METEORIN样分泌性蛋白在骨组织中的表达及其功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:骨膜下成骨作用能够使长骨外径增粗,皮质骨量增加,对增强骨强度,减少骨折发生具有重要意义;并且骨膜成骨细胞对雌激素、甲状旁腺素、机械应力等调节骨形成的因素具有独特的反应性。以骨膜下成骨细胞为靶点的药物,可能对发现新的抗骨质疏松症治疗方案具有重要意义。但长久以来,骨膜下成骨细胞分化、参与骨形成的分子机制尚不清楚,对其在抗骨质疏松症药物治疗中的作用关注甚少。
     本实验室一直关注骨膜成骨细胞在骨形成中的作用。前期建立了骨外膜细胞的体外培养模型,研究了雌激素对骨膜成骨细胞的作用特点;构建了骨膜cDNA文库和雌激素作用前后骨外膜细胞差异表达基因文库,并完成了两个文库的大规模的测序。
     目的:本研究利用骨膜cDNA文库和雌激素作用前后骨外膜细胞差异表达基因文库的基因序列信息,对骨膜成骨细胞中表达的未知功能基因进行了克隆和筛选,并详细研究感兴趣基因在骨组织中的表达规律,初步探索其在成骨细胞骨形成中的作用,从而可以深入了解骨膜下成骨细胞骨形成机制、寻找新的促进骨形成的药物打下基础。
     方法:
     第一部分、骨膜成骨细胞中新功能基因高通量的筛选
     (1)基因克隆:目的基因序列来源于骨膜cDNA文库和雌激素作用前后骨膜细胞差减库,以PCR方法扩增未知功能基因蛋白编码区并构建真核表达载体
     (2)利用双荧光素酶报告基因系统筛选影响信号通路的基因:利用共转染技术,将萤火虫荧光素酶报告基因载体(pAP1-luc/pNFAT-luc/pCRE-luc/pNFkB-luc/pStat-luc)、内参照水母荧光素表达载体、未知功能基因表达载体转染入工程细胞293T细胞中,检测无信号通路刺激物和有信号通路刺激物时,未知功能基因对萤火虫荧光素酶报告基因转录活性的影响
     第二部分、METRNL生物信息学分析
     对上一步发现的能够影响信号通路的基因METRNL进行启动子结构、蛋白结构、保守序列比对等信息分析
     第三部分、METRNL细胞及组织表达定位
     (1) METRNL基因原核蛋白表达、纯化及多克隆抗体制备
     (2)蛋白细胞定位:通过pEGFP荧光报告基因法和间接免疫荧光检测METRNL蛋白在MG63细胞中的定位;通过western blot检测转染METRNL的CHO细胞培养上清中METRNL蛋白的表达情况
     (3)组织表达:利用northern blot检测多种组织中METRNL mRNA的表达情况第四部分、METRNL在骨组织表达特点及其对成骨功能影响
     (1)骨组织表达:利用免疫组织化学法,检测不同年龄大鼠骨组织中METRNL蛋白的表达规律
     (2)成骨功能影响:建立稳定过表达METRNL的MG63细胞,检测在成骨诱导条件下矿化结节形成、成骨相关标记物ALP、OPG的表达情况。
     结果:
     第一部分:
     成功建立5个未知功能基因编码区的真核表达载体;通过双荧光素酶报告基因系统筛选发现METRNL号基因即METRNL与报告基因共转染后,未加刺激物时AP1的转录活性与对照组相比下降达74%,加入信号通路刺激物后,同样能够显著抑制AP1的转录活性:另外,METRNL也可以显著抑制转录因子NFAT和CRE的转录活性。
     第二部分:
     信息分析显示,METRNL蛋白有311氨基酸组成,N端45个氨基酸可能是信号肽,METRNL可能是一种分泌性蛋白;蛋白功能预测METRNL不存在与已知蛋白模体或序列相似的结构
     第三部分:
     (1)利用原核表达体系成功纯化了METRNL蛋白83—311位氨基酸组成的多肽片段,免疫大白兔后获得多克隆抗体,抗体效价达1:5×10~4。
     (2)细胞定位研究显示MG63细胞中,METRNL主要出现于细胞浆中,胞核无表达;转染METRNL的CHO细胞培养上清,经过浓缩后能够检测到METRNL蛋白的存在,提示METRNL是分泌性蛋白。
     (3) Northern blot结果显示,METRNL的mRNA约长1500bp,可在成人脑、心、肝脏、肾脏、脾脏、卵巢、子宫、骨骼肌等8个组织中表达,但表达量较低
     第四部分:
     (1)骨组织免疫组化显示,METRNL皮质骨和松质骨骨表面的成骨细胞中,METRNL呈阳性表达。随着成骨细胞分化成熟,被骨基质包埋,成为骨细胞后,METRNL表达降低,甚至呈阴性表达;生长板肥大软骨细胞中METRNL染色阳性,而增殖软骨细胞无表达。不同年龄段大鼠相比较发现,随着年龄增加,METRNL表达呈下降趋势。提示METRNL主要表达于活跃骨形成部位,可能参与调控骨形成
     (2)过表达METRNL的MG63在成骨诱导培养液条件下,骨结节形成数较转染空载体的对照组降低;成骨细胞早期标记物ALP的量在诱导后持续增加,不随时间延长而降低;而成熟成骨细胞标记物OPG,则较对照组明显降低。提示METRNL基因过表达使MG63处于活跃的骨基质形成期,但未能进一步向骨基质矿化期进展。
     结论:
     (1) METRNL是成骨细胞分泌的一种新的功能蛋白
     (2) METRNL可能通过AP—1、NFAT、CRE等多条信号通路发挥作用
     (3) METRNL主要表达于活跃骨形成部位,可能参与调控骨形成
     (4) METRNL可能促进成骨细胞分泌骨基质,表达过度时能抑制成骨细胞的进一步成熟
     (5)推测METRNL在成骨细胞、软骨细胞前体向成熟分化这一阶段发挥调节作用;有可能作为新的药物作用靶点。
Bankgroud:periosteal bone apposition increase the bone diameter,cortical bone thickness,and is important for the bone strength,reducing the bone fracture;and Compared to endosteal osteoblasts,periosteal osteoblasts exhibit greater mechanosensitivity to strain,a lower threshold of responsiveness to parathyroid hormone,higher levels of expression of estrogenαreceptors.So the new drug targeting the periosteum may be an alternate strategy to protect human bones from fracture.But for a long time,the molecular mechanism of periosteal osteoblasts differentiation and function is unclear.The response of periosteam to anti-osteoporosis drug is unknown.
     We have paid attention to the periosteal osteoblast for a long time.Previous we established establish the in vitro culture model ofperiosteal cells,and studied the response of periosteal osteoblasts to estrogen.We construct periosteum cDNA library and the. differently expressing genes library(SSH library) of human periosteal cells between estrogen and control treatment.
     Objective:Now we used Dual-luciferase reporter system to screen for unknown function genes expression in periosteum,and studied the expression pattern of the interesting gene in bone and explored the gene's function in osteoblasts.
     Methods:
     Part 1:high-throughput screening of novel gene expressing in perioteal cells that could influence the signal pathway
     (1) Gene clone:The target gene sequence originates from the periosteum eDNA library and the SSH library.PCR methods were used to expand the ORFs area and cloned into eukaryotic expression vector pCDNA3.1
     (2) Using dual luciferase reporter gene system to screen new function gene that c ould influence signal pathway:the Reporter plasmid(pAP1-luc/pNFAT-luc/pCRE -luc/pNFkB-luc/pStat-luc),which codes a firefly luciferase under the control of pAP1-luc/pNFAT-luc/pCRE-luc/pNFkB-luc/pStat-luc consensus sequence in the p romoter region:an internal control vector pRL-TK and the target gene in pCD NA3.1 were co-transfected into 293T cell,activity of both Firefly and Renilla luciferase are measured to identify the new gene that could influence the sig nal pathway
     Part 2:Bioinformatics analysis of METRNL
     Part 3:the location in MG63 and the expression pattern of METRNL
     (1)Prokaryotic expression of the polypeptide 83-311 and its antibody preparation
     (2) cell localization:the pEGFP fluorescence reported gene and Indirect Immunofluorescence methods were used to study the localization of METRNL in MG63; western blot was used to exam the protein in CHO cell transfected with METRNL expression vector
     (3)using northern blot to exam the mRNA level of METRNL in multiple tissue membrane
     Part 4:the expression pattern of METRNL in bone and its function in osteoblast
     (1)Immunohistochemistry was used to identify the location and distribution of METRNL in the bone of different age SD rat
     (2)MG63 cells were stable transfected with pEGFP-METRNL to overexpress the METRNL,the number of mineralization node in osteogenic supplement was compaired with control.And the difference of ALP,OPG was also compared.
     Result:
     part 1:
     we succeeded in cloning five new genes expressing in periosteum osteoblasts into pCDNA3.1.After screening with Dual-luciferase reporter system,we find that METRNL cotransfected with cis-reporter vector can significantly inhibit the transcription activity of AP-1 by 74%when without stimulating as compared with control;after stimulated with PMA and ionomycin,the activity of AP-1 are also inhibited.In addition,the transcription activity of CRE and NFAT are also inhibited
     part 2:
     Bioinformatics analysis show that human METRNL mRNA contains an open reading frame that encodes a protein of 311 amino acids.The encoded amino-acid sequence showed no significant homology to the sequence of any other previously described protein except the meteorin with 42%homology,suggesting that METRNL is an novel protein.The predicted protein contains a putative signal peptide in its NH-terminal region.
     Part 3:
     (1)both the fusion protein EGFP-METRNL and the Indirect Immunofluorescence result shows that the METRNL located in cytoplasm of MG63.After purified the protein from CHO culture medium,we can detected the METRNL by western blot,so METRNL is a secreted protein.
     (2)Northen blot show that the METRNL mRNA is about 1500 bp,expressing in adult brain,heart,liver,kidney,spleed,ovary,muscle and uterus,but the expression level is very low
     Part 4:
     (1)osteoblasts lining the trabecular and periosteal bone surface express high level of METRNL.In bone,expression of METRNL is highest in embryos and neonates,and decreasing steadily with age to very low levels in 12 month-old long bones.
     (2) the MG63 cells overexpressing METRNL shows lower mineralization node after 14 days inducing by osteogenic supplement,but the ALP level is higher and the OPG level is lower as compared with control after induced
     Conclusion:
     METRNL is a novel secreted protein
     METRNL maybe display its function through AP1,NFAT and CRE.
     METRNL mainly express in actcive osteoblasts,maybe involve in controlling bone formation.
     METRNL can significantly enhance the matrix production,but overexpression can inhibit the further differentiation
引文
1 Osteoporosis prevention,diagnosis,and therapy.JAMA,2001,285(6):785-95.
    2 Cummings SR,Melton LJ.Epidemiology and outcomes of osteoporotic fractures.Lancet,2002,359(9319):1761-7.
    3 Lerner UH. Bone remodeling in post-menopausal osteoporosis. J Dent Res,2006, 85(7): 584-95.
    
    4 Riggs BL, Parf itt AM. Drugs used to treat osteoporosis: the critical need for a uniform nomenclature based on their action on bone remodeling. J Bone Miner Res, 2005,20(2):177-84.
    
    5 Stepan JJ, Alenfeld F, Boivin G, et al. Mechanisms of action of antiresorptive therapies of postmenopausal osteoporosis. Endocr Regul,2003, 37(4): 225-38.
    
    6 Coxon FP, Thompson K, Rogers MJ. Recent advances in understanding the mechanism of action of bisphosphonates. Curr Opin Pharmacol,2006, 6(3):307-12.
    
    7 Riggs BL. The mechanisms of estrogen regulation of bone resorption. J Clin Invest, 2000, 106(10):1203-4.
    
    8 Krane SM. Identifying genes that regulate bone remodeling as potential therapeutic targets. J Exp Med, 2005,201(6):841-3.
    
    9 Wang Y, Nishida S, Boudignon BM, et al. The IGF-I Receptor Is Required for the Anabolic Actions of Parathyroid Hormone on Bone. J Bone Miner Res, 2007.
    
    10 Jilka RL. Molecular and cellular mechanisms of the anabolic effect of intermittent PTH. Bone, 2007,40(6):1434-46.
    
    11 Iu MF, Kaji H, Naito J, et al. Low-dose parathyroid hormone and estrogen reverse alkaline phosphatase activity suppressed by dexamethasone in mouse osteoblastic cells. J Bone Miner Metab, 2005,23(6):450-5.
    
    12 Hodsman AB, Bauer DC, Dempster DW, et al. Parathyroid hormone and teriparatide for the treatment of osteoporosis: a review of the evidence and suggested guidelines for its use. Endocr Rev, 2005, 26(5):688-703.
    
    13 Ahlborg HG, Johnell O, Turner CH, et al. Bone loss and bone size after menopause. N Engl J Med, 2003, 349(4):327-34.
    
    14 Seeman E. Periosteal bone formation—a neglected determinant of bone strength. N Engl J Med, 2003, 349 (4):320-3.
    
    15 Seeman E. The structural and biomechanical basis of the gain and loss of bone strength in women and men. Endocrinol Metab Clin North Am,2003, 32(1): 25-38.
    
    16 Allen MR, Hock JM, Burr DB. Periosteum: biology, regulation, and response to osteoporosis therapies. Bone, 2004,35(5):1003-12.
    1 Zhu YY,Machleder EM,Chenchik A,et al.Reverse transcriptase template switching:a SMART approach for full-length cDNA library construction.Biotechniques,2001,30(4):892-7.
    2 Komori T.Regulation of osteoblast differentiation by transcription factors.J Cell Biochem,2006,99(5):1233-9.
    3 Huang W,Yang S,Shao J,et al.Signaling and transcriptional regulation in osteoblast commitment and differentiation.Front Biosci,2007,12:3068-92.
    4 Wagner EF,Matsuo K.Signalling in osteoclasts and the role of Fos/AP1 proteins.Ann Rheum Dis,2003,62 Suppl 2:ii83-5.
    5 Stein GS,Lian JB.Molecular mechanisms mediating proliferation/differentiation interrelationships during progressive development of the osteoblast phenotype.Endocr Rev,1993,14(4):424-42.
    6 Ducy P,Zhang R,Geoffroy V,et al.Osf2/Cbfa1:a transcriptional activator of osteoblast differentiation.Cell,1997,89(5):747-54.
    7 Nakashima K,Zhou X,Kunkel G,et al.The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation.Cell,2002,108(1):17-29.
    8 Duyndam MC,van Dam H,Smits PH,et al.The N-terminal transactivation domain of ATF2 is a target for the co-operative activation of the c-jun promoter by p300 and 12S E1A.Oncogene,1999,18(14):2311-21.
    9 Wagner EF.Functions of AP1(Fos/Jun) in bone development.Ann Rheum Dis,2002,61Suppl 2:ii40-2.
    10 Karsenty G,Wagner EF.Reaching a genetic and molecular understanding of skeletal development.Dev Cell,2002,2(4):389-406.
    11 McCabe LR,Banerjee C,Kundu R,et al.Developmental expression and activities of specific fos and jun proteins are functionally related to osteoblastmaturation:role of Fra-2 and Jun D during differentiation.Endocrinology JT-Endocrinology,1996,137(10):4398-408.
    12 Grigoriadis AE,Schellander K,Wang ZQ,et al.Osteoblasts are target cells for transformation in c-fos transgenic mice.J Cell Biol,1993,122(3):685-701.
    13 Thomas DP,Sunters A,Gentry A,et al.Inhibition of chondrocyte differentiation in vitro by constitutive and inducible overexpression of the c-fos proto-oncogene.J Cell Sci,2000,113(Pt 3):439-50.
    14 Wang ZQ,Grigoriadis AE,Mohle-Steinlein U,et al.A novel target cell for c-fos-induced oncogenesis:development of chondrogenic tumours in embryonic stem cell chimeras.EMBO J,1991,10(9):2437-50.
    15 Sabatakos G,Sims NA,Chert J,et al.Overexpression of DeltaFosB transcription factor(s) increases bone formation and inhibits adipogenesis.Nat Med,2000,6(9):985-90.
    16 Yeo H,McDonald JM,Zayzafoon M.NFATcl:a novel anabolic therapeutic target for osteoporosis.Ann N Y Acad Sci,2006,1068:564-7.
    17 Lopez-Rodriguez C,Aramburu J,Rakeman AS,et al.NFAT5,a constitutively nuclear NFAT protein that does not cooperate with Fos and Jun.Proc Natl Acad Sci U S A,1999,96(13):7214-9.
    18 Sun L,Blair HC,Peng Y,et al.Calcineurin regulates bone formation by the osteoblast.Proc Natl Acad Sci U S A,2005,102(47):17130-5.
    19 Winslow MM,Pan M,Starbuck M,et al.Calcineurin/NFAT signaling in osteoblasts regulates bone mass.Dev Cell,2006,10(6):771-82.
    20 Koga T,Matsui Y,Asagiri M,et al.NFAT and Osterix cooperatively regulate bone formation.Nat Med,2005,11(8):880-5.
    21 细胞筛选平台在人类功能基因组研究中的应用.生物化学与生物物理进展[Z].2005:11
    22 高通量筛选JAK-STAT6信号传导通路抑制剂方法的初步建立.中国药理学通报[Z].2006:08
    1 Boguski MS.Bioinformatics.Curr Opin Genet Dev,1994,4(3):383-8.
    2 Murray-Rust P.Bioinformatics and drug discovery.Curr Opin Biotechnol,1994,5(6):648-53.
    3 Reese MG.Application of a time-delay neural network to promoter annotation in the Drosophila melanogaster genome.Comput Chem, 2001,26(1):51-6.
    
    4 Bajic VB, Tan SL, Chong A, et al. Dragon ERE Finder version 2: A tool for accurate detection and analysis of estrogen response elements in vertebrate genomes. Nucleic Acids Res, 2003,31 (13):3605-7.
    
    5 Bendtsen JD, Nielsen H, von Heijne G, et al. Improved prediction of signal peptides: SignalP 3.0. J Mol Biol, 2004,340(4):783-95.
    
    6 Strausberg RL, Feingold EA, Grouse LH, et al. Generation and initial analysis of more than 15, 000 full-length human and mouse cDNA sequences. Proc Natl Acad Sci U S A, 2002, 99(26):16899-903.
    
    7 Ota T, Suzuki Y, Nishikawa T, et al. Complete sequencing and characterization of 21,243 full-length human cDNAs. Nat Genet,2004,36(1):40-5.
    
    8 Nishino J, Yamashita K, Hashiguchi H, et al. Meteorin: a secreted protein that regulates glial cell differentiation and promotes axonal extension. EMBO J, 2004, 23(9):1998-2008.
    
    9 Beaudoing E, Freier S, Wyatt JR, et al. Patterns of variant polyadenylation signal usage in human genes. Genome Res,2000, 10(7): 1001-10.
    
    10 Kaczynski J, Cook T, Urrutia R. Sp1- and Kruppel-like transcription factors. Genome Biol, 2003, 4(2):206.
    
    11 Nothwehr SF, Gordon JI. Targeting of proteins into the eukaryotic secretory pathway: signal peptide structure/function relationships.Bioessays, 1990,12(10):479-84.
    
    12 Ladunga I. Large-scale predictions of secretory proteins from mammalian genomic and EST sequences. Curr Opin Biotechnol,2000, 11(1):13-8.
    
    13 Ladunga I. PHYSEAN: PHYsical SEquence ANalysis for the identification of protein domains on the basis of physical and chemical properties of amino acids. Bioinformatics, 1999, 15(12):1028-38.
    
    14 Nielsen H, Brunak S, von Heijne G. Machine learning approaches for the prediction of signal peptides and other protein sorting signals.Protein Eng, 1999, 12(1):3-9.
    
    15 Nielsen H, Krogh A. Prediction of signal peptides and signal anchors by a hidden Markov model. Proc Int Conf Intell Syst Mol Biol,1998,6:122-30.
    
    16 Barash S, Wang W, Shi Y. Human secretory signal peptide description by hidden Markov model and generation of a strong artificial signal peptide for secreted protein expression. Biochem Biophys Res Commun,2002, 294(4): 835-42.
    1 Studier FW.Use of bacteriophage T7 lysozyme to improve an inducible T7 expression system.J Mol Biol,1991,219(1):37-44.
    2 Sweet DH,Miller DS,Pritchard JB.Localization of an organic anion transporter-GFP fusion construct(rROAT1-GFP) in intact proximal tubules.Am J Physiol,1999,276(6 Pt 2):F864-73.
    3 Klein RD,Gu Q,Goddard A,et al.Selection for genes encoding secreted proteins and receptors.Proc Natl Acad Sci U S A,1996,93(14):7108-13.
    1 Lewis EM, Barnett JF Jr, Freshwater L, et al. Sexual maturation data for Crl Sprague-Dawley rats:criteria and confounding factors. Drug Chem Toxicol, 2002,25(4):437-58.
    
    2 Thomas G, Moffatt P, Salois P, et al. Osteocrin, a novel bone-specific secreted protein that modulates the osteoblast phenotype. J Biol Chem, 2003, 278(50):50563-71.
    
    3 Bord S, Ireland DC, Moffatt P, et al. Characterization of osteocrin expression in human bone.J Histochem Cytochem, 2005, 53(10): 1181-7.
    
    4 Kumar S, Hand AT, Connor JR, et al. Identification and cloning of a connective tissue growth factor-like cDNA from human osteoblasts encoding a novel regulator of osteoblast functions. J Biol Chem, 1999, 274(24): 17123-31.
    
    5 Kerkela E, Bohling T, Herva R, et al. Human macrophage metalloelastase (MMP-12) expression is induced in chondrocytes during fetal development and malignant transformation. Bone,2001, 29(5) :487-93.
    
    6 Tuckermann JP, Pittois K, Partridge NC, et al. Collagenase-3 (MMP-13) and integral membrane protein 2a (Itm2a) are marker genes of chondrogenic/osteoblastic cells in bone formation: sequential temporal, and spatial expression of Itm2a, alkaline phosphatase, MMP-13, and osteocalcin in the mouse. J Bone Miner Res, 2000, 15(7): 1257-65.
    
    7 Zreiqat H, Howlett CR, Gronthos S, et al. S100A8/S100A9 and their association with cartilage and bone. J Mol Histol, 2007.
    
    8 NishidaS, Endo N, Yamagiwa H, et al. Number of osteoprogenitor cells in human bone marrow markedly decreases after skeletal maturation. J Bone Miner Metab, 1999, 17(3): 171-7.
    
    9 Martinez P, Moreno I, De Miguel F, et al. Changes in osteocalcin response to 1, 25-dihydroxyvitamin D(3) stimulation and basal vitamin D receptor expression in human osteoblastic cells according to donor age and skeletal origin. Bone, 2001,29(1) :35-41.
    
    10 Boonen S, Aerssens J, Dequeker J, et al. Age-associated decline in human femoral neck cortical and trabecular content of insulin-like growth factor I: potential implications for age-related (type II) osteoporotic fracture occurrence. Calcif Tissue Int, 1997, 61(3):173-8.
    
    11 Gazit D, Zilberman Y, Ebner R, et al. Bone loss (osteopenia) in old male mice results from diminished activity and availability of TGF-beta. J Cell Biochem, 1998, 70(4):478-88.
    
    12 Dynan WS, Tjian R. Isolation of transcription factors that discriminate between different promoters recognized by RNA polymerase II. Cell, 1983,32(3):669-80.
    
    13 Bouwman P, Philipsen S. Regulation of the activity of Sp1-related transcription factors. Mol Cell Endocrinol, 2002, 195(1-2):27-38.
    
    14 Kaczynski J, Cook T, Urrutia R. Sp1- and Kruppel-like transcription factors. Genome Biol,2003, 4(2):206.
    15 Le Mee S,Fromigue O,Marie PJ.Sp1/Sp3 and the myeloid zinc finger gene MZF1 regulate the human N-cadherin promoter in osteoblasts.Exp Cell Res,2005,302(1):129-42.
    16 Hantusch B,Kalt R,Krieger S,et al.Sp1/Sp3 and DNA-methylation contribute to basal transcriptional activation of human podoplanin in MG63 versus Saos-2 osteoblastic cells.BMC Mol Biol,2007,8:20.
    17 Stein GS,Lian JB.Molecular mechanisms mediating proliferation/differentiation interrelationships during progressive development of the osteoblast phenotype.Endocr Rev,1993,14(4):424-42.
    18 Gori F,Hofbauer LC,Dunstan CR,et al.The expression of osteoprotegerin and RANK ligand and the support of osteoclast formation by stromal-osteoblast lineage cells is developmentally regulated.Endocrinology,2000,141(12):4768-76.
    19 人成骨肉瘤MG-63细胞分化特性及分化过程中的基因表达.湖南医科大学学报[Z].2001:02,107
    1 Ducy P,Karsenty G.Two distinct osteoblast-specific cis-acting elements control expression of a mouse osteocalcin gene.Mol Cell Biol,1995,15(4):1858-69.
    2 Geoffroy V,Ducy P,Karsenty G.A PEBP2 alpha/AML-1-related factor increases osteocalcin promoter activity through its binding to an osteoblast-specific cis-acting element.J Biol Chem,1995,270(52):30973-9.
    3 Ducy P, Zhang R, Geoffroy V, et al. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell, 1997, 89(5):747-54.
    
    4 Xiao ZS, Hinson TK, Quarles LD. Cbfal isoform overexpression upregulates osteocalcin gene expression in non-osteoblastic and pre-osteoblastic cells. J Cell Biochem, 1999,74(4) :596-605.
    
    5 Komori T, Yagi H, Nomura S, et al. Targeted disruption of Cbfal results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell, 1997,89(5):755-64.
    
    6 Otto F, Thornell AP, Crompton T, et al. Cbfal, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell,1997, 89(5): 765-71.
    
    7 Machuca-Tzili L, Monroy-Jaramillo N, Gonzalez-del Angel A, et al. New mutations in the CBFA1 gene in two Mexican patients with cleidocranial dysplasia. Clin Genet, 2002,61(5):349-53.
    
    8 Golan I, Baumert U, Wagener H, et al. Atypical expression of cleidocranial dysplasia: clinical and molecular-genetic analysis. Orthod Craniofac Res, 2002,5(4):243-9.
    
    9 Ducy P, Starbuck M, Priemel M, et al. A Cbfa1-dependent genetic pathway controls bone formation beyond embryonic development. Genes Dev, 1999, 13(8):1025-36.
    
    10 Xiao G, Wang D, Benson MD, et al. Role of the alpha2-integrin in osteoblast-specific gene expression and activation of the 0sf2 transcription factor. J Biol Chem, 1998, 273(49) : 32988-94.
    
    11 Komori T. Regulation of skeletal development by the Runx family of transcription factors. J Cell Biochem, 2005,95 (3): 445-53.
    
    12 Nakashima K, Zhou X, Kunkel G, et al. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell, 2002, 108(1):17-29.
    
    13 Milona MA, Gough JE, Edgar AJ. Expression of alternatively spliced isoforms of human Sp7 in osteoblast-like cells. BMC Genomics, 2003, 4(1) :43.
    
    14 Nishio Y, Dong Y, Paris M, et al. Runx2-mediated regulation of the zinc finger 0sterix/Sp7 gene.Gene, 2006,372:62-70.
    
    15 Zheng L, Iohara K, Ishikawa M, et al. Runx3 negatively regulates Osterix expression in dental pulp cells. Biochem J, 2007, 405(1):69-75.
    
    16 Lee MH, Kwon TG, Park HS, et al. BMP-2-induced Osterix expression is mediated by Dlx5 but is independent of Runx2. Biochem Biophys Res Commun, 2003,309 (3):689-94.
    
    17 Tu Q, Valverde P, Chen J. Osterix enhances proliferation and osteogenic potential of bone marrow stromal cells. Biochem Biophys Res Commun, 2006,341 (4):1257-65.
    
    18 Koga T, Matsui Y, Asagiri M, et al. NFAT and Osterix cooperatively regulate bone formation. Nat Med, 2005, 11 (8): 880-5.
    
    19 Wagner EF, Eferl R. Fos/AP-1 proteins in bone and the immune system. Immunol Rev, 2005, 208:126-40.
    
    20 McCabe LR, Banerjee C, Kundu R, et al. Developmental expression and activities of specific fos and jun proteins are functionally related to osteoblast maturation: role of Fra-2 and Jun D during differentiation. Endocrinology, 1996, 137(10) :4398-408.
    
    21 Owen TA, Bortell R, YocumSA, et al. Coordinate occupancy of AP-1 sites in the vitamin D-responsive and CCAAT box elements by Fos-Jun in the osteocalcin gene: model for phenotype suppression of transcription. Proc Natl Acad Sci U S A, 1990,87(24): 9990-4.
    
    22 Ruther U, Garber C, Komitowski D, et al. Deregulated c-fos expression interferes with normal bone development in transgenic mice. Nature, 1987, 325(6103):412-6.
    
    23 Grigoriadis AE, Schellander K, Wang ZQ, et al. Osteoblasts are target cells for transformation in c-fos transgenic mice. J Cell Biol, 1993,122(3) :685-701.
    
    24 Kenner L, Hoebertz A, Beil T, et al. Mice lacking JunB are osteopenic due to cell-autonomous osteoblast and osteoclast defects. J Cell Biol, 2004,164(4):613-23.
    
    25 Behrens A, Haigh J, Mechta-Grigoriou F, et al. Impaired intervertebral disc formation in the absence of Jun. Development, 2003, 130(1): 103-9.
    
    26 Ruff VA, Leach KL. Direct demonstration of NFATp dephosphorylation and nuclear localization in activated HT-2 cells using a specific NFATp polyclonal antibody. J Biol Chem,1995, 270(38): 22602-7.
    
    27 Thiebaud D, Krieg MA, Gillard-Berguer D, et al. Cyclosporine induces high bone turnover and may contribute to bone loss after heart transplantation. Eur J Clin Invest, 1996,26(7):549-55.
    1.Rossouw JE,Anderson GL,Prentice RL,LaCroix AZ,Kooperberg C,Stefanick ML,et al.Risks and benefits of estrogen plus progestin in healthy postmenopausal women:principal results From the Women's Health Initiative randomized controlled trial.JAMA 2002;288(3):321-33.
    2.Peris P,Alvarez L,Monegal A,Guanabens N,Duran M,Pons F,et al.Biochemical markers of bone turnover after surgical menopause and hormone replacement therapy.Bone 1999;25(3):349-53.
    3.Greenspan SL,Resnick NM,Parker RA.Early changes in biochemical markers of bone turnover are associated with long-term changes in bone mineral density in elderly women on alendronate,hormone replacement therapy,or combination therapy:a three-year,double-blind,placebo-controlled,randomized clinical trial.J Clin Endocrinol Metab 2005;90(5):2762-7.
    4.Chavassieux PM,Arlot ME,Reda C,Wei L,Yates AJ,Meunier PJ.Histomorphometric assessment of the long-term effects of alendronate on bone quality and remodeling in patients with osteoporosis.J Clin Invest 1997;100(6):1475-80.
    5.Vedi S,Compston JE.The effects of long-term hormone replacement therapy on bone remodeling in postmenopausal women.Bone 1996;19(5):535-9.
    6.Chavassieux PM,Arlot ME,Reda C,Wei L,Yates AJ,Meunier PJ.Histomorphometric assessment of the long-term effects of alendronate on bone quality and remodeling in patients with osteoporosis.J Clin Invest 1997;100(6):1475-80.
    
    7. Vedi S, Purdie DW, Ballard P, Bord S, Cooper AC, Compston JE. Bone remodeling and structure in postmenopausal women treated with long-term,high-dose estrogen therapy. Osteoporos Int 1999;10(1):52-8.
    
    8. Bone HG, Greenspan SL, McKeever C, Bell N, Davidson M, Downs RW, et al.Alendronate and estrogen effects in postmenopausal women with low bone mineral density. Alendronate/Estrogen Study Group. J Clin Endocrinol Metab 2000;85(2):720-6.
    
    9. KhastgirG, Studd J, Holland N, Alaghband-Zadeh J, Fox S, Chow J. Anabolic effect of estrogen replacement on bone in postmenopausal women with osteoporosis: histomorphometric evidence in a longitudinal study. J Clin Endocrinol Metab 2001;86(1):289-95.
    
    10. Dufresne TE, Chmielewski PA, Manhart MD, Johnson TD, Borah B. Risedronate preserves bone architecture in early postmenopausal women in 1 year as measured by three-dimensional microcomputed tomography. Calcif Tissue Int 2003;73(5):423-32.
    
    11. Recker R, Masarachia P, Santora A, Howard T, Chavassieux P, Arlot M, et al. Trabecular bone microarchitecture after alendronate treatment of osteoporotic women. Curr Med Res Opin 2005;21(2):185-94.
    
    12. Liberman UA, Weiss SR, Broil J, Minne HW, Quan H, Bell NH, et al. Effect of oral alendronate on bone mineral density and the incidence of fractures in postmenopausal osteoporosis. The Alendronate Phase III Osteoporosis Treatment Study Group. N Engl J Med 1995;333(22) : 1437-43.
    
    13. Tonino RP, MeunierPJ, Emkey R, Rodriguez-Portales JA, Menkes CJ, Wasnich RD, et al. Skeletal benefits of alendronate: 7-year treatment of postmenopausal osteoporotic women. Phase III Osteoporosis Treatment Study Group. J Clin Endocrinol Metab 2000;85(9):3109-15.
    
    14. Bone HG, Hosking D, Devogelaer JP, Tucci JR, Emkey RD, Tonino RP, et al. Ten years' experience with alendronate for osteoporosis in postmenopausal women. N Engl J Med 2004;350(12):1189-99.
    
    15. Osteoporosis. Obstet Gynecol 2004;104(4 Suppl):66S-76S.
    
    16. Bodine PV, Henderson RA, Green J, Aronow M, Owen T, Stein GS, et al.Estrogen receptor-alpha is developmentally regulated during osteoblast differentiation and contributes to selective responsiveness of gene expression. Endocrinology 1998;139(4):2048-57.
    
    17. Michael H, Harkonen PL, Vaananen HK, Hentunen TA. Estrogen and testosterone use different cellular pathways to inhibit osteoclastogenesis and bone resorption. J Bone Miner Res 2005;20(12):2224-32.
    
    18. Hofbauer LC, Khosla S, Dunstan CR, Lacey DL, Spelsberg TC, Riggs BL.Estrogen stimulates gene expression and protein production of osteoprotegerin in human osteoblastic cells. Endocrinology 1999; 140(9): 4367-70.
    
    19. Rogers A, Saleh G, Hannon RA, Greenfield D, Eastell R. Circulating estradiol and osteoprotegerin as determinants of bone turnover and bone density in postmenopausal women. J Clin Endocrinol Metab 2002;87(10):4470-5.
    
    20. Mendez-Davila C, Garcia-Moreno C, Turbi C, de la Piedra C. Effects of 17beta-estradiol, tamoxifen and raloxifene on the protein and mRNA expression of interleukin-6, transforming growth factor-beta1 and insulin-like growth factor-1 in primary human osteoblast cultures. J Endocrinol Invest 2004;27(10):904-12.
    
    21. Robinson JA, Harris SA, Riggs BL, Spelsberg TC. Estrogen regulation of human osteoblastic cell proliferation and differentiation.Endocrinology 1997; 138(7):2919-27.
    
    22. Holzer G, Einhorn TA, Majeska RJ. Estrogen regulation of growth and alkaline phosphatase expression by cultured human bone marrow stromal cells. J Orthop Res 2002;20(2):281-8.
    
    23. Pan B, Farrugia AN, To LB, Findlay DM, Green J, Lynch K, et al. The nitrogen-containing bisphosphonate, zoledronic acid, influences RANKL expression in human osteoblast-like cells by activating TNF-alpha converting enzyme (TACE). J Bone Miner Res 2004;19(1):147-54.
    
    24. Dobnig H, Hofbauer LC, Viereck V, Obermayer-Pietsch B,Fahrleitner-Pammer A. Changes in the RANK ligand/osteoprotegerin system are correlated to changes in bone mineral density in bisphosphonate-treated osteoporotic patients. Osteoporos Int 2006;17(5):693-703.
    
    25. Pan B, To LB, Farrugia AN, Findlay DM, Green J, Gronthos S, et al. The nitrogen-containing bisphosphonate, zoledronic acid, increases mineralisation of human bone-derived cells in vitro. Bone 2004; 34(1):112-23.
    
    26. Reinholz GG, Getz B, Pederson L, Sanders ES, Subramaniam M, Ingle JN,et al. Bisphosphonates directly regulate cell proliferation,differentiation, and gene expression in human osteoblasts. Cancer Res 2000;60(21):6001-7.
    
    27. Itoh F, Aoyagi S, Furihata-Komatsu H, Aoki M, Kusama H, Kojima M, et al.Clodronate stimulates osteoblast differentiation in ST2 and MC3T3-E1 cells and rat organ cultures. Eur J Pharmacol 2003;477(1):9-16.
    
    28. Oreffo R0, Kusec V, Virdi AS, Flanagan AM, Grano M, Zambonin-Zal lone A,et al. Expression of estrogen receptor-alpha in cells of the osteoclastic lineage. Histochem Cell Biol 1999;111(2):125-33.
    
    29. Braidman IP, Hainey L, Batra G, Selby PL, Saunders PT, Hoyland JA.Localization of estrogen receptor beta protein expression in adult human bone. J Bone Miner Res 2001;16(2):214-20.
    30. Sorensen MG, Henriksen K, Dziegiel MH, Tanko LB, Karsdal MA. Estrogen directly attenuates human osteoclastogenesis, but has no effect on resorption by mature osteoclasts. DNA Cell Biol 2006;25(8):475-83.
    
    31. Garcia Palacios V, Robinson LJ, Borysenko CW, Lehmann T, KallaSE, Blair HC. Negative regulation of RANKL-induced osteoclastic differentiation in RAW264.7 Cells by estrogen and phytoestrogens. J Biol Chem 2005;280(14):13720-7.
    
    32. Russell RG. Bisphosphonates: from bench to bedside. Ann N Y Acad Sci 2006;1068:367-401.
    
    33. Hughes DE, MacDonald BR, Russell RG, Gowen M. Inhibition of osteoclast-like cell formation by bisphosphonates in long-term cultures of human bone marrow. J Clin Invest 1989;83(6):1930-5.
    
    34. Van Beek ER, Lowik CW, Papapoulos SE. Bisphosphonates suppress bone resorption by a direct effect on early osteoclast precursors without affecting the osteoclastogenic capacity of osteogenic cells: the role of protein geranylgeranylation in the action of nitrogen-containing bisphosphonates on osteoclast precursors. Bone 2002;30(1):64-70.
    
    35. Ito M, Chokki M, Ogino Y, Satomi Y, Azuma Y, Ohta T, et al. Comparison of cytotoxic effects of bisphosphonates in vitro and in vivo. Calcif Tissue Int 1998;63(2):143-7.
    
    36. Hughes DE, Wright KR, Uy HL, Sasaki A, Yoneda T, Roodman GD, et al.Bisphosphonates promote apoptosis in murine osteoclasts in vitro and in vivo. J Bone Miner Res 1995;10(10):1478-87.
    
    37. Kousteni S, Bellido T, Plotkin LI, O'Brien CA, Bodenner DL, Han L, et al. Nongenotropic, sex-nonspecific signaling through the estrogen or androgen receptors: dissociation from transcriptional activity. Cell 2001;104(5):719-30.
    
    38. Umayahara Y, Kawamori R, Watada H, Imano E, Iwama N, Morishima T, et al. Estrogen regulation of the insulin-like growth factor I gene transcription involves an AP-1 enhancer. J Biol Chem 1994;269(23):16433-42.
    
    39. Ray A, Prefontaine KE, Ray P. Down-modulation of interleukin-6 gene expression by 17 beta-estradiol in the absence of high affinity DNA binding by the estrogen receptor. J Biol Chem 1994;269(17):12940-6.
    
    40. Chen JR, Plotkin LI, Aguirre JI, Han L, Jilka RL, Kousteni S, et al.Transient versus sustained phosphorylation and nuclear accumulation of ERKs underlie anti-versus pro-apoptotic effects of estrogens. J Biol Chem 2005;280(6):4632-8.
    
    41. Kousteni S, Chen JR, BellidoT, Han L, Ali AA, O'Brien CA, et al. Reversal of bone loss in mice by nongenotropic signaling of sex steroids. Science 2002;298(5594):843-6.
    
    42. Reszka AA, Rodan GA. Mechanism of action of bisphosphonates. Curr Osteoporos Rep 2003;1(2):45-52.
    
    43. Plotkin LI, Aguirre JI, Kousteni S, Manolagas SC, Bellido T. Bisphosphonates and estrogens inhibit osteocyte apoptosis via distinct molecular mechanisms downstream of extracellular signal-regulated kinase activation. J Biol Chem 2005;280(8):7317-25.