2635.
    [24]Temporini C, Calleri E, Massolini G, et al. Integrated analytical strategies for the study of phosphorylation and glycosylation in proteins.Mass Spectrom Rev.2008, 27(3):207-36.
    [25]Stensballe A, Jensen ON, Olsen JV, et al. Electron capture dissociation of singly and multiply phosphorylated peptides[J].Rapid Commun Mass Spectrom.2000, 14(19):1793-1800.
    [26]Kruger M, Kratchmarova I, Blagoev B, et al. Dissection of the insulin signaling pathway via quantitative phosphoproteomics[J].Proc Natl Acad Sci U S A.2008, 105(7):2451-2456.
    [27]Korbel S, Schumann M, Bittorf T, et al. Relative quantification of erythropoietin receptor-dependent phosphoproteins using in-gel 18O-labeling and tandem mass spectrometry[J].Rapid Commun Mass Spectrom.2005,19(16):2259-2271.
    [28]Bantscheff M, Eberhard D, Abraham Y, et al.Quantitative chemical proteomics reveals mechanisms of action of clinical ABL kinase inhibitors[J]. Nat Biotechnol.2007, 25(9):1035-1044.
    [29]Duthie KA, Osborne LC, Foster LJ, et al.Proteomics analysis of interleukin (IL)-7-induced signaling effectors shows selective changes in IL-7Ralpha449F knock-in T cell progenitors[J].Mol Cell Proteomics.2007,6(10):1700-1710.
    [30]Zieske LR. A perspective on the use of iTRAQ reagent technology for protein complex and profiling studies[J]. J Exp Bot.2006,57(7):1501-1508.
    [1]Alia QE, Gerard C. Large-scale functional analysis using peptide or protein array. Nature Biotech,2000,18:393-397.
    [2]Figeys D. Adapting array and lab-on-a-chip technology for proteomics. Proteomics, 2002,2:373-382.
    [3]Figeys D, Pinto D. Proteomics on a chip:promising developments. Electrophoresis, 2001,22(2):208-216.
    [4]Borrebaeck CA, Ekstrom S, Hager AC, et al. Protein chips based on recombinant antibody fragments:a highly sensitive approach as detected by mass spectrometry. Biotechniques,2001,30(5):1126-1132.
    [5]Davies H, Lomas L, Austen B. Profiling of amyloid beta peptide variants using SELDI protein chip arrays. Biotechniques,1999,27(6):1258-1261.
    [6]Forler D, Kocher T, Rode M, et al. an efficient protein complex purification method for functional proteomics in higher eukaryotes. Nature Biotechnology,2003,21(1):89-92.
    [7]Kovarova H, Hajduch M, Livingstone M, et al. Analysis of sate-specific phosphorylation of preteins by two-dimensional gel electrophoresis approach. J Chromatography B,2003,787:53-56.
    [8]Lowman HB. Bacteriophage display and discovery of peptide leads for drug development. Annu Rev Biophys Biomol Struct,1997,26:401-424.
    [9]Nelson RW, Nedelkov D, Tubbs KA. Biosensor chip mass spectrometry:a chip-based proteomics approach. Electrophoresis,2000,21(6):1155-1163.
    [10]Randall W, Kemmons AT. Biosensor chip mass spectrometry:A chip-based proteomics approach. Electrophoresis,2000,21:1155-1163.
    [11]Bussow K. Cahill D, Nietfeld W, et al. A Method for Global Protein Expression And antibody Screening on High—density Filters of an Arrayed cDNA Library. Nucl Acids Res,1998,26(21):5007—5008.
    [12]Borrebaeek C A K. Antibodies in Diagnostics from Immuno Assays to Protein Chips. Immunol Today,2000,21(8):379—382.
    [13]Zhu H, James F K, Swan Chug, et al. Analysis of Yeast Protein Kinase Using Protein Chips. Nature Genetics,2000,26:283-289.
    [14]Huang R P. Detection of Multiple Proteins in an An tibody Based Protein Microarray System. J Irnmunol Methods,2001,255(1-2):1-13.
    [15]Haab B B, Dunham M J, Brown P, et al. Protein Microarrays for Highly Parallel Detection and Quantitation of Specific Proteins and Antibodies in Complex Solutions. Genome Biol,2001,2(12):1-4.
    [16]Sizel J W, Cercek B, Dodson C, et al. Mass-sensing, Multianalyte Microarray Immunoassay with Imaging Detection. Clinical Chem,1998,44(9):2036-2043.
    [17]Zhang B, Foret F, Karger BL. High-throughput microfabricated CE/ESI-MS: automated sampling from a microwell plate. Anal Chem,2001,73(11):2675-2681.
    [18]Zhu H, Bilgin M, Bangham R, et al. Global analysis of protein activities using proteome chips. Science,2000,293 (5537):2101-2105.
    [19]Angelika L, Martin H, Holger E, et 02. Protein Microarrays for Gene Expression and Antibody Screening. Analytical Biochemistry,1999,270(10):103-111.
    [20]Yu C, Davey MH, Svec F, Frechet JM. Monolithic porous polymer for on-chip solid-phase extraction and preconcentration prepared by photoinitiated in situ polymerization within a microfluidic device. Anal Chem,2001,73(21):5088-5096.
    [21]Wadsworth J T, Somers K D, Cazares L H, et al. Serum Protein Profiles to Identify Head and Neck Cancer. Clin Cancer Res,2004,10(5):1625-1632.
    [22]Bryumor W, Robel't S, Shannon B, et al. Detection of early-stage cancer by serum protein analysis. Am Lab,2001,33(9):32
    [23]陈益定,郑树,余捷凯,等.血清蛋白质质谱模型在大肠癌诊断中的应用.中华肿瘤杂志,2004,26(7):381
    [24]Zhang Xing, Wang Bo, Zhang X S, et al. Serum Diagnosis of Difuse Large B-cell Lymphomas and Further Identification of Response to Therapy Using SELDI-TOF-MS and Tree Analysis Patterning. BMC Cancer,2007,7:235.
    [25]Yoshizaki T, Enomoto T, Nakashima R, et al. Mtered Protein Expression in Endometrial Carcinogenesis. Cancer Lett,2005,226(2):101-106.
    [26]Cho W C, Yip T T, Yip C, et al. Identification of Serum Amyloid A Protein as a Potentially Useful Biomarker to Monitor Relapse of Nasopharyngeal Cancer by Serumproteomic Profiling. Clinical Cancer Research,2004,10(1):43—52.
    [27]Conrads T P, Zhou M, Petricoin E F, et al. Cancer Diagnosis Using Proteomics Patterns. Expert Rev Mol Diagn,2003.3(4):411-420.
    [28]肖雪嫒,赵小冬,刘剑凯,等.利用蛋白质组学方法筛选及确定喉癌诊断标志分子.中国科学(c辑),2004,34(1):49-53.
    [29]WJad Kusnezow J, Hoheisel J D. Antibody Microarrays:Promises and Problems. Bioteehniques,2002,10(33):14-23.
    [30]Lueking A, Horn M, EickhottT, Protein microarrays for gene expression and antitsxly screening[J]. AnalBiochem 1999,270(1):103-111.